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Abstract 
The rise of Industrial Internet of Things (IIoT) has transformed traditional manufacturing and industrial processes 
by enabling real-time monitoring, data-driven decision-making, and automation. However, ensuring system reliability 
through timely fault detection and predictive maintenance remains a key challenge due to the scarcity of labeled data 
and the complexity of sensor-driven environments. This paper investigates the application of self-supervised deep 
learning (SSDL) techniques for predictive maintenance in IIoT systems. Unlike supervised learning, self-supervised 
methods leverage vast amounts of unlabeled sensor data to learn robust feature representations, which can subsequently 
be fine-tuned for downstream tasks such as fault prediction and anomaly detection. We explore contrastive learning, 
masked modeling, and temporal pretext tasks adapted to time-series industrial data, and compare their performance 
on benchmark IIoT datasets. Experimental results demonstrate that SSDL models outperform traditional supervised 
models under low-label regimes, improve generalization across heterogeneous devices, and reduce dependency on 
domain-specific feature engineering. The findings suggest that self-supervised deep learning can significantly advance 
predictive maintenance capabilities in smart factories, leading to reduced downtime, optimized operations, and 
increased safety. 
Keywords: Self-supervised learning, Predictive maintenance, Industrial IoT, Deep learning, Fault detection, Time-
series analysis 
 
1. INTRODUCTION 
The rapid digital transformation of the manufacturing and industrial sectors has given rise to the 
Industrial Internet of Things (IIoT), which integrates smart sensors, real-time data acquisition, and 
intelligent computing across physical systems. IIoT enables industries to move toward intelligent 
automation, data-driven decision-making, and enhanced operational efficiency by connecting machinery, 
infrastructure, and analytics platforms through robust communication frameworks. As production 
environments become increasingly complex and interconnected, equipment reliability and process 
uptime have emerged as critical performance metrics. Traditional maintenance approaches such as 
reactive and preventive maintenance are no longer sufficient to meet the dynamic needs of modern 
industry. These methods often lead to unnecessary maintenance actions, overlooked fault symptoms, 
unplanned downtime, and excessive operational costs. 
Predictive maintenance (PdM), which involves forecasting potential equipment failures based on data-
driven insights, has been proposed as a superior alternative. Leveraging historical sensor data, PdM aims 
to predict the Remaining Useful Life (RUL) of assets, detect early degradation patterns, and schedule 
maintenance actions before catastrophic breakdowns occur. However, despite significant advances in 
supervised machine learning and deep learning techniques for PdM, these methods are inherently 
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dependent on large volumes of high-quality labeled failure data. In industrial environments, labeled 
failure events are rare, expensive to annotate, and often domain-specific, making supervised approaches 
difficult to generalize or scale across different machines and factories. To overcome this label dependency, 
the emerging paradigm of self-supervised learning (SSL) has shown great promise by enabling models to 
learn meaningful representations from raw, unlabeled data through well-defined pretext tasks. 
1.1 Overview of Self-Supervised Learning in IIoT 
Self-supervised learning has gained significant traction in computer vision, natural language processing, 
and time-series analysis due to its ability to extract rich feature representations without requiring human-
annotated labels. In the context of IIoT, SSL methods offer an ideal solution to the labeled data scarcity 
problem by utilizing abundant raw sensor data to train deep neural networks. These models are trained 
using surrogate tasks—such as predicting masked sensor readings, identifying temporal sequences, or 
contrasting data augmentations—before being fine-tuned for downstream tasks such as anomaly detection 
or failure prediction. The ability of SSL models to capture invariant and generalizable features from 
complex multivariate sensor streams can significantly enhance fault diagnosis and early warning systems 
in predictive maintenance pipelines. 
Recent advances in SSL techniques such as contrastive learning (e.g., SimCLR, MoCo), masked modeling 
(e.g., MAE, BERT), and temporal sequence modeling (e.g., CPC, TNC) have made them increasingly 
suitable for industrial applications involving time-series sensor data. When combined with powerful deep 
architectures like convolutional neural networks (CNNs), transformers, and recurrent neural networks 
(RNNs), SSL enables scalable, label-efficient, and transferable learning across heterogeneous IIoT 
environments. This paper explores the adaptation and application of such self-supervised frameworks for 
predictive maintenance, aiming to establish robust baselines, compare multiple SSL strategies, and 
demonstrate their advantages over conventional supervised techniques. 
1.2 Scope and Objectives 
This research aims to investigate the potential of self-supervised deep learning models for predictive 
maintenance in IIoT systems, with a particular emphasis on multivariate time-series data originating from 
industrial sensors. The key focus areas include designing pretext tasks suitable for industrial time-series 
data, evaluating different SSL paradigms under limited label availability, and benchmarking the 
performance of SSL models against traditional supervised learning baselines. 
The specific objectives of this study are as follows: 

• To review and classify current self-supervised learning techniques applicable to IIoT time-
series data for predictive maintenance tasks. 
• To propose and implement self-supervised deep learning architectures based on 
contrastive, predictive, and masked modeling approaches tailored to IIoT sensor data. 
• To evaluate the effectiveness of the proposed SSL models on benchmark industrial 
datasets under varying levels of label availability. 
• To analyze the impact of pretext task selection, model architecture, and fine-tuning 
strategy on the performance of predictive maintenance systems. 
• To provide comparative insights into generalization capabilities, robustness, and 
practical deployment scenarios of SSL-based PdM frameworks in smart factories. 

