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Abstract 
When selecting a material flow layout, the layout's design is assessed using various Cr, including distance, throughput time, shape 
ratio, adjacency, and safety. To rank these Cr, multiple algorithms are employed. Fuzzy AHP, for instance, is utilized to rank the Cr 
and determine their respective weights. Within the Analytic Hierarchy Process (AHP), a ratio scale, represented as  
(𝑃𝑖1, 𝑃𝑖2…,𝑃𝑖𝑡), establishes the priorities of evaluation Cr {𝐶𝑟1, 𝐶𝑟2…,𝐶𝑟𝑡 } for decision-making. The ratio  𝑃𝑖𝑖/𝑃𝑖𝑗 quantifies the 
preference of Cr 𝐶𝑖 over . For group decision-making, experts provide subjective estimates of  𝑃𝑖/𝑃𝑗, which form entries in a pairwise 
comparison matrix. The AHP algorithm then calculates the weights of these Cr, which in turn establishes their ranking. This article 
applies a statistical method to validate the ranking of design evaluation Cr. This approach involves hypothesis testing to confirm the 
AHP algorithm's ranking, relying on comparative ratings from automobile industry experts. 
Keywords: Hypothesis testing, Non-linear programming model, Rank Order testing, Likelihood-ratio test, Analytic Hierarchy 
Process, Fuzzy Analytical Hierarchy Process, Multi-criteria Decision Making, F-test. 
 
INTRODUCTION 
Rank ordering of the evaluation criteria for material flow layout selection is a key decision-making problem in the 
automobile industry. The evaluation criteria for evaluating each of the material flow layout alternatives include both 
qualitative and quantitative criteria such as Distance, Adjacency, Shape ratio, Throughput time, Cost, Efficiency, 
Sustainability, Flexibility, Safety, Space Utilization, Quality and Lead time. 
In the collection of evaluation criteria {Cr1, Cr2, Cr3, Cr4, Cr5, Cr6, Cr7, Cr8, Crt-1, Crt} for the material flow layout 
selection problem, the priority vector of the evaluation criteria is (Pi1, Pi2, …., Pi10) and for each i and j, the ratio  Pii / 
Pij gives the preference of evaluation criteria Cri to that of Crj.  
𝐻 0 ∶   𝑃𝑖1 = Pi2 = Pi3 =Pi4, = Pi5 = Pi6 = Pi7 = Pi8 = Pit-1 =Pit   has to be tested against the alternate hypothesis  
  𝐻 𝑎  :  𝑃𝑖1  ≥ 𝑃𝑖2 ≥ 𝑃𝑖3   ≥  𝑃𝑖4  ≥  𝑃𝑖5 ≥ 𝑃𝑖6 ≥ 𝑃𝑖7  ≥  𝑃𝑖8  ≥  𝑃𝑖𝑡−1 ≥ 𝑃𝑖𝑡 
                  
where atleast one inequality holds strictly,For any distinct criteria i and j, an expert provides a subjective estimate, aij, 
for the ratio Cri/Crj. This estimate, aij, is conceptualized as the true ratio Cri/Crj perturbed by a multiplicative error, 
eij. This type of multiplicative modelling approach has precedents in the work of Dejong (1984) and Crawford and 
Williams (1985). 
 
𝑎𝑖𝑗  can then be written as 

                                                           𝑎𝑖𝑗  =(
𝜋𝑖

𝜋𝑗
) * 𝑒𝑖𝑗                                   ………..           (1)  

 

Let  𝑎𝑖,𝑖+1 
(𝑘) for k=1, 2…, n be the estimate of πi / πi+1 provided by the k-th expert for k =1, 2..., n. 

Then  (
1

𝑎𝑖+1,𝑖
𝑘 )  can be taken as an estimate of   (

𝑃𝑖𝑖+1

𝑃𝑖𝑖
) , if ai, i+1 provides an estimate of  (

𝑃𝑖𝑖

𝑃𝑖𝑖+1
). 

