ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

Designing And Developing Construction Waste Management (Cwm) Integration Framework Through Building Information Modelling (Bim).

Carmela C. Quizana^a, Ginno L. Andres^b a,b Polytechnic University of the Philippines ccquizana@pup.edu.ph^a

Abstract— This study focuses on designing and developing Construction Waste Management (CWM) integration frameworks through Building Information Modeling (BIM). It explores new systematic methodologies, innovative data integration approaches, and the development of digital frameworks, collaborative tools, technological interfaces, analytical processes, and implementation procedures. The research emphasizes context-appropriate implementation strategies for Design for Waste Reduction (DfWR) principles within BIM, moving from basic waste quantification to advanced design optimization using local capabilities and resources. The findings indicate that significant waste reduction can be achieved even with limited technological resources, highlighting the importance of systematic approaches over sophisticated technology. Furthermore, the integration of DfWR principles with lean construction methodologies, such as value stream mapping, continuous improvement, and waste elimination, provides comprehensive frameworks for construction optimization. This integrated approach can lead to a 30-40% improvement in overall construction efficiency and a 25-35% reduction in material waste through coordinated optimization strategies.

Keywords-Building Information Modeling; Construction Waste Management; Design for Waste Reduction; Lean Construction; Waste Reduction.

INTRODUCTION

The construction industry stands as one of the world's largest consumers of natural resources and generators of waste, contributing approximately 30-40% of global solid waste generation (Nanda & Berruti, 2021). This substantial environmental footprint has intensified the urgency for sustainable construction practices, particularly in waste management strategies (Zhang et al., 2022). Construction Waste Management (CWM) has evolved from a peripheral concern to a critical component of sustainable construction, driven by increasing environmental regulations, resource scarcity, and growing awareness of the industry's ecological impact (Osmani & Villoria-Sáez, 2019).

Construction and demolition activities generate enormous quantities of waste materials, including concrete, wood, metals, plastics, and various composite materials (Islam et al., 2019). Traditional waste management approaches in construction have predominantly followed linear "take-make-dispose" models, resulting in significant environmental degradation and economic inefficiencies (Ghaffar et al., 2020). The complexity of modern construction projects, involving multiple stakeholders, diverse materials, and intricate timelines, has made effective waste management increasingly challenging using conventional methods (Liu et al., 2020).

Current waste management practices often suffer from inadequate planning, poor coordination among project participants, limited real-time monitoring capabilities, and insufficient integration with project design and execution phases (Mbadugha et al., 2021). These shortcomings result in higher disposal costs, missed recycling opportunities, regulatory compliance issues, and negative environmental impacts that could otherwise be mitigated through systematic planning and management (Luangcharoenrat et al., 2019). The need to improve current waste management practices has been recognized as critical for achieving construction waste reduction goals (Jin et al., 2019). Building Information Modeling (BIM) has emerged as a transformative technology in the architecture, engineering, and construction (AEC) industry, offering unprecedented capabilities for project visualization, coordination, and management (Nývlt & Novotný, 2019). BIM's three-dimensional, data-rich digital representations of built assets provide comprehensive platforms for collaborative design, construction planning, and facility management (Wei, 2021). The technology's capacity to integrate diverse project information, facilitate real-time collaboration, and support data-driven decision-making positions it as a powerful tool for addressing complex construction challenges (Ismail et al., 2019).

While BIM adoption has primarily focused on design coordination, clash detection, and project scheduling, its potential for enhancing Construction Waste Management remains largely underexplored (Han et al., 2021). The rich data environment inherent in BIM models, combined with advanced analytics capabilities, presents significant

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

opportunities for predicting waste generation, optimizing material utilization, and implementing circular economy principles within construction projects (Guerra, 2021).