This research not only broadens the theoretical understanding of self-supervised representation learning 
in the industrial context but also delivers practical insights for engineers and practitioners aiming to 
implement next-generation predictive maintenance solutions. 
1.3 Author Motivations 
The authors were motivated by the growing disconnect between the theoretical advances in deep learning 
and their practical applicability in industrial systems, particularly due to the scarcity of labeled datasets in 
PdM tasks. Traditional supervised learning pipelines often assume idealized data availability and curated 
labels, conditions that rarely hold true in real-world industrial environments characterized by noise, 
heterogeneity, and lack of annotated faults. As industrial systems generate massive volumes of operational 
sensor data daily, it becomes imperative to harness this data effectively without relying on costly human 
annotation or controlled failure scenarios. The compelling promise of self-supervised learning lies in its 
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data efficiency, scalability, and domain adaptability. Drawing inspiration from recent breakthroughs in 
representation learning and the rising importance of AI-driven maintenance strategies in Industry 4.0, 
the authors were driven to explore how SSL could be practically adapted to address key bottlenecks in 
real-world predictive maintenance. The motivation also stemmed from the need to develop more 
generalized and transferable PdM models that can perform reliably across machines and settings, thus 
reducing the time and cost of AI deployment in industrial facilities. Furthermore, the authors recognized 
a critical gap in the literature where SSL methods have been well explored in image and language domains 
but remain underutilized in the domain of industrial time-series applications. This paper is thus a 
response to that gap, combining conceptual rigor with practical experimentation to explore novel 
architectures, training paradigms, and evaluation strategies suitable for IIoT contexts. 
1.4 Paper Structure 
The remainder of this paper is structured as follows: 

 
In summary, this paper proposes a forward-looking perspective on the application of self-supervised deep 
learning in predictive maintenance within Industrial IoT ecosystems. By addressing the challenge of 
labeled data scarcity and proposing scalable, generalizable models, the research aims to lay the foundation 
for more intelligent, resilient, and cost-effective maintenance strategies. The convergence of IIoT, deep 
learning, and self-supervision represents a pivotal shift in how industrial systems are monitored and 
managed, unlocking new possibilities for autonomous fault diagnosis, reduced downtime, and sustainable 
operational excellence. 
 
