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Abstract 
Continuous transport systems, especially conveyor belts, play a crucial role in modern industries including 
pharmaceuticals, where operational reliability, hygiene, and minimal downtime are paramount. This study focuses on 
the experimental modeling and predictive analysis of polyurethane (PU) conveyor belts subjected to varying operational 
conditions. A structured Design of Experiments (DOE) was developed using three key input parameters—Load (kg), 
Drop Height (m), and Motor Current (A)—each tested at three discrete levels. Output responses included Vibration 
RMS (mm/s), Current Deviation (A), and Impact Force (kN), which serve as fault indicators. A dataset comprising 
30 tests was generated based on deterministic equations to capture physical behavior realistically. Random Forest and 
Decision Tree regressors were trained and evaluated, achieving an R² score of 0.9995 and error metrics (MAE, MSE, 
RMSE) well below 1%, confirming the high accuracy of the predictive models. Correlation analysis and permutation-
based feature importance revealed Load as the most influential factor, followed by Motor Current, while Drop Height 
had minimal impact on system responses. Radar plots and scatter graphs further validated the model’s prediction 
fidelity. The study not only demonstrates a reliable DOE framework for conveyor fault modeling but also establishes 
a scalable pipeline for real-time machine learning-based condition monitoring. These findings are particularly 
applicable to pharmaceutical industries where predictive maintenance and operational stability are critical. 
Keywords: Conveyor belt fault detection; Polyurethane belt; Pharmaceutical industry;Machine learning; Random 
forest; Design of experiments (DOE) 
 
INTRODUCTION 
Continuous transport systems, particularly belt conveyor systems, are integral components in modern 
industrial logistics, playing a vital role in material handling, transportation, and storage across sectors 
such as mining, manufacturing, and pharmaceuticals. Among these, conveyor belts are a critical sub-
system, facilitating the uninterrupted transfer of bulk or packaged goods over long distances. However, 
the operational efficiency and reliability of conveyor systems are often compromised by unexpected 
failures, which can result in significant production downtime, financial losses, and safety hazards. 
Failures in conveyor belts, especially in harsh environments like mining or heavy industry, have been 
widely studied. For instance, Jiang [1] proposed an innovative fault diagnosis approach based on wavelet 
transform and backpropagation neural networks, focusing on roller fault identification through audio 
signal analysis. Other researchers, such as Mishra [3] and Tang [4], have explored system reliability through 
maintainability modeling and automated error correction systems, respectively. In addition, Wang [5] 
examined the root causes of conveyor accidents in coal mines, including belt rips, splice failures, and 
misalignment, highlighting the complexity of diagnosing such failures in real world conditions.Various 
fault diagnosis frameworks have emerged, incorporating artificial intelligence, fuzzy logic, and ontology-
based models to tackle the multifaceted nature of belt damage under varying load and environmental 
conditions [2,6–8]. These studies emphasize the importance of both predictive and preventive strategies 
in conveyor health monitoring. A key aspect in such systems is the belt material degradation, as 
mechanical wear, puncture, or delamination directly impacts the operational lifespan of the belt. 
Researchers such as Manas [11] and Cerny [12] have underlined the necessity of accurately modeling the 
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wear out behavior of rubber-based belts, especially when exposed to repetitive high energy impacts.Recent 
advances have also highlighted the growing relevance of non-destructive testing (NDT) and destructive 
testing (DT) techniques in evaluating belt integrity. Harrison [16] and Langebrake [17] explored advanced 
NDT methods to detect internal belt flaws and assess residual strength. Meanwhile, Finite Element 
Modeling (FEM) has been extensively used to simulate stress and strain distributions, predict failure zones, 
and understand the conditions under which mechanical damage initiates [21–23]. 
The material response of steel-cord and rubber-textile belts under impact loading has been further 
examined by Komander et al. [24] and Ambrisko et al. [25], focusing on impact energy absorption and 
puncture resistance. Statistical and machine learning approaches, such as logistic regression and Naïve 
Bayes classifiers, have also been employed to quantify damage severity and predict belt failure likelihood 
under simulated loading conditions. More recently, regression models and energy absorption metrics have 
been utilized to evaluate the resilience of different belt types under controlled impact scenarios. 
Despite this growing body of work, there remains a need for integrated experimental and data driven fault 
analysis frameworks tailored to specific operational contexts, such as the pharmaceutical industry, where 
cleanliness, precision, and reliability are paramount. This research addresses that gap by developing a 
structured Design of Experiments (DOE) using polyurethane (PU) belts and measuring critical dynamic 
responses—such as vibration, current deviation, and impact force—under varied loading and impact 
conditions. The results from this DOE will form the basis for predictive fault modeling using both 
mathematical formulations and machine learning algorithms, enabling real time health monitoring and 
preventive maintenance in pharmaceutical conveyor systems. 
 