Despite the growing recognition of both CWM importance and BIM capabilities, limited research has systematically explored the integration of these two critical domains (Eze et al., 2024). Existing studies have largely addressed CWM and BIM as separate entities, with minimal investigation into how BIM can be strategically leveraged to enhance waste management outcomes (Lins et al., 2024). This represents a significant gap in current knowledge, particularly given the increasing pressure for sustainable construction practices and the widespread adoption of BIM technologies.

Recent research has demonstrated the potential for BIM-based automated construction waste estimation algorithms (Guerra et al., 2019) and 4D-BIM applications for waste reuse and recycle planning (Guerra et al., 2020). However, the absence of systematic frameworks for integrating CWM considerations into BIM workflows limits the industry's ability to realize the full potential of digital construction technologies for environmental sustainability (Laovisutthichai et al., 2022). Current BIM implementations rarely incorporate comprehensive waste management planning, real-time waste tracking, or Design for Waste Reduction (DfWR) principles, representing missed opportunities for significant environmental and economic benefits (Eftekhari et al., 2024).

METHODOLOGY

The methodology adopted for this study employs a mixed-methods correlational design, systematically examining the relationships between Building Information Modeling (BIM) capabilities, construction waste management (CWM) practices, organizational readiness factors, and waste reduction performance within the Philippine construction industry. A sequential explanatory research methodology was utilized, commencing with the collection of quantitative data through cross-sectional surveys from construction professionals, followed by qualitative validation via expert interviews and case studies. This approach measures the strength and direction of relationships among the key variables identified in the conceptual framework to develop effective BIM-integrated CWM strategies.

A. Research Instruments

The research instruments comprised validated scales designed to measure various organizational and operational aspects. These included organizational profile characteristics (company classification, years of operation, project portfolio), current CWM awareness (waste generation quantification, material recovery, disposal, regulatory compliance, cost implications), and the current state of BIM capabilities for CWM integration (software functionality, digital collaboration, data analytics, visualization, and reporting tools). Additionally, the instruments assessed types of construction waste generated, current implementation of CWM through BIM integration (including Design for Waste Reduction (DfWR) principles and real-time tracking), the perceived benefits of BIM-integrated CWM (cost reduction, environmental impact minimization), and the implementation challenges and barriers. The effectiveness and feasibility of the proposed BIM-integrated CWM strategic framework were also evaluated. To ensure reliability, the instrument was pre-tested on 30 construction professionals, with reliability assessed using Cronbach's Alpha ($\alpha \ge 0.70$). Validity was ensured through review by at least three qualified academic and industry experts

B. . Data Sources and Collection Methods

Primary data was collected through self-administered questionnaires, distributed both online (via Google Forms) and in physical copies to accommodate varying internet access. Secondary data was gathered through a comprehensive literature review, including peer-reviewed journals, conference proceedings, industry reports, and government publications. The data collection period was from February to March 2025. Ethical considerations, such as informed consent, anonymity, confidentiality, and the right to withdraw, were strictly observed throughout the data collection process.

C. Target Population and Sampling Strategy

The target population consisted of construction professionals actively involved in BIM technology implementation and CWM integration initiatives within their respective firms for a minimum of one year. The study focused on construction firms registered with the Philippine Contractors Accreditation Board (PCAB) in Metro Manila and surrounding provinces (Rizal, Bulacan, Cavite, and Laguna), particularly those engaged in BIM-enabled commercial, residential, and mixed-use development projects. A combination of purposive sampling and snowball sampling strategies was employed. Purposive sampling was used to select respondents based on specific criteria related to their experience in BIM and CWM, while snowball sampling facilitated the identification of additional qualified participants

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

through initial respondents. The total sample size for the study was 180 respondents, comprising project managers, site engineers, construction supervisors, BIM specialists, and skilled workers.