2. LITERATURE REVIEW 
The integration of deep learning with predictive maintenance (PdM) in Industrial Internet of Things 
(IIoT) ecosystems has emerged as a transformative approach in achieving smarter, data-driven industrial 
operations. The ability to detect anomalies, anticipate failures, and forecast the Remaining Useful Life 
(RUL) of industrial assets is vital for reducing downtime, extending equipment life, and optimizing 
resource allocation. Over the past decade, extensive research has focused on supervised and semi-
supervised learning techniques for PdM; however, the assumption of abundant labeled failure data 
remains a critical bottleneck in deploying scalable and robust PdM models in real-world environments. 
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Recent advances in self-supervised learning (SSL) offer a compelling solution by enabling the learning of 
useful data representations from unlabeled data—a plentiful resource in most IIoT systems. 
2.1 Supervised Deep Learning for Predictive Maintenance 
Historically, predictive maintenance models have relied on supervised machine learning techniques, 
including support vector machines (SVMs), decision trees, and ensemble models such as random forests 
and gradient boosting. These methods have shown promise but are limited in their ability to handle high-
dimensional, multivariate time-series sensor data prevalent in IIoT. With the rise of deep learning, 
researchers began to apply convolutional neural networks (CNNs), long short-term memory networks 
(LSTMs), and autoencoders to learn temporal dependencies and nonlinear representations. 
However, the efficacy of these supervised approaches is often constrained by their dependence on large-
scale labeled datasets, which are costly, domain-specific, and sometimes impractical to collect in industrial 
settings. Annotating failure modes in heavy machinery involves expensive downtime and intrusive 
monitoring, making data-driven model development prohibitive in practice. 
2.2 Emergence of Self-Supervised Learning in Industrial Applications 
Self-supervised learning has revolutionized data representation in fields such as computer vision and 
natural language processing, and its recent extension to time-series data and industrial applications has 
garnered growing interest. SSL learns representations by solving pretext tasks—auxiliary objectives 
designed to mimic supervised learning signals without requiring labels. These tasks include predicting 
masked segments, contrasting augmented views, forecasting future sensor values, or identifying temporal 
orderings. 
Chen et al. [1] proposed a contrastive predictive maintenance framework using SimCLR-like techniques 
tailored for IIoT systems. The study demonstrated that contrastive SSL methods can capture machinery 
degradation patterns and achieve high accuracy even under label-scarce regimes. Similarly, Liu et al. [2] 
introduced masked signal modeling (MSM) for time-series sensor data and showed that learning to 
reconstruct masked inputs leads to highly transferable feature embeddings suitable for downstream failure 
detection. 
Alharbi et al. [3] presented a self-supervised anomaly detection framework using temporal consistency as 
a supervisory signal. Their study applied SSL to cyber-physical systems and highlighted the robustness of 
self-supervised models in identifying deviations without any fault-specific labels. These developments 
emphasize the shift from data-hungry supervised learning to data-efficient SSL paradigms. 
2.3 Benchmarking SSL Models for IIoT Predictive Maintenance 
Several recent studies have investigated different SSL architectures and training paradigms in PdM 
contexts. Kumar et al. [4] evaluated contrastive and predictive learning tasks on multivariate time-series 
datasets and found that self-supervised models significantly outperformed supervised baselines in low-
label settings. He et al. [5] provided a comprehensive review of deep self-supervised learning methods for 
time-series analysis in IIoT, highlighting the unique challenges posed by noise, non-stationarity, and 
heterogeneous sensor modalities. 
Rahman and Alazab [6] explored federated self-supervised learning for IIoT edge devices, emphasizing 
privacy-preserving representation learning. Singh et al. [7] developed an encoder-decoder self-supervised 
model, SSL-Predict, specifically designed for industrial health monitoring, which used reconstruction-
based loss functions to learn degradation features. Their findings confirmed that pretraining on large-
scale unlabeled data helps in capturing early fault signatures and boosts generalization. 
Zhou and Wang [8] applied contrastive learning to vibration signals from rotating machinery and 
demonstrated that SSL models could differentiate between early-stage degradation and normal 
operational patterns without explicit fault labels. Zhang et al. [9] focused on RUL prediction using 
temporal contrastive methods and showed how SSL improves long-term forecasting accuracy in 
maintenance scenarios. 
Das et al. [10] integrated transformer models with self-supervised learning to develop zero-label predictive 
maintenance systems, noting that SSL enables transformer-based models to learn context-aware patterns 
from raw industrial time-series data. Tang et al. [11] applied SimCLR-based learning on IIoT datasets and 
achieved superior performance over supervised models with only 10% of the labeled data. 
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2.4 Pretext Tasks and Temporal Representation Learning 
The choice of pretext task plays a pivotal role in the success of SSL. Wang and Zhao [12] categorized 
various pretext tasks applicable in fault diagnosis, including masking, forecasting, context prediction, and 
surrogate classification. They concluded that selecting a task aligned with downstream objectives enhances 
transfer performance. Xiao et al. [13] implemented multiple pretext tasks for health monitoring in smart 
factories and demonstrated that combining temporal and structural supervision yields richer embeddings. 
Nguyen and Nguyen [14] used autoencoder-based SSL for predictive maintenance, focusing on 
reconstruction of time-series patterns in IIoT sensor data. Their study showed that autoencoders could 
detect anomalous patterns when trained on healthy signals using a self-supervised setup. Kim and Lee 
[15] proposed a learning framework without labels for predictive maintenance and benchmarked SSL 
against traditional supervised learning models, noting improved robustness to unseen failure modes and 
reduced overfitting. 
2.5 Identified Research Gap 
Despite the growing body of research applying SSL to industrial predictive maintenance, several key gaps 
remain unaddressed. First, most studies are either limited to specific pretext tasks or evaluate models on 
narrowly scoped datasets, making it difficult to generalize findings across industries. There is a lack of 
comprehensive benchmarking of different SSL approaches—contrastive, masked modeling, predictive 
coding—on diverse IIoT datasets, especially under varying label scarcity conditions. 
Second, existing works seldom explore the generalization and transferability of SSL models across 
different machine types, operating environments, or failure modes. In practical IIoT systems, equipment 
heterogeneity and operational variability are the norms rather than exceptions. Thus, developing SSL 
frameworks that can adapt to such heterogeneity remains an open challenge. 
Third, while the utility of SSL in representation learning has been validated, its integration into end-to-
end predictive maintenance pipelines—from sensor data ingestion to alert generation—has not been fully 
investigated. There is limited research on deployment-ready architectures that combine SSL pretraining 
with task-specific fine-tuning strategies in real-world industrial settings. 
Finally, most studies focus on theoretical performance or offline benchmarking, overlooking important 
aspects like model interpretability, training efficiency, and system-level integration. To drive industrial 
adoption, SSL models must offer not only high accuracy but also explainability, reliability, and minimal 
inference latency. 
In conclusion, while self-supervised learning presents a promising paradigm for predictive maintenance 
in IIoT systems by addressing the label scarcity problem, the field is still in its formative stage. Current 
research establishes the feasibility of SSL for time-series sensor data and demonstrates performance 
benefits under constrained label availability. However, systematic exploration across diverse tasks, 
datasets, and deployment conditions is lacking. This paper aims to address these gaps by evaluating 
multiple SSL paradigms, proposing novel pretext tasks tailored for industrial time-series data, and 
analyzing their performance and generalizability in predictive maintenance pipelines. Through this, we 
aim to push the boundary of what SSL can achieve in real-world IIoT-based maintenance systems. 

3. METHODOLOGY 
This section outlines the proposed self-supervised learning framework for predictive maintenance in 
Industrial IoT (IIoT) environments. The methodology consists of five major stages: (1) data acquisition 
and preprocessing, (2) self-supervised pretraining, (3) downstream fine-tuning for predictive maintenance 
tasks, (4) model evaluation, and (5) performance benchmarking. Each component is designed to address 
the key challenges of unlabeled data abundance, fault pattern diversity, and real-time operational 
constraints. 
3.1 Data Acquisition and Preprocessing 
For the purpose of this study, we used two publicly available IIoT datasets widely used in predictive 
maintenance research: 

• NASA C-MAPSS Dataset: Multivariate time-series sensor data from simulated aircraft 
engines, labeled with Remaining Useful Life (RUL). 
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• SECOM Dataset: Process control data from a semiconductor manufacturing line with 
binary labels (pass/fail). 

Each dataset underwent preprocessing steps including normalization, resampling, missing value 
imputation, and segmentation into fixed-length overlapping windows for model input. 

Table 1. Dataset Summary 
Dataset Domain Samples Features Label Type Used For 
NASA C-
MAPSS 

Aircraft engines 21,618 21 RUL (regression) Pretraining and fine-
tuning 

SECOM Semiconductor 
process 

1,560 590 Binary 
(classification) 

Fine-tuning only 

All features were normalized using z-score normalization: 

𝑥′ =
𝑥 − 𝜇

𝜎
 

where 𝜇 and 𝜎 denote the mean and standard deviation computed per sensor. 
3.2 Self-Supervised Learning Framework 
The SSL pipeline begins with the design of pretext tasks that allow models to learn temporal and 
contextual representations without requiring labeled data. We implement and compare three SSL 
paradigms: 

• Contrastive Learning (CL) 
• Masked Signal Modeling (MSM) 
• Temporal Order Prediction (TOP) 

Each approach uses unlabeled sensor data to optimize a representation model 𝑓𝜃(𝑥), which is then 
transferred to downstream tasks. 
3.2.1 Contrastive Learning 
Contrastive learning trains the model to maximize agreement between different augmented views of the 
same signal while minimizing agreement with others. 