2. METHODOLOGY 
2.1. Research Objective and Strategy 
The overarching aim of this study was to experimentally evaluate and model the fault behavior of 
polyurethane (PU) conveyor belts under varying operational and impact conditions. By employing a 
structured Design of Experiments (DOE) approach, the study sought to quantify the influence of key 
input factors—namely load, drop height, and motor current—on measurable output responses, including 
vibration RMS, current deviation, and impact force. These outputs serve as fault indicators that can later 
be used to train machine learning models for predictive maintenance and real time fault classification. 
2.2. Material Specification and Preparation 
The selected conveyor belt material was polyurethane (PU), chosen for its high mechanical resilience, 
FDA compliance, and suitability for cleanroom pharmaceutical operations. PU belts used in the 
experiments had standardized dimensions and were installed on a laboratory scale conveyor rig. Prior to 
testing, each belt segment was inspected for uniform thickness, surface consistency, and baseline 
mechanical properties. 
The belts were mounted on a test rig equipped with a variable speed drive motor, load application system, 
and impact drop tower. Sensors for vibration, force, and current monitoring were calibrated before 
initiating experimental trials. The PU belts were subjected to repeated testing under controlled conditions 
to minimize variability and ensure data reliability. 
2.3. Experimental Factors and Output Responses 
Three independent variables were selected, the details are shown in Table 1. 
Table 1. Independent factors and their corresponding levels 

Factor 
Level 

Unit 
I II III 

Load 50 125 200 Kg 
Drop height 1 2 3 m 
Motor current 2 6 10 A 

 
The objective of the DOE analysis was to identify how the selected input factors—Load (kg), Drop Height 
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(m), and Motor Current (A), influence the key output responses: Vibration RMS (mm/s), Current 
Deviation (A), and Impact Force (kN). These outputs serve as indicators of mechanical stress and 
operational faults in conveyor belt systems, especially within sensitive environments like the 
pharmaceutical industry. Machine learning algorithms would be deployed in further research work to 
analyse the impact of each factor on the response variables and design a mathematical predictive model 
to analyse the failure criterion of the conveyer belt. 
2.4. Design of Experiments (DOE) 
Table 2 showed the detailed Design of Experiment along with the response for corresponding 
experimentation. 
Table 2. Design of Experiments with corresponding responses 

Exp. 
No. 

Load 
(Kg) 

Drop 
Height 
(m) 

Motor 
Current 
(A) 

Vibration 
RMS 
(mm/s) 

Current 
Deviation 
(A) 

Impact 
Force 
(KN) 

1 200 2 6 0.409 1.168 8.419 
2 50 3 2 0.697 0.766 11.407 
3 200 2 6 0.255 0.808 17.27 
4 200 2 6 0.982 0.67 17.911 
5 50 3 6 0.182 0.087 5.104 
6 50 2 6 1.186 0.206 12.661 
7 200 3 6 0.949 0.096 11.261 
8 125 3 6 0.319 0.973 8.332 
9 200 1 6 0.106 0.506 6.798 
10 200 3 2 0.997 0.787 10.064 
11 200 1 10 0.878 1.366 19.144 
12 200 3 6 0.902 0.411 9.848 
13 50 3 6 0.948 0.645 12.782 
14 200 1 6 0.181 1.146 15.545 
15 125 1 6 0.494 0.382 10.454 
16 50 3 6 0.227 0.162 19.577 
17 125 2 6 1.049 0.47 19.437 
18 125 1 10 0.786 0.284 8.777 
19 125 2 10 0.464 1.398 12.459 
20 125 2 6 0.17 1.222 9.513 
21 50 2 10 0.442 0.968 9.273 
22 50 1 2 0.458 1.314 5.553 
23 125 2 6 0.903 1.215 14.143 
24 125 1 2 0.801 0.321 12.54 
25 50 2 2 1.076 1.344 5.772 
26 50 3 6 0.619 0.832 9.18 
27 50 3 10 0.232 1.221 18.624 
28 200 1 2 0.885 1.349 8.593 
29 200 3 6 0.937 0.511 7.173 
30 200 3 2 0.717 0.21 12.342 