Furthermore, an estimate of  (𝑃𝑖1,/𝑃𝑖𝑖+1) can be obtained by multiplying other aij values, where i/j. Crawford and 
Williams (1985) confirmed that the distribution of aij demonstrates reciprocal properties. In the context of the 
multiplicative model (1), it is appropriate to assume that the log-normal distribution effectively represents the common 
underlying distribution. Based on this, it is reasonable to consider the eij terms as independent and that they follow a 
log-normal distribution with a zero mean and a variance of 𝜎2. 
Basak (1990) proposed a statistical technique for performing hypothesis tests to assess the null hypothesis (H0) in 
comparison to the alternative hypothesis (Ha), although the resulting distribution of the test statistic was found to be 
quite complex. Section 2 will introduce the simplified hypothesis testing procedure later proposed by Basak (2013). 
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The detailed computation of the proposed test statistic and its distribution will be elaborated in Section 3. To practically 
demonstrate this hypothesis testing method, a real-world case study from the automobile sector will be analyzed in 
Section 4. The concluding observations and suggestions for further research will be presented in Section 5. 
Hypothesis testing of hierarchical structures  
In the context of material flow layout selection, determining the priority of design evaluation criteria is a crucial step 
within the multi-criteria decision-making (MCDM) process. Various techniques are available to rank these criteria, 
among which the Analytic Hierarchy Process (AHP) has been selected for this study. 
The foundational work of Saaty (1980) offers a detailed explanation of the AHP methodology, laying out its core 
principles, conceptual framework, and step-by-step procedures. This work is widely regarded as the cornerstone for 
understanding how AHP can be effectively applied across different domains, including the design of material flow 
layouts in manufacturing environments. 
Karim et al. (2017) provided significant insights into the practical application of AHP in production and operations 
management. Their study covered key areas such as supply chain management, facility layout planning, and process 
improvement. They discussed both the strengths and limitations of AHP, offering guidance on how it can be 
strategically used for decision-making in manufacturing settings. 
Wu et al. (2017) introduced a structured approach for warehouse layout design aimed at enhancing material flow 
efficiency. Their work identified essential factors like travel distance, processing time, and safety considerations, and 
proposed an AHP-based decision-making framework to assist in selecting the most suitable layout design. 
A case study by Bhattacharya et al. (2017) illustrated the practical use of AHP for selecting material handling equipment 
within a warehouse, emphasizing its relevance to shop floor layout design decisions. 
Additionally, Arunyanart et al. (2018) developed an integrated model that combines Data Envelopment Analysis (DEA) 
with AHP for evaluating plant layout alternatives based on multiple performance criteria. 
Earlier, Chakraborty and Banik (2007) applied a multi-criteria decision-making approach to address facility layout 
selection. Their study assessed six critical layout evaluation factors—material flow, information flow, equipment flow, 
maintenance, flexibility, and adjacency—across ten different layout options. They utilized the AHP framework to 
systematically evaluate and rank these alternatives. 
While assigning priority rankings and weights to evaluation criteria typically suffices to address material flow layout 
selection problems, it is essential to validate the ranking methodology through statistical rigor. By subjecting the ranking 
process to hypothesis testing, researchers can provide empirical support for the reliability of the criteria rankings. This 
validation strengthens the argument that such rankings can be confidently adopted by organizations across various 
industries when making facility or material flow layout decisions. 
The following hypothesis is being proposed by Basak (2013).  
The hypothesis which gives the ranking of the design evaluation criteria is defined as the alternative hypothesis. 
                     𝐻𝑎      :   𝑃𝑖1≥ 𝑃𝑖2 ≥  𝑃𝑖3≥ 𝑃𝑖4≥  𝑃𝑖5≥ 𝑃𝑖6≥ : 𝑃𝑖7≥ 𝑃𝑖8≥  𝑃𝑖𝑡−1≥ 𝑃𝑖𝑡 
We would like to get the evidence to support this hypothesis from the sample data collected from experts on the 
comparison of criteria against each other. We would be utilizing the comparison matrix data collected from the experts 
while computing the AHP ranking of criteria. We would like to establish that at least one inequality is a strict inequality. 
  This study aims to provide adequate statistical evidence to reject the null hypothesis stated below.                                 𝐻 0 ∶