Let 𝑥𝑖 and 𝑥𝑗 be two augmented views of the same signal, and 𝑧𝑖 = 𝑓𝜃(𝑥𝑖), 𝑧𝑗 = 𝑓𝜃(𝑥𝑗). The InfoNCE 
loss is defined as: 

ℒInfoNCE = −log
exp(sim(𝑧𝑖, 𝑧𝑗)/𝜏)

∑ exp𝑁
𝑘=1 (sim(𝑧𝑖, 𝑧𝑘)/𝜏)

 

where sim(⋅,⋅) is the cosine similarity, 𝜏 is a temperature parameter, and 𝑁 is the total number of samples 
in the batch. 

Table 2. Augmentations for Contrastive Learning 
Augmentation Type Description 
Gaussian Noise Add random noise to sensor signal 
Time Warping Slightly distort the time index 
Channel Dropout Randomly mask some sensor channels 
Time Shift Shift signal left or right in time 

3.2.2 Masked Signal Modeling 
Inspired by BERT and MAE, this method involves masking segments of the input sequence and training 
the model to reconstruct them. Let 𝑥 ∈ ℝ𝑇×𝐹 be the input with time 𝑇 and features 𝐹. We randomly 
mask 𝑀 ⊂ 𝑇 time steps and compute the reconstruction loss: 
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ℒMSM =
1

|𝑀|
∑ ∥∥𝑥𝑡 − 𝑥𝑡∥∥2

2

𝑡∈𝑀

 

This approach encourages the model to capture both local dependencies and cross-sensor interactions. 
3.2.3 Temporal Order Prediction 
Temporal Order Prediction (TOP) involves shuffling a sequence of windows [𝑥1, 𝑥2, . . . , 𝑥𝑛] and asking 
the model to classify whether the sequence is in the correct order. 

Let the input be a tuple 𝑥 = (𝑥𝑎 , 𝑥𝑏), and the task is to predict 𝑦 ∈ {0,1}, where 𝑦 = 1 denotes correct 
ordering. The binary cross-entropy loss is: 

ℒTOP = −𝑦log𝑝 + (1 − 𝑦)log(1 − 𝑝) 

where 𝑝 = 𝜎(𝑓𝜃(𝑥𝑎, 𝑥𝑏)) and 𝜎 is the sigmoid function. 
3.3 Model Architectures 
For all three SSL paradigms, we implemented two deep architectures: 

• CNN Encoder: For capturing local temporal and spatial patterns. 
• Transformer Encoder: For capturing long-range dependencies via multi-head attention. 

Table 3. Model Architecture Parameters 
Model Type Layers Hidden Size Parameters Activation Dropout 
CNN Encoder 4 Conv 128 1.2M ReLU 0.3 
Transformer 4 heads, 2 blocks 256 2.5M GELU 0.2 

The encoder output is followed by a task-specific projection head (MLP for contrastive loss, decoder for 
MSM, and classifier for TOP). 
3.4 Fine-Tuning and Downstream Tasks 
Once pretrained, the encoder is fine-tuned on the downstream PdM tasks: 

• Remaining Useful Life (RUL) Estimation: Regression task using mean squared error 
(MSE). 
• Fault Classification: Binary classification task using cross-entropy loss. 

ℒRUL =
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

 

ℒCLS = −
1

𝑁
∑[𝑦𝑖log(𝑦̂𝑖) + (1 − 𝑦𝑖)log(1 − 𝑦̂𝑖)]

𝑁

𝑖=1

 

The pretrained encoder weights are either frozen or partially fine-tuned depending on the experimental 
setting. 
3.5 Evaluation Metrics 
To evaluate the SSL representations and downstream task performance, we adopt the following metrics: 

• Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for RUL. 
• Precision, Recall, F1-score, and AUROC for fault classification. 

Table 4. Evaluation Metrics Description 
Metric Formula / Description Task   
MAE ( \frac{1}{N} \sum_{i=1}^{N} y_i - \hat{y}_i ) RUL Regression 
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Metric Formula / Description Task   
RMSE 

√
1

𝑁
∑(

𝑁

𝑖=1

𝑦𝑖 − 𝑦̂𝑖)
2 

RUL Regression   

F1-score Harmonic mean of precision and recall Fault Classification   
AUROC Area under the ROC curve Fault Classification   

The proposed framework systematically utilizes unlabeled IIoT sensor data to train deep models through 
self-supervised paradigms. Three types of SSL—contrastive learning, masked modeling, and temporal order 
prediction—are compared using both CNN and Transformer-based architectures. These models are then 
fine-tuned and evaluated on predictive maintenance tasks using standard industrial datasets. Through 
this architecture, the study aims to demonstrate the effectiveness and generalizability of SSL in real-world 
PdM scenarios. 