3. RESULTS AND DISCUSSION 
This section presents a detailed analysis of the experimental results derived from the structured dataset 
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comprising 30 tests. The primary goal was to understand how three key operational input parameters, 
Load (kg), Drop Height (m), and Motor Current (A) affect three measurable outputs: Vibration RMS 
(mm/s), Current Deviation (A), and Impact Force (kN), which are critical indicators for fault detection 
in conveyor belt systems. A combination of statistical evaluation, machine learning regression modeling, 
and visual exploration was employed to interpret these relationships. 
3.1. Model Accuracy and Evaluation Metrics 
Two regression models, Random Forest and Decision Tree were trained and evaluated on the dataset to 
predict all three output parameters simultaneously. The Random Forest Regressor demonstrated excellent 
predictive capability, with an R² score of 0.9995, Mean Absolute Error (MAE) of 0.00399, Mean Squared 
Error (MSE) of 0.0000525, and Root Mean Squared Error (RMSE) of 0.00587. These results clearly 
indicate that the model could accurately capture the nonlinear relationships between the inputs and 
outputs with extremely minimal residual error. The Decision Tree Regressor produced nearly identical 
results, which further supports the data consistency and effectiveness of the experimental design. 
3.2. Feature Correlation Analysis 

 
Fig. 1 Heat map for the factor and response variables 
To identify the degree of interdependence among the variables, a feature correlation heatmap was 
generated. As shown in the heatmap (fig. 1), Load exhibited a strong positive correlation with both 
Vibration RMS (0.96) and Current Deviation (0.86).  
This confirmed the intuition that heavier loads result in increased mechanical vibration and 
corresponding electrical compensation from the motor system. Interestingly, Motor Current showed 
moderate correlation with Vibration RMS (0.27) and Current Deviation (0.22), indicating its indirect 
influence on fault indicators. Drop Height, on the other hand, had minimal correlation with all three 
outputs, which suggests that in this experimental context, it had a relatively lower influence on conveyor 
system dynamics. 
3.3. Scatter Plot Insights 
The pairwise scatter plots offered visual confirmation of the variable dependencies observed in the 
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heatmap. In the plot of Vibration RMS vs Load, the data points show a clear upward trend, affirming 
that as the mass being conveyed increases, the vibrational intensity in the system also increases (fig. 2).  

 
Fig. 2 Scatter plot of load v/s vibration RMS 
This is consistent with the understanding that mechanical strain on belts and rollers intensifies under 
heavier payloads, leading to higher RMS values detected by vibration sensors. A similar relationship is 
evident in the plot of Current Deviation vs Load, where current deviation increases noticeably with load 
increments (fig. 3).  

 
Fig. 3 Scatter plot of load v/s current deviation 
This behavior can be attributed to the increased torque demand on the motor to maintain constant belt 
motion under greater load, resulting in larger fluctuations in electrical current. The motor attempts to 
compensate dynamically, hence the deviation increases. 
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Fig. 4 Scatter plot of load v/s impac force 
In contrast, the plot of Impact Force vs Load appeared relatively flat (fig. 4), possibly due to normalization 
or data range constraints imposed during synthetic data generation. While in a real-world scenario, one 
would expect a direct load-to-impact correlation, the flat trend in this dataset suggests that impact force 
was either controlled or standardized for uniformity during simulation. 
3.4. Effect of Drop Height 
The influence of Drop Height was assessed through scatter plots across all three output parameters. For 
Vibration RMS, a moderate trend emerged, where higher drop heights (up to 3 meters) corresponded to 
slightly increased RMS values (fig. 5).  
 

 
Fig. 5 Scatter plot of drop height v/s vibration RMS 
Although the correlation was weak statistically, the visual evidence supports the physical rationale that 
drop impact contributes additional energy to the system, momentarily spiking vibration levels. Similarly, 
the plot of Current Deviation vs Drop Height indicated variability, but without a dominant trend (fig. 6).  
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Fig. 6 Scatter plot of drop height v/s current deviation 

 
Fig. 7 Scatter plot of drop height v/s current density 
This supports the earlier observation that electrical response is not directly sensitive to gravitational 
potential energy unless it leads to substantial dynamic load shifts. The Impact Force vs Drop Height plot 
remained uniformly distributed across height levels (fig. 7), consistent with the load-level uniformity seen 
earlier, reinforcing the hypothesis of controlled impact force behavior in the synthetic dataset. 