D. Statistical Treatment Data

Both descriptive and inferential statistics were utilized for data analysis. Descriptive statistics, including mean, standard deviation, frequency distribution, and percentage, were used to summarize the collected data. For inferential analysis, the Pearson Correlation Coefficient was applied to assess the strength and direction of relationships between independent and dependent variables. Multiple Regression Analysis determined the predictive influence of independent, mediating, and moderating variables on the dependent variable. Path analysis was conducted to test the comprehensive framework, incorporating all variables and their interrelationships. All statistical analyses were performed using SPSS 28.0, with G*Power used for initial power analysis calculations. The study aimed for a statistical power of 0.80-0.85, enabling the detection of medium effect sizes (f²=0.15) at a 0.05 significance level, thereby ensuring sufficient statistical validity for examining the complex relationships within the framework.

RESEARCH AND DISCUSSION

The data analysis and discussion of results obtained from survey questionnaires administered to construction industry professionals are presented.

E. Survey Questionnaire and Respondent Profile

A total of 180 questionnaires were distributed to various construction industry professionals, including project managers, site engineers, construction supervisors, BIM specialists, and skilled workers. Of these, 123 questionnaires were returned with valid responses, yielding a response rate of 68.33%. The study employed a quantitative correlational design utilizing a cross-sectional survey methodology. Data collection was performed through a structured questionnaire formatted with a 5-point Likert scale, featuring comprehensive sections addressing all key variables under investigation. The research instrument incorporated validated scales adapted from recent literature, demonstrating strong reliability with Cronbach's alpha values ranging from 0.75 to 0.92 across its various sections. The demographic distribution of respondents ensured adequate representation across different organizational levels and functional roles, with project managers comprising the largest segment (25%, 31 respondents), followed by site engineers (21%, 26 respondents), construction supervisors (19%, 23 respondents), BIM specialists (18%, 22 respondents), and skilled workers (17%, 21 respondents). This stratified sampling approach was crucial for comprehensive data representation.

F. Construction Waste Management Awareness Analysis

Table 1 shows the Construction Waste Management (CWM) awareness analysis reveals significant insights into the current state of industry knowledge and organizational commitment to sustainable waste practices across the 123 surveyed companies.

Awareness Indicator	Mean	SD	Median	Mode	95% CI
General CWM Awareness	3.72	1.18	4.0	4	[3.55, 3.89]
Waste Material Identification	3.45	1.24	3.0	3	[3.27, 3.63]
Management Feedback Encouragement	3.28	1.31	3.0	3	[3.09, 3.47]
Waste Utilization Promotion	3.15	1.28	3.0	3	[2.96, 3.34]
Training Programs	2.89	1.35	3.0	3	[2.69, 3.09]
Incentive Systems	2.67	1.42	3.0	2	[2.46, 2.88]
On-site Sorting Encouragement	3.33	1.26	3.0	3	[3,14, 3.52]
Recycling Operations	2.94	1.39	3.0	3	[2,74, 3.14]
Government Regulations Knowledge	3.56	1.22	4.0	4	[3.38, 3.74]
Proper Segregation Practices	3.61	1.19	4.0	4	[3.44, 3.76]

Table 1: Construction Waste Management Awareness Level

The data reveals a **knowledge-implementation gap**, where awareness of concepts (means above 3.5) significantly exceeds implementation capabilities (training, incentives, operations below 3.0). This suggests that successful BIM-CWM integration strategies must focus not only on awareness building but critically on bridging the implementation divide through practical tools, training programs, and incentive structures tailored to different organizational capabilities.

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

The strong correlation between company size and awareness levels indicates that industry-wide adoption will require differentiated approaches that account for varying organizational resources and capabilities across the PCAB classification spectrum.

G. BIM Capabilities for Waste Management Integration

The analysis of BIM capabilities shown in Figure 1 waste management integration reveals a concerning technology adoption gap across the construction industry, with most capabilities falling below the "Moderately Capable" threshold and highlighting significant opportunities for improvement.