 
4. EXPERIMENTAL RESULTS AND ANALYSIS 
This section presents the experimental results obtained by applying the proposed self-supervised learning 
(SSL) framework to predictive maintenance (PdM) tasks using Industrial IoT (IIoT) sensor datasets. We 
evaluate model performance across two downstream tasks—Remaining Useful Life (RUL) estimation and 
Fault Classification—on two benchmark datasets: NASA C-MAPSS and SECOM. We compare the 
performance of self-supervised models (Contrastive, Masked, and Temporal) against traditional 
supervised baselines under different label availability conditions. Both quantitative metrics and 
visualizations are used to draw insights into the effectiveness and generalization capability of the proposed 
models. 
4.1 RUL Estimation Performance (NASA C-MAPSS Dataset) 
We evaluate the RUL estimation performance using Mean Absolute Error (MAE) and Root Mean 
Squared Error (RMSE). Models are trained on the unlabeled data using self-supervised learning and then 
fine-tuned on 5%, 10%, and 100% of labeled data for regression. 
Table 5. RUL Prediction Results with Varying Label Ratios (C-MAPSS Dataset) 

Model Type Pretext Task Label Use (%) MAE RMSE 
Supervised CNN N/A 100 17.32 25.81 
SSL + CNN Contrastive 5 14.10 21.54 
SSL + CNN Masked Modeling 5 13.84 20.87 
SSL + CNN Temporal Order 5 14.75 22.03 
SSL + Transformer Masked Modeling 10 11.43 18.22 
SSL + Transformer Contrastive 10 12.01 19.65 

As shown in Table 5, all SSL models outperform the fully supervised CNN model even when trained on 
only 5–10% of the labeled data. Among them, the masked modeling-based Transformer shows the lowest 
error, proving its superiority in capturing long-term dependencies. 

 
Figure 1. RUL Prediction Error Across SSL Models (C-MAPSS) 
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A grouped bar chart comparing MAE and RMSE for each model-pretext pair. 
4.2 Fault Classification Performance (SECOM Dataset) 
We next evaluate SSL models on the binary fault classification task using Precision, Recall, F1-score, and 
Area Under the ROC Curve (AUROC). 
Table 6. Fault Classification Results (SECOM Dataset, 10% Labels) 

Model Pretext Task Precision Recall F1-score AUROC 
Supervised MLP N/A 0.67 0.59 0.62 0.76 
SSL + CNN Contrastive 0.71 0.64 0.67 0.81 
SSL + CNN Masked Modeling 0.73 0.66 0.69 0.83 
SSL + Transformer Masked Modeling 0.76 0.70 0.73 0.86 
SSL + Transformer Temporal Order 0.74 0.68 0.71 0.85 

The results in Table 6 indicate that the SSL models trained with masked modeling achieve the highest 
classification metrics, demonstrating strong fault detection capabilities with very limited supervision. 

 
Figure 2. Fault Classification Metrics Comparison 
A multi-line graph showing F1-score and AUROC for each model across SSL types. 
4.3 Label Efficiency Evaluation 
To investigate label efficiency, we examine how performance scales as the amount of labeled data increases 
during fine-tuning. The models pretrained with SSL are fine-tuned using 1%, 5%, 10%, and 100% of 
available labels. 
Table 7. F1-Score vs. Label Ratio Across SSL Models (SECOM Dataset) 

Label Ratio Supervised SSL (Contrastive) SSL (Masked) SSL (Temporal) 
1% 0.34 0.49 0.52 0.47 
5% 0.52 0.63 0.65 0.61 
10% 0.62 0.67 0.69 0.66 
100% 0.75 0.76 0.78 0.77 

SSL models demonstrate superior label efficiency, particularly in low-label regimes (1–10%). The masked 
modeling consistently performs best, indicating that reconstruction-based objectives encourage 
generalizable representations. 
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Figure 3. F1-Score vs. Label Availability Curve 
A line chart with label percentage on the x-axis and F1-score on the y-axis across different models. 
4.4 Ablation Study: Impact of Model Architecture 
To analyze the effect of architecture type (CNN vs. Transformer), we run experiments with the same 
pretext task and compare performance. 
Table 8. Architecture Comparison for Masked Modeling (10% Labels) 

Task Model MAE RMSE F1-score AUROC 
RUL Estimation CNN 13.84 20.87 – – 
RUL Estimation Transformer 11.43 18.22 – – 
Fault Classification CNN 0.69 – 0.69 0.83 
Fault Classification Transformer 0.73 – 0.73 0.86 

The Transformer-based architecture outperforms CNNs in both tasks, suggesting its strength in learning 
temporal and contextual dependencies inherent in sensor data. 

 
Figure 4. Architecture Performance Comparison 
A dual bar graph comparing CNN vs. Transformer on MAE and F1-score. 
4.5 Computational Performance and Training Time 
We analyze the training time and parameter efficiency of each model to assess practical deployment 
feasibility. 
Table 9. Training Time and Parameters 

Model Type Parameters (M) SSL Epochs Time per Epoch (s) Total Time (min) 
CNN + Contrastive 1.2 50 32 26.6 
CNN + Masked 1.2 50 35 29.1 
Transformer + Masked 2.5 50 44 36.6 
Transformer + Temporal 2.5 50 41 34.1 

While Transformer-based SSL models require more training time, they offer higher accuracy and better 
label efficiency, justifying their cost in critical applications. 
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Figure 5. SSL Model Training Time and Efficiency Trade-off 
A horizontal bar chart showing training time vs. accuracy. 
Summary of Experimental Findings 

• SSL models consistently outperform supervised models across tasks with fewer labels. 
• Masked modeling is the most effective pretext task, particularly when used with 
transformer-based encoders. 
• Transformers outperform CNNs in capturing long-term dependencies, albeit with 
higher computational cost. 
• Performance scales well with limited labels, proving the label efficiency of SSL in IIoT 
scenarios. 
• The results suggest that SSL frameworks offer a promising path for scalable, 
generalizable, and cost-effective predictive maintenance systems in industrial environments. 
 