   𝑃𝑖1 = Pi2 = Pi3 Pi4, = Pi5 = Pi6 = Pi7 =Pi8 = Pit-1 =Pit   
So, essentially the following hypothesis needs to be tested.  
The null hypothesis to be tested   𝐻 0 ∶   𝑃𝑖1 = Pi2 = Pi3 =Pi4, = Pi5 = Pi6 = Pi7 = Pi8 = Pit-1 =Pit against              
 
The Alternate hypothesis  (2) 
𝐻 𝑎  : 𝑃𝑖1≥ 𝑃𝑖2 ≥  𝑃𝑖3≥ 𝑃𝑖4≥  𝑃𝑖5≥ 𝑃𝑖6≥ 𝑃𝑖7≥ 𝑃𝑖8≥  𝑃𝑖𝑡−1≥ 𝑃𝑖𝑡 with at least one strict inequality 
 The hypothesis testing problem can also be expressed as: 
 𝐻0

1 ∶  ln (𝑃𝑖𝑖) – ln (Pii+1) = 0, for i = 1,2, 3..., t-1   against            (3) 
𝐻𝑎

1  ∶  ln (𝑃𝑖𝑖) – ln (𝑃𝑖𝑖+1) ≥ 0, for i=1,2, 3…, t-1 with at least one strict inequality    

The statistical Likelihood f of  𝑎𝑖,𝑖+1
(𝑘)  for i=1,2, 3,9 and k=1, 2..., n varies in proportion to 

 

exp   − 
1

2𝜎2 ∑ {∑ (𝑙𝑛(𝑎𝑖,𝑖+1
(𝑘)

− 𝑙𝑛 𝑎𝑖,𝑖+1)
2

𝑛
𝑘=1 − 𝑛(𝑙𝑛 𝑎𝑖,𝑖+1 + 𝑙𝑛(𝜋𝑖 + 1) − 𝑙𝑛 (𝜋𝑖))2}𝑡−1

𝑖=1         (4)  
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where  𝑙𝑛 𝑎𝑖,𝑖+1  = 
1

𝑛
 ∑ 𝑎𝑖,𝑖+1

(𝑘)𝑛
𝑘=1 . 

 
Now substituting   𝜃𝑖  = ln (𝑃𝑖𝑖) – ln (𝑃𝑖𝑖+1) and  𝑦𝑖 = 𝑙𝑛 𝑎𝑖,𝑖+1 in equation (4), we get 
The statistical Likelihood f varies in proportion to 

                 exp  [−  
𝑛

2𝜎2   ∑ (𝑦𝑖− 𝜃𝑖 )
2𝑡−1

𝑖=1  ]                                                                              (5) 

 
The null hypothesis 𝐻0

1 and the alternative hypothesis 𝐻𝑎
1 as specified in (3), are assessed using the widely recognized 

likelihood ratio test, which evaluates whether the likelihood differs notably between the two hypotheses 
                                     λ  =  maximum

𝜃0

𝑓 /  maximum
𝜃𝑎

𝑓  whether it is negligible or significant, equivalently 

                                  𝜆∗  = - 2 ln λ   =   2 [min
𝜃𝑎

(−𝑓) −  𝑚𝑖𝑛
𝜃0

(−𝑓)]  is large or not.           (60 

In equation 6 we substitute m = t-1,  
                                 𝜃0     = {𝜃𝑖| 𝜃𝑖 = 0, 𝑖 = 1,2, … , 𝑚 } 
                                𝜃𝑎     = {𝜃𝑖| 𝜃𝑖  ≥ 0, 𝑖 = 1,2, … , 𝑚 } 
By using (5),  𝜆∗  can be evaluated as  

                              𝜆∗  = (𝑛/𝑠2) * ([∑ 𝑦𝑖
2𝑚

𝑖=1 − 𝑚𝑖𝑛
   𝜃𝑎

 ∑  𝑚
𝑖=𝑖 (𝑦𝑖 − 𝜃)2  ])                (6) 

  where 𝑠2 is an estimate of 𝜎2 
             
3. Evaluation of Likelyhood test ratio and its distribution under the null hypothesis H0 
The point where the convex function reaches its lowest value 
 
                                              𝑓∗ = 𝑛 ∑ (𝑦𝑖  

𝑚
𝑖=1 −  𝜃𝑖)