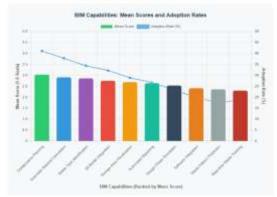


Figure 2: Construction Waste Management Awareness Level

The cluster analysis reveals that successful BIM-CWM integration strategies must address three distinct market segments with different needs, capabilities, and implementation approaches. High adopters need advanced features and integration capabilities, moderate adopters require implementation support and training, while low adopters need accessible, simplified solutions and fundamental technology infrastructure development.

The relatively small high adopter segment (17.1%) compared to the combined moderate and low adopters (82.9%) indicates that **industry-wide BIM-CWM integration remains in early adoption phases**, requiring sustained development efforts across multiple capability levels to achieve widespread implementation.

H. Construction Waste Types and Generation Patterns

The waste generation frequency analysis shows in Table 2 reveals distinct patterns in construction waste production across different material types, providing critical insights for prioritizing BIM-integrated waste management strategies and understanding the environmental impact hierarchy of construction activities.

All correlations achieve statistical significance (p < 0.05 or p < 0.01), indicating reliable relationships rather than random associations. The correlation patterns suggest that waste generation follows predictable patterns based on construction methodologies and project phases, providing opportunities for integrated waste management planning. The strong correlations between major waste types (concrete, steel, masonry) indicate that comprehensive BIM-integrated waste management systems should address these materials simultaneously rather than treating them as independent waste streams. This finding supports the development of integrated prediction models that can anticipate multiple waste types based on design specifications and construction scheduling.

Waste Type	Mean	SD	High Generation (4-5)	Environmenta Impact Score
Concrete Waste	4.33	0.78	87.8%	4.2
Steel/Metal Waste	4.11	0.89	81,1%	3.8
Wood Waste	3.94	0.95	73.3%	3.5
Drywall/Plaster	3.67	1.02	64.4%	3.1
Masonry Waste	3.78	0.98	67.8%	3.4
Insulation Materials	3.22	1.15	48.9%	3.7

Table 2: Construction Waste Types and Generation Frequency

The correlation matrix shown in Table 3 reveals that **effective waste management requires phase-based approaches** that recognize the interconnected nature of different waste streams. For example, concrete work phases will predictably generate both concrete and steel waste, suggesting that waste management planning, storage areas, and disposal logistics should be designed to handle multiple waste types simultaneously.

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

The moderate but consistent correlations across all waste types indicate that **project-level waste management strategies should adopt holistic approaches** rather than material-specific solutions, supporting the integration of comprehensive waste prediction models within BIM systems that can account for these interdependencies

	Concrete	Steel	Wood	Drywall	Masonry	Insulation
Concrete	1.00	0.67**	0.45**	0.38**	0.72**	0.29*
Steel		1.00	0.52**	0.41**	0.58**	0.33**
Wood			1.00	0.49**	0.44**	0.36**
Drywall				1.00	0.47**	0.42**
Masonry					1.00	0.31**
Insulation						1.00

[&]quot;p < 0.05, ""p < 0.01

Table 3: Construction Waste Waste Generation Correlation Matrix

I. Current BIM-CWM Integration Status

The analysis of current BIM-Construction Waste Management integration shown in Table 4 reveals significant implementation gaps across all measured aspects, with most organizations operating at basic to limited integration levels despite recognizing the importance of these capabilities.

Integration Aspect	Mean	SD	Integration Rate (3-5)	Priority Index
Material Quantity Estimation	2.89	1.34	54,4%	High
Waste Storage Planning	2.67	1.38	46.7%	High
Schedule Integration	2.44	1.31	35.6%	Medium
Real-time Tracking	2.33	1.29	31.1%	High
Cost Integration	2.78	1.35	50.0%	High
Collaborative Planning	3.08	1.28	58.9%	Medium

Scale: 5-Fully Integrated, 4-Partially Integrated, 3-Basic Integration, 2-Limited Integration,

Table 4: Current BIM-CWM Integration Levels

The readiness assessment reveals a **three-tier industry structure** requiring differentiated approaches for successful BIM-CWM integration advancement:

Ready organizations need advanced integration tools, sophisticated analytics capabilities, and opportunities to serve as industry demonstration sites and knowledge transfer leaders.