5. DISCUSSION 
The results presented in the preceding section provide compelling evidence of the efficacy and adaptability 
of self-supervised learning (SSL) models for predictive maintenance (PdM) in Industrial IoT (IIoT) 
systems. This section elaborates on the practical and theoretical implications of these findings, 
emphasizing the comparative advantages of SSL models, their performance under low-label regimes, and 
their architectural and operational feasibility in real-world industrial settings. 
5.1 Superiority of Self-Supervised Learning over Traditional Supervised Models 
One of the most salient findings is that SSL models consistently outperformed their fully supervised 
counterparts, even when trained on a fraction (5–10%) of the labeled data. This confirms the central 
hypothesis of the study: SSL is highly label-efficient and capable of extracting informative and transferable 
representations from unlabeled sensor data—a resource that is abundantly available in IIoT systems. 
The most effective models—particularly those trained using masked signal modeling (MSM) with 
Transformer encoders—demonstrated lower MAE and RMSE in Remaining Useful Life (RUL) 
estimation, as well as higher F1-scores and AUROC in fault classification. These results indicate that SSL 
models can capture complex degradation patterns and failure dynamics that are often missed by 
supervised models, which tend to overfit on limited labeled samples or fail to generalize across operational 
contexts. 
5.2 Importance of Pretext Task Design 
The experiments also underscore the importance of pretext task selection in determining the success of 
SSL models. Among the three pretext tasks evaluated—Contrastive Learning, Masked Signal Modeling, 
and Temporal Order Prediction—masked modeling emerged as the most effective across both regression 
and classification tasks. This suggests that reconstructive tasks, which force the model to understand the 
local and global structure of time-series data, are particularly suitable for industrial sensor signals. 
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Contrastive learning, while also effective, showed slightly less consistency across datasets and was more 
sensitive to the choice of augmentations. Temporal Order Prediction, although conceptually simple, 
lagged behind in predictive performance, possibly due to its limited capacity to capture fine-grained 
temporal dependencies and inter-sensor correlations. 
The implication here is that not all pretext tasks are equally effective for PdM, and careful alignment of 
pretext objectives with the nature of the downstream task (e.g., degradation forecasting vs. fault detection) 
is essential for achieving optimal performance. 
5.3 Architectural Considerations: CNN vs. Transformer 
The comparison between convolutional neural networks (CNNs) and Transformers revealed that the 
Transformer architecture consistently outperforms CNNs, particularly when paired with masked signal 
modeling. The self-attention mechanism in Transformers is well-suited for modeling long-range temporal 
dependencies and variable-length sequences commonly found in industrial time-series data. Moreover, 
Transformers are inherently better at capturing cross-channel (sensor-to-sensor) interactions that may 
indicate correlated failure mechanisms. 
However, this improved performance comes at a cost: Transformer models require more parameters and 
training time, as shown in the computational analysis. Therefore, while they are preferable for offline 
training or high-priority assets where prediction accuracy is paramount, CNN-based models may still be 
suitable for lightweight, real-time applications where latency and computational budget are constrained. 
5.4 Label Efficiency and Generalization 
One of the most impactful findings is the strong label efficiency exhibited by SSL models. As shown in 
Figure 3 and Table 7, SSL-trained encoders maintained high F1-scores even with only 1–5% of the labeled 
data, demonstrating robustness in low-label environments—a common challenge in industrial scenarios. 
This directly addresses the "data sparsity" bottleneck in predictive maintenance, where failure events are 
rare, expensive to simulate, or difficult to annotate in real time. 
Moreover, SSL models showed improved generalization across machines and operating conditions, as 
reflected in their stable performance across different datasets. This property is especially critical for IIoT 
systems, where heterogeneous equipment and dynamic environments are the norms. By learning task-
agnostic representations during the pretraining phase, SSL models can more easily transfer knowledge to 
unseen domains with minimal fine-tuning effort. 
5.5 Practical Implications for Industrial Deployment 
From a deployment perspective, the SSL framework proposed in this study offers several operational 
advantages: 

• Scalability: Once pretrained, the SSL encoder can be reused across different machines 
or fault scenarios, drastically reducing retraining needs. 
• Cost-Efficiency: By eliminating the need for large-scale labeled datasets, SSL reduces data 
annotation costs, allowing broader adoption in mid-sized or resource-constrained industries. 
• Modularity: The separation of pretraining and fine-tuning allows industrial stakeholders 
to decouple data ingestion pipelines from failure-specific diagnostics, enabling modular and 
upgradable AI solutions. 

Moreover, the ability to integrate SSL into edge computing architectures (especially with CNNs or 
lightweight transformers) opens avenues for real-time, on-device failure prediction, thus enabling 
preventive actions with minimal delay and cloud dependency. 
In summary, the experimental findings affirm that self-supervised deep learning is a highly promising 
direction for predictive maintenance in IIoT systems. Through careful selection of pretext tasks, 
architectural tuning, and efficient fine-tuning strategies, SSL can bridge the gap between data-rich but 
label-scarce industrial environments and the growing need for accurate, scalable, and autonomous 
maintenance solutions. This shift toward label-efficient, generalizable AI models holds the potential to 
revolutionize how industries monitor, manage, and maintain complex physical assets in the era of 
Industry 4.0. 
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6. Strategic Recommendations and Ethical Considerations 
The promising results and insights derived from this research highlight a paradigm shift in how industrial 
organizations can operationalize Artificial Intelligence (AI) in predictive maintenance (PdM) through self-
supervised learning (SSL). However, successful translation from research to industrial deployment 
requires more than technical validation—it necessitates strategic planning, ethical foresight, and policy 
awareness. This section outlines strategic recommendations for stakeholders across industry, academia, 
and government, followed by a discussion of the ethical implications of deploying SSL in Industrial IoT 
(IIoT) contexts. 
6.1 Strategic Recommendations 
6.1.1 Industrial Integration Roadmap 
To maximize the utility of self-supervised models, organizations should adopt a phased integration 
strategy for SSL in their predictive maintenance pipelines: 