2 

of  𝜃𝑖  need to be computed bound by inequality conditions 
                                                𝑔𝑖(𝜃1, 𝜃2, 𝜃3, . . , 𝜃𝑚) =  𝜃𝑖 ≥ 0 (for i=1, 2…, m) 
𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑢𝑟𝑝𝑜𝑠𝑒 𝑜𝑓 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑡𝑒𝑠𝑡 𝑟𝑎𝑡𝑖𝑜𝜆∗ 
 
It is evident that this is a Non-linear Programming Problem (NLP). Basak (2015) solved this problem by applying the 
Kuhn-Tucker necessity theorem and Kuhn-Tucker sufficiency theorem. 
 
Basak proposed following theorems to solve this problem. 
 
Theorem 1: The inclusion of the sample vector  (𝑦1, 𝑦2 , … , 𝑦𝑚)  is determined by a necessary and sufficient condition  
𝑅𝑀 where ϕ ⊂ M ⊂ A and M= {d+1, ⋯, m} is 
1  𝑦𝑖  ≤ 0 for i = 1, 2…, d 
2  𝑦𝑖  > 0 for i = d+1, d+2, ⋯, m 
 
Applying the Theorem 1 to the equation (6) is reduced to the following: 
 
 
                                      𝜆∗  = (𝑛/𝑠2) * (∑ 𝑦𝑖

2𝑚
𝑖=𝑑+1 ) with  𝑖 𝜀 𝑀            (7)  

 
                              
            
In the following Theorem 2 Basak (2015) presents the distributional characteristics of 𝜆∗ derived from (7), operating 
under the premise of null hypothesis 𝐻0 as stated in equation (2) 
 
Theorem 2: On the premise of the null hypothesis   𝐻0 : 𝜃𝑖 = 0 for i=1, 2…., m, 
 
(𝑛𝑚−1)

(𝑚−𝑑)
  𝜆∗  =   

𝑛(𝑛𝑚−1)

(𝑚−𝑑)𝑠2   ∑ 𝑦𝑖
2

𝑖 𝜀 𝑀   has follows an F-distribution, having (m-d) degrees of freedom in its numerator and 

(nm-1) in its denominator. 
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       where     𝑠2 =  ∑ ∑ [𝑙𝑛𝑎𝑖,𝑖+1
(𝑘)

−  𝑎̅]
2

𝑚
𝑖=1

𝑛
𝑘=1   with  𝑎̅ =  ∑ ∑ ln 𝑎𝑖,𝑖+1

(𝑘)𝑚
𝑖=1

𝑛
𝑘=1  

 
Basak (2015) has shown that under 𝐻0 
 

                        
𝑛  (∑ 𝑦𝑖

2
𝑖 𝜀 𝑀  )/ (𝑚−𝑑)        

(𝑠2/(𝑛𝑚−1)))
    ∼      𝐹𝑚−𝑑,𝑛𝑚−1       in which 

 𝐹𝑚−𝑑,𝑛𝑚−1  represents F distribution with numerator degrees of freedom (m− d) and denominator degrees of freedom  
(nm − 1). 
 

Thus, it is proven that  
(𝑛𝑚−1)

(𝑚−𝑑)
  𝜆∗  has an F distribution with the numerator degrees of freedom (m-d) and denominator 

degrees of freedom (nm-1). 
 

The F distribution mentioned earlier pertaining to 
(𝑛𝑚−1)

(𝑚−𝑑)
  𝜆∗  is applicable for testing the null hypothesis as articulated 

in equation (2). 
 
At significance level of α, the null hypothesis  𝐻0 would be rejected if 
 

                                                 
(𝑛𝑚−1)

(𝑚−𝑑)
  𝜆∗   ≥ F0    

where F0 is the critical value of  𝐹𝑚−𝑑,𝑛𝑚−1 distribution with P[𝐹𝑚−𝑑,𝑛𝑚−1  ≥  𝐹0]  = α 
 
 
4. Numerical Validation of hypothesis testing for hierarchical Structures  
In order to test the hypothesis for ranking of design evaluation criteria, the pairwise comparison data collected from 
five experts from the automobile industry have been used. Gautam and Sudarsanam (2024) have ranked the design 
evaluation criteria using Fuzzy AHP method. The evaluation criteria for evaluating each of the layout alternatives 
include both qualitative and quantitative criteria such as Distance, Adjacency, Shape ratio, Throughput time, Cost, 
Accessibility, Flexibility, Safety, Maintenance and Efficiency. 
The data collected from experts (pairwise comparison rating) is listed below. The order of comparison of criterion is 
based on the final ranking output from the Fuzzy AHP method (in the descending order) starting with Throughput 
time.  
 