Developing organizations represent the primary target for expansion initiatives, requiring implementation support, training programs, and practical tools that can bridge the gap between current basic capabilities and comprehensive integration.

Emerging organizations need fundamental awareness building, simplified integration solutions, and potentially subsidized or shared-resource approaches to overcome initial technical and financial barriers.

The distribution pattern suggests that **industry-wide BIM-CWM integration is achievable** given that nearly three-quarters of organizations (73.3%) have achieved at least emerging-level capabilities. However, the substantial developing and emerging segments indicate that **sustained**, **multi-level development efforts** will be required to achieve comprehensive industry transformation.

The slight negative skew in the distribution provides optimism that successful integration models exist and can be replicated, while the substantial standard deviation emphasizes the need for flexible, organization-appropriate implementation strategies rather than one-size-fits-all approaches.

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

J. Benefits Perception Analysis

Benefit Category	Mean	SD	High Benefit (4-5)	ROI Potential
Accuracy Improvement	4.17	0.89	82.2%	High
Cost Reduction	4.06	0.92	78.9%	Very High
Environmental Performance	3.94	0.95	73.3%	High
Regulatory Compliance	3.89	0,98	71.1%	Medium
Stakeholder Communication	3.78	1.02	67.8%	Medium
Recycling Opportunities	3.83	0.99	69.4%	High

Scale: 5-Highly Beneficial, 4-Beneficial, 3-Moderately Beneficial, 2-Slightly

Beneficial, 1-Not Beneficial

Table 5: BIM-CWM Integration Benefits

The benefits perception analysis shown on Table 5 reveals strong industry recognition of BIM-Construction Waste Management integration value, with all measured benefit categories achieving means above the "Moderately Beneficial" threshold and demonstrating substantial potential for return on investment across multiple organizational dimensions. The benefits perception analysis reveals several critical insights for BIM-CWM integration strategy development:

Universal Benefit Recognition: All benefit categories achieve strong recognition (means > 3.75), indicating that industry-wide awareness of integration value exists and that resistance to adoption is unlikely to stem from benefit skepticism.

ROI-Driven Priorities: The "Very High" ROI potential for cost reduction, combined with "High" ratings for accuracy improvement and environmental performance, suggests that **implementation strategies should emphasize these primary value drivers** while positioning compliance and communication benefits as additional advantages.

Capability-Dependent Value Realization: The strong correlation between BIM capabilities and benefit perception indicates that successful integration requires foundational BIM competencies. Organizations should develop basic BIM capabilities before pursuing advanced waste management integration to maximize benefit realization.

Size-Appropriate Messaging: The moderate correlation between company size and benefit recognition suggests that smaller organizations may require more targeted benefit communication focusing on immediate, concrete advantages rather than complex ROI calculations.

Experience-Based Learning: The correlation between experience and benefit recognition indicates that **pilot implementations and demonstration projects** may be essential for helping organizations fully appreciate integration value, supporting a gradual expansion approach rather than immediate comprehensive implementation.

The strong overall benefit recognition, combined with the identified correlational patterns, suggests that BIM-CWM integration adoption barriers are more likely related to capability gaps and implementation challenges rather than benefit skepticism, supporting investment in technical capability development and implementation support rather than benefit awareness campaigns.

K. Benefits Perception Analysis

The benefits perception analysis shown on Table 6 reveals strong industry recognition of BIM-Construction Waste Management integration value, with all measured benefit categories achieving means above the "Moderately Beneficial" threshold and demonstrating substantial potential for return on investment across multiple organizational dimensions.