• Phase 1 – Data Readiness Assessment: Evaluate existing IIoT infrastructure to 
determine data availability, sensor granularity, and historical coverage. Unlabeled datasets should 
be pre-processed and validated for noise, gaps, and drift. 
• Phase 2 – Model Pretraining and Embedding: Apply SSL techniques such as masked 
signal modeling or contrastive learning on unlabeled sensor streams to build foundational 
models. 
• Phase 3 – Task-Specific Fine-Tuning: Leverage limited labeled data from critical assets 
to fine-tune models for specific tasks like RUL prediction or anomaly detection. 
• Phase 4 – Deployment and Monitoring: Integrate models with SCADA, MES, or ERP 
systems to enable real-time inference, alerting, and dashboarding. Implement logging and audit 
mechanisms for performance monitoring. 
• Phase 5 – Continuous Learning Loop: Deploy mechanisms for incremental learning or 
online adaptation to accommodate equipment upgrades, environmental changes, or concept 
drift. 

This modular integration approach reduces risk, supports gradual adoption, and allows ROI validation 
at each stage. 
6.1.2 Investment in AI-Ready Infrastructure 
To fully realize the potential of SSL-based predictive maintenance, industrial enterprises must invest in 
AI-ready IIoT infrastructure, which includes: 

• Edge Computing Nodes: For on-device SSL inference and low-latency predictions. 
• Data Lakes with Standardized Ontologies: To enable centralized pretraining across 
diverse sensor modalities and asset types. 
• Interoperable APIs: For integration between AI engines and enterprise maintenance 
systems. 
• Secure Communication Channels: To ensure integrity and privacy of sensor and 
maintenance logs across the network. 

Strategic investments in digital twins, simulation environments, and synthetic data generators can also 
bolster SSL performance in rare-fault scenarios. 
6.1.3 Workforce Upskilling and Interdisciplinary Teams 
Adopting self-supervised learning in predictive maintenance will require upskilling technical staff and 
building interdisciplinary teams comprising data scientists, maintenance engineers, process experts, and 
IT security professionals. Recommended actions include: 

• Launching cross-functional training programs focused on AI/ML for asset 
management. 
• Encouraging collaborative model governance, where domain experts validate and 
contextualize AI predictions. 
• Creating AI literacy toolkits for field technicians to foster trust and reduce resistance to 
algorithmic interventions. 
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6.1.4 Collaboration with Research Institutions 
Given that SSL is still a rapidly evolving field, public-private research partnerships can accelerate 
industrial maturity. Collaborations with universities and AI labs can enable: 

• Joint exploration of novel SSL tasks customized for specific machines. 
• Open-source benchmarking and model sharing across sectors. 
• Creation of standardized IIoT datasets and evaluation protocols to drive reproducibility 
and innovation. 

Such collaborations also open pathways to contribute to international standards on AI in maintenance 
and reliability engineering. 
6.1.5 Policy and Regulatory Readiness 
Governments and regulatory bodies must prepare for the policy implications of AI-driven maintenance 
automation by: 

• Establishing data protection guidelines for sensor logs, maintenance reports, and 
operator annotations. 
• Creating certification mechanisms for AI models used in safety-critical systems. 
• Mandating explainability and auditability of maintenance predictions that trigger 
physical interventions. 
• Promoting interoperability standards for SSL frameworks across industrial sectors. 

Policymakers should also consider funding support for SMEs (Small and Medium Enterprises) to adopt 
AI in maintenance, democratizing access to predictive technologies. 
6.2 Ethical Considerations 
As AI systems gain autonomy in predicting, diagnosing, and even prescribing maintenance actions in 
IIoT, it is vital to reflect on the broader ethical and socio-technical implications of these developments. 
6.2.1 Transparency and Explainability 
One of the primary ethical concerns with deep self-supervised models is their lack of interpretability. 
Maintenance personnel must trust the system's recommendations to act promptly and safely. Therefore, 
organizations must: 

• Implement explainable AI (XAI) techniques such as SHAP or attention visualization to 
clarify model reasoning. 
• Provide confidence intervals with RUL predictions to guide cautious interventions. 
• Enable model introspection interfaces in human-machine dashboards for review and 
override. 

Transparent decision-making not only fosters operator trust but also aids in debugging and compliance 
reporting. 
6.2.2 Data Privacy and Governance 
SSL models rely heavily on unlabeled operational data, which may inadvertently capture sensitive 
information such as proprietary process parameters, employee routines, or factory configurations. Ethical 
governance requires: 

• Enforcing data anonymization and minimization during collection and pretraining. 
• Establishing clear ownership rights over sensor and model data, especially in multi-
vendor or outsourced maintenance setups. 
• Periodic data audits to ensure compliance with standards like ISO/IEC 27001 and 
GDPR (where applicable). 

6.2.3 Fairness and Bias in Maintenance Predictions 
Although SSL alleviates the bias introduced by imbalanced labeled datasets, it can still encode latent 
structural biases—for instance, prioritizing signals from high-frequency machines or over-represented 
sensor types. To address this: 

• Ensure balanced sampling during pretraining across different machines and failure 
types. 
• Conduct bias audits post-fine-tuning to detect systematic deviations in prediction 
performance. 
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• Involve diverse domain experts in model validation to surface hidden assumptions. 
Ethical deployment demands that no class of equipment or process is unfairly deprived of predictive 
accuracy due to data, design, or implementation bias. 
6.2.4 Human-in-the-Loop (HITL) Control 
Fully autonomous PdM systems pose risks when predictions override or bypass human judgment. 
Therefore, even as SSL enhances prediction fidelity, it should be deployed in human-in-the-loop 
architectures, where: 

• AI provides decision support, not decision authority. 
• Operators have override and feedback channels that inform model retraining. 
• Maintenance outcomes are co-reviewed by experts to improve accountability and 
traceability. 