Experts 1 2 3 4 5 Criteria 
(T,C) 3 2 3 3 2 Throughput time vs Cost 
(C,F) 3 3 2 3 2 Cost vs Flexibility 
(F,E) 2 1.5 2 1.5 2 Flexibility vs Efficiency 
(E,D) 1 1.5 1 1.5 1 Efficiency vs Distance 
(D,A) 2 1 2 3 2 Distance vs Adjacency 
(A,AC) 1.5 1.5 2 2 1.5 Adjacency vs Accessibility 
(AC,SH) 1.5 1.5 1 2 1.5 Accessibility vs Shape ratio 
(SH,S) 1 1.5 1 1 1 Shape ratio vs Safety 
(S,M) 1 0.5 1 0.5 1 Safety vs Maintenance 

 
       
For example, the third expert rating in the first pair (T, C) is given as 3, which means that the criteria Throughput time 
is rated as three times more important than the criteria Cost by third expert. 
 
Gautam and Sudarsanam (2024) have established the rank order of the design evaluation criteria of material flow layout 
as  
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         𝑃𝑖𝑇  ≥ 𝑃𝑖𝐶  ≥ 𝑃𝑖𝐹  ≥ 𝑃𝑖𝐸  ≥ 𝑃𝑖𝐷   ≥ 𝑃𝑖𝐴  ≥𝑃𝑖𝐴𝐶   ≥𝑃𝑖𝑆𝐻  ≥𝑃𝑖𝑆   ≥ 𝑃𝑖𝑀 
 
Using the methodology proposed in Section 2 and Section 3, the rank order provided above by Gautam and 
Sudarsanam (2024) 
can be validated with the following hypothesis testing. 
 
We would like to test 
   
                        𝐻0 :  𝑃𝑖𝑇 = 𝑃𝑖𝐶  = 𝑃𝑖𝐹  =𝑃𝑖𝐸  = 𝑃𝑖𝐷  = 𝑃𝑖𝐴  = 𝑃𝑖𝐴𝐶   = 𝑃𝑖  = 𝑃𝑖𝑆   = 𝑃𝑖𝑀   
against               
                       𝐻𝑎   :  𝑃𝑖 ≥ 𝑃𝑖𝐶 ≥  𝑃𝑖𝐹 ≥ 𝑃𝑖𝐸 ≥  𝑃𝑖𝐷 ≥ 𝑃𝑖𝐴 ≥ 𝑃𝑖𝐴𝐶  ≥ 𝑃𝑖𝑆𝐻 ≥ 𝑃𝑖𝑆 ≥ 𝑃𝑖𝑀    with at least one strict inequality.               
 

By applying theorem 2 in Section 3, the hypothesis test criteria  
(𝑛𝑚−1)

(𝑚−𝑑)
𝜆∗ is computed as 15.59616. 

In theorem 2, under 𝐻0  the test criteria 
(𝑛𝑚−1)

(𝑚−𝑑)
𝜆∗ is distributed as 𝐹𝑚−𝑑,𝑛𝑚−1 distribution. 

In this case (m-d) = 9 and (nm-1) = 44 (n=9, m=5 and d=1). 
 
 So, at 1% significance level F0 = 2.96. As the calculated value significantly exceeds the critical table value, the null 
hypothesis can be dismissed. 
 
Thus, the rank order of the design evaluation criteria in the material floor selection problem  
     𝑃𝑖𝑇    ≥  𝑃𝑖𝐶 ≥   𝑃𝑖𝐹   ≥  𝑃𝑖𝐸 ≥  𝑃𝑖𝐷 ≥  𝑃𝑖𝐴 ≥ 𝑃𝑖𝐴𝐶 ≥  𝑃𝑖𝑆𝐻 ≥ 𝑃𝑖𝑆 ≥  𝑃𝑖𝑀  is very well supported by the methodology 
proposed by Basak (2015).  
 