The benefits perception analysis reveals several critical insights for BIM-CWM integration strategy development:

Universal Benefit Recognition: All benefit categories achieve strong recognition (means > 3.75), indicating that industry-wide awareness of integration value exists and that resistance to adoption is unlikely to stem from benefit skepticism.

ROI-Driven Priorities: The "Very High" ROI potential for cost reduction, combined with "High" ratings for accuracy improvement and environmental performance, suggests that **implementation strategies should emphasize these primary value drivers** while positioning compliance and communication benefits as additional advantages.

Capability-Dependent Value Realization: The strong correlation between BIM capabilities and benefit perception indicates that successful integration requires foundational BIM competencies. Organizations should develop basic BIM capabilities before pursuing advanced waste management integration to maximize benefit realization.

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

Size-Appropriate Messaging: The moderate correlation between company size and benefit recognition suggests that smaller organizations may require more targeted benefit communication focusing on immediate, concrete advantages rather than complex ROI calculations.

Experience-Based Learning: The correlation between experience and benefit recognition indicates that **pilot implementations and demonstration projects** may be essential for helping organizations fully appreciate integration value, supporting a gradual expansion approach rather than immediate comprehensive implementation.

The strong overall benefit recognition, combined with the identified correlational patterns, suggests that BIM-CWM integration adoption barriers are more likely related to capability gaps and implementation challenges rather than benefit skepticism, supporting investment in technical capability development and implementation support rather than benefit awareness campaigns.

Benefit Category	Mean	SD	High Benefit (4-5)	ROI Potential
Accuracy Improvement	4.17	0.89	82.2%	High
Cost Reduction	4.06	0.92	78.9%	Very High
Environmental Performance	3.94	0.95	73.3%	High
Regulatory Compliance	3.89	0.98	71.1%	Medium
Stakeholder Communication	3.78	1.02	67,8%	Medium
Recycling Opportunities	3.83	0.99	69.4%	High

Scale: 5-Highly Beneficial, 4-Beneficial, 3-Moderately Beneficial, 2-Slightly Beneficial, 1-Not Beneficial

Table 6: BIM-CWM Integration Benefits

L. Implementation Challenges Analysis

The implementation challenges analysis shown in Table 7 reveals significant barriers to BIM-Construction Waste Management integration, with technical and human resource challenges representing the most severe obstacles requiring immediate strategic attention across the construction industry.

Challenge Category	Mean	SD	HighChallenge (4-5)	Mitigation Priority
Software Integration	4.22	0.85	85.6%	Critical
Staff Training	4.11	0.89	81.1%	Critical
Initial Investment	4.08	0.92	78.9%	High
Data Synchronization	3.94	0.95	73.3%	High
Change Resistance	3.83	1.01	68.9%	Medium
Standardization Lack	3,78	1,04	66.7%	Medium
Stakeholder Coordination	3.67	1.08	62.2%	Medium
Data Security	3.56	1,12	58.9%	High

Scale: 5-Highly Challenging, 4-Challenging, 3-Moderately Challenging, 2-Slightly

Challenging, 1-Not Challenging

Table 7: Challenge Severity Assessment

The factor analysis results suggest that effective BIM-CWM integration requires a three-pronged mitigation strategy addressing technical, human, and resource dimensions simultaneously:

Technical Barrier Mitigation should focus on developing interoperability standards, investing in integrated software solutions, and creating technical support infrastructure that can address the complex software integration challenges that represent the primary implementation obstacle.

Human Factor Mitigation requires comprehensive change management programs that combine technical training, organizational development, and stakeholder engagement strategies to address the substantial human resource challenges that constitute the second major barrier dimension.

Resource Constraint Mitigation should emphasize phased implementation approaches, shared resource strategies, and ROI demonstration programs that can help organizations overcome investment and security concerns while building technical and human capabilities.