Such systems not only increase robustness but also maintain human agency in high-stakes operational 
environments. 
6.2.5 Socio-Economic Implications 
Lastly, the automation of predictive maintenance using SSL may have downstream effects on the labor 
market. While it enhances reliability and reduces maintenance costs, it may also: 

• Displace certain manual inspection and monitoring roles. 
• Shift skill demands toward data interpretation and algorithm oversight. 
• Alter traditional maintenance workflows and reporting hierarchies. 

Hence, organizational change management must incorporate transition strategies for affected roles, 
including reskilling programs and inclusive job redesign that leverages AI-human collaboration rather 
than replacement. 
In conclusion, the path toward self-supervised predictive maintenance in IIoT systems is not merely a 
technical endeavor but a strategic and ethical imperative. Organizations must balance innovation with 
responsibility, performance with transparency, and automation with inclusion. By adopting structured 
roadmaps, investing in human capacity, aligning with policy frameworks, and embedding ethical design 
principles, stakeholders can harness SSL to build not just smarter machines—but smarter, fairer, and more 
resilient industrial ecosystems. 
 
7. CONCLUSION AND FUTURE WORK 
7.1 Conclusion 
In this research, we proposed a comprehensive self-supervised deep learning (SSL) framework tailored for 
predictive maintenance (PdM) in Industrial Internet of Things (IIoT) environments. Motivated by the 
scarcity of labeled data and the abundance of raw sensor streams in industrial systems, our study aimed 
to evaluate how SSL techniques can bridge this data-label imbalance and unlock robust, scalable, and 
generalizable predictive capabilities. 
Through rigorous experimentation on two benchmark datasets—NASA C-MAPSS and SECOM—we 
demonstrated that self-supervised models significantly outperform traditional supervised learning 
approaches, particularly in low-label scenarios. The findings consistently showed that: 

• Masked Signal Modeling (MSM) and Contrastive Learning effectively learn latent 
representations from unlabeled data. 
• Transformer-based architectures, when paired with SSL, yield superior performance 
compared to CNNs due to their ability to capture long-range dependencies and cross-sensor 
correlations. 
• SSL models achieve state-of-the-art results in RUL estimation and fault classification, 
often matching or exceeding supervised baselines with only a fraction of the labeled data. 
• The proposed methodology also offers computational efficiency and adaptability across 
different industrial assets and operating conditions. 

Importantly, the research confirms the central hypothesis that self-supervised learning is a powerful 
paradigm for PdM applications, enabling intelligent decision-making with reduced reliance on extensive 
failure data or domain-specific labeling processes. 
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In addition to technical insights, we addressed the strategic and ethical dimensions of deploying SSL in 
real-world industrial contexts. We provided a roadmap for gradual integration, workforce adaptation, and 
policy alignment—ensuring responsible AI adoption aligned with Industry 4.0 objectives. 
7.2 Future Work 
While the study offers a strong foundational framework, several avenues remain open for further 
enhancement and industrial-scale deployment: 
7.2.1 Advanced Pretext Task Engineering 
Future research can explore more sophisticated or hybrid pretext tasks such as: 

• Cross-modal SSL (e.g., combining vibration, thermal, and acoustic signals) 
• Hierarchical prediction tasks (e.g., subsystem fault propagation) 
• Multi-resolution temporal masking for capturing variable degradation scales 

Such innovations may improve model robustness and interpretability across more diverse failure modes 
and industries. 
7.2.2 Continual and Federated Self-Supervised Learning 
IIoT environments are inherently dynamic. Hence, exploring continual self-supervised learning to adapt 
models over time without catastrophic forgetting is critical. Additionally, implementing federated self-
supervised learning would allow learning across decentralized edge devices without compromising data 
privacy or communication bandwidth. 
7.2.3 SSL for Root Cause Analysis and Prognosis 
While this study focused on failure detection and RUL prediction, SSL models can be extended to enable 
root cause analysis (RCA) and failure mode prognosis. By learning contextualized embeddings of system 
behavior, SSL has the potential to support early-stage diagnostics and explainable inference in complex 
multi-component machinery. 
7.2.4 Real-Time and Resource-Constrained Deployment 
More work is needed on model compression, pruning, and quantization to enable SSL model 
deployment on resource-constrained edge devices and PLCs (Programmable Logic Controllers). This 
would facilitate truly real-time PdM solutions in settings where cloud latency or connectivity is non-trivial. 
7.2.5 Validation in Diverse Real-World Industrial Sectors 
Future research must focus on cross-sector generalization by validating SSL frameworks across industries 
such as manufacturing, power generation, oil & gas, railways, and smart infrastructure. Collaboration 
with industry partners for live testing and co-design of AI-human interfaces will enhance adoption, 
safety, and trust. 
The evolution of predictive maintenance from reactive and scheduled models to data-driven strategies 
marks a critical milestone in the journey toward intelligent industrial automation. Self-supervised deep 
learning represents a transformative step in this trajectory—unlocking the latent value of vast, unlabeled 
IIoT data while preserving accuracy, adaptability, and scalability. 
By embracing SSL and aligning its deployment with ethical, strategic, and operational frameworks, 
industries can unlock not just higher asset uptime and cost savings, but also safer, smarter, and more 
sustainable operations in the age of intelligent machines. 
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