Next, we would be testing the reverse of the rank order of the criteria viz. 
 
                        𝐻0 :  𝑃𝑖𝑀 = 𝑃𝑖𝑆  = 𝑃𝑖𝑆𝐻  =𝑃𝑖𝐴𝐶   = 𝑃𝑖𝐴  = 𝑃𝑖𝐷  = 𝑃𝑖𝐸  = 𝑃𝑖𝐹  = 𝑃𝑖𝐶   = 𝑃𝑖𝑇   
against               
                              𝐻𝑎   :  𝑃𝑖𝑀 ≥ 𝑃𝑖𝑆 ≥  𝑃𝑖𝑆𝐻 ≥  𝑃𝑖𝐴𝐶  ≥ 𝑃𝑖𝐴 ≥ 𝑃𝑖𝐷 ≥ 𝑃𝑖 ≥ 𝑃𝑖𝐹 ≥ 𝑃𝑖𝐶 ≥ 𝑃𝑖𝑇   with at least one strict 
inequality.               
  
The comparison ratings provided by the five experts are listed below: 
 

Experts 1 2 3 4 5 Criteria 
(M,S) 1.00 2.00 1.00 2.00 1.00 Maintenance vs Safety 
(S,SH) 1.00 0.67 1.00 1.00 1.00 Safety vs Shape ratio 
         (SH, 
AC) 0.67 0.67 0.50 0.50 0.67 Shape ratio vs Accessibility 
(AC,A) 0.67 0.67 0.50 0.50 0.67 Accessibility vs Adjacency 
(A,D) 0.50 1.00 0.50 0.33 0.50 Adjacency vs Distance 
(D,E) 1.00 0.67 1.00 0.67 1.00 Distance vs Efficiency 
(E,F) 0.50 0.67 0.50 0.67 0.50 Efficiency vs Flexibility 
(F,C) 0.33 0.33 0.50 0.33 0.50 Flexibility vs Cost 
(C,T) 0.33 0.50 0.33 0.33 0.50 Cost vs Throughput time 

 
 

In this case, the test criteria  
(𝑛𝑚−1)

(𝑚−𝑑)
𝜆∗ is computed as 3.525. Here d = 8 and (m-d) =1, (nm-1) = 44.  

The critical value corresponding to a 1% level of significance F0 = 7.27. Since the critical value is more than the 
computed value, at 1% significance level we cannot reject the null hypothesis.   
So, the rank order the design evaluation criteria  
 𝑃𝑖𝑀 ≥ 𝑃𝑖𝑆 ≥  𝑃𝑖𝑆𝐻 ≥  𝑃𝑖𝐴𝐶  ≥ 𝑃𝑖𝐴 ≥ 𝑃𝑖𝐷 ≥ 𝑃𝑖 ≥ 𝑃𝑖𝐹 ≥ 𝑃𝑖𝐶 ≥ 𝑃𝑖𝑇  with at least one strict inequality is not supported.         
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CONCLUSIONS 
In the present article, we have discussed an application of a simple statistical method for testing the rank ordering of 
the design evaluation criteria. These criteria are subsequently used in the selection of material flow layout in the 
automobile industry. Several multi-criteria decision-making methods are used in the material flow layout selection 
problem.  The test criterion developed in this article is primarily based on the statistical method of likelihood-ratio test 
and then further computed on the basis of the Non-linear programming theory. The maximum possible likelihood-
ratio test value is obtained by applying non-linear programming optimization method. This value provides the 
validation of testing the hypothesis of ranking order of the design evaluation criteria. This methodology can be 
improved further to test the rank ordering of any set of criteria. This can also be used to validate the rank ordering of 
the material flow layout alternatives. Also, this can be used to validate the ranking provided by various multi-criteria 
decision-making methods. The Bayesian methods can also be used to test the ranking of the criteria or ranking of the 
alternatives. Also, a fuzzy hypothesis can be formulated to test the the fuzzy number ranking of the alternatives or 
criteria by applying the crisp hypothesis to each of the triangular fuzzy numbers. 
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