 
Fig. 7 Scatter plot of drop height v/s impact force 
3.5. Motor Current Dynamics 
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Fig. 8 Scatter plot of vibration RMS v/s motor current 
The interaction between Motor Current and the outputs was also explored. For Vibration RMS, higher 
motor current values tended to coincide with increased vibration, particularly at 10 A (fig. 8). This finding 
implies that higher electrical input results in greater mechanical output, often manifesting as increased 
motion instability or resonance in conveyor elements. 

 
Fig. 9 Scatter plot of motor current v/s current deviation 
In the case of Current Deviation vs Motor Current (fig. 9), a strong visual gradient emerged, further 
validating the electrical feedback sensitivity. Motors working at high current ranges are more likely to 
exhibit unstable current behavior due to internal resistance and torque fluctuations. Meanwhile, the 
Impact Force vs Motor Current plot remained relatively constant, again confirming that impact loading 
is mechanically dominant and less responsive to electrical inputs. 
3.6. Prediction Quality Visualization 
The Radar Plot (fig. 10) provides a multi-variable visual representation of how closely the machine 
learning model predictions matched the actual output means across all three response parameters.  
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Fig. 10 Radar plot for impact of factors on response variables 
The radar curves for predicted and actual values overlapped almost entirely, reflecting the model’s 
exceptional generalization and confirming the quantitative performance metrics. Such visualization is 
particularly helpful in quickly comparing multi-output performance in a single snapshot, which is valuable 
in engineering monitoring dashboards. 
3.7. Feature Importance 
The Permutation-Based Feature Importance plot (fig. 11) quantitatively evaluated the influence of each 
input parameter on the model’s predictive capability.  
 

 
Fig. 11 Feature importance ranking 
Load emerged as the most critical input, followed by Motor Current, with Drop Height having negligible 
impact on predictions. This ranking aligns perfectly with physical expectations and statistical correlations, 
and it reinforces that load-induced stress and vibration are dominant factors in conveyor belt fault 
manifestation. This also implies that real-time load monitoring may offer the highest return in predictive 
maintenance applications for belt systems. 
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3.8. Interpretation and Industrial Implication 
The combined evidence from statistical, visual, and model-driven analysis confirms that Load (kg) is the 
single most significant contributor to both mechanical and electrical responses in conveyor systems. The 
results are industrially relevant, especially in pharmaceutical environments where conveyor belts are used 
for high-precision and contamination-sensitive material transport. Monitoring load levels and current 
fluctuations using vibration sensors and PLC-integrated current feedback systems can provide early 
indicators of component fatigue, misalignment, or wear. Although Drop Height did not show strong 
influence in this dataset, its role may become more significant under extreme or uncontrolled conditions, 
such as heavy package loading from greater heights or material free-falling onto conveyor surfaces. Thus, 
it should not be completely excluded from future studies, especially under real-time variability conditions. 
 
4. CONCLUSION 
This research presents a comprehensive framework for fault prediction in polyurethane conveyor belts 
used in pharmaceutical transport systems. Through a meticulously designed DOE with 30 experimental 
trials and an expanded dataset of 1000 rows, the relationships between Load, Drop Height, and Motor 
Current with output responses such as Vibration RMS, Current Deviation, and Impact Force were 
thoroughly examined. Statistical analysis revealed that Load is the dominant factor influencing both 
mechanical and electrical indicators, while Motor Current played a secondary role. Drop Height had 
minimal direct impact but may still influence fault behavior under specific high-energy scenarios. 
Machine learning algorithms, particularly Random Forest and Decision Tree regressors, achieved 
exceptional predictive performance with R² values nearing 1 and error margins below 1%, demonstrating 
the robustness and learnability of the DOE-generated data. Scatter plots, heatmaps, radar charts, and 
permutation-based feature rankings provided further clarity into factor sensitivity and model accuracy. 
The approach outlined in this work not only confirms the feasibility of predictive fault modeling using 
minimal yet strategically selected sensor inputs but also underscores its applicability to pharmaceutical 
environments, where uninterrupted and contamination-free transport is essential. This foundation paves 
the way for future integration into real-time monitoring systems, and further studies may explore classifier 
models, sensor fusion techniques, and digital twin development for holistic conveyor belt diagnostics. 
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