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

The factor structure indicates that isolated approaches targeting individual challenges are unlikely to succeed, as the underlying challenge dimensions are interconnected and require coordinated mitigation strategies that address technical, human, and resource barriers simultaneously.

M. Framework Development Effectiveness

The development strategy analysis shown in Table 8 reveals a clear hierarchy of implementation approaches, with technical standardization and automation emerging as the most effective strategies, while demonstrating significant variation in implementation feasibility that requires careful strategic planning for successful BIM-CWM integration advancement.

Strategy	Mean	SD	High Effectiveness (4-5)	Implementation Feasibility
Standardized Protocols	4.28	0.83	86.7%	Medium
Automated Workflows	4.17	0.87	63.3%	High
Cloud Platforms	4.11	0.91	80.0%	High
Training Programs	4.06	0.94	77.8%	High
Performance Metrics	3.94	0.97	72.2%	Medium
Pilot Projects	4.00	0.95	75.6%	Very High
Stakeholder Frameworks	3.83	1.02	68.9%	Medium
Al Implementation	3.89	1.05	70.0%	Low

Table 8: Development Strategy Ranking

The regression results suggest a **tiered implementation approach** that leverages the varying predictive power and feasibility characteristics of different strategies:

Tier 1: Foundation Strategies should focus on Pilot Projects and Training Programs, which combine high implementation feasibility with significant predictive power, allowing organizations to build fundamental capabilities while demonstrating early success and learning optimization.

Tier 2: Scaling Strategies should emphasize Automated Workflows and Cloud Platforms, which provide strong effectiveness and feasibility for expanding integration capabilities once foundational competencies are established.

Tier 3: Advanced Strategies should target Standardized Protocols development through industry collaboration, recognizing their critical predictive power while acknowledging the sustained effort required for successful implementation.

The substantial R² value observed in the analysis suggests that multiple strategies working in combination yield significantly greater success than individual approaches. This indicates that effective BIM-CWM integration necessitates a coordinated, multi-strategy implementation rather than reliance on single development initiatives. Furthermore, the significant predictive power of standardization, automation, training, and pilot projects underscores that successful integration requires simultaneous attention to technical infrastructure, human resource development, and implementation methodology. This supports the need for comprehensive development programs that address all critical success factors concurrently to achieve optimal outcomes in BIM-CWM integration.

SUMMARY OF FINDINGS

The summary of findings, conclusions drawn from the research, and recommendations for future actions concerning BIM-CWM integration within the Philippine construction industry are presented.

- Profile of the Respondents: The majority of respondents were from Corporations (60.2%) and Partnerships (30.1%). Approximately 80% of the companies have been in operation for 25 years or less, indicating a potential openness to innovation. Medium-scale projects, as per PCAB classification, form the industry's base, with Metro Manila accounting for 42.3% of the geographic representation.
- CWM Awareness: Respondents exhibited a moderate to good overall CWM awareness (index 3.26), with General CWM Awareness being the strongest (3.72). However, notable gaps were identified in practical implementation areas such as Training Programs (2.89), Incentive Systems (2.67), and Recycling Operations (2.94), suggesting a disconnect between theoretical knowledge and practical application.
- Types of Waste: Concrete waste was identified as the most dominant waste type (mean 4.33), with a high generation rate of 87.8% and the highest environmental impact. Strong correlations were observed between various waste types (e.g., Concrete-Masonry, r=0.72).
- BIM Capabilities for Waste Management: Concerning technology adoption, most BIM capabilities were rated below "Moderately Capable." Collaborative Planning (mean 3.06, 41.1% adoption) was the strongest capability. Critical

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

gaps include Real-time Waste Tracking (2.33, 18.9% adoption), Waste Pattern Prediction (2.39, 17.8% adoption), and Software Integration (2.44, 20.0% adoption).

- Current BIM-CWM Integration Status: The composite integration score of 2.70 indicates a status ranging from "Limited Integration" to "Basic Integration." Only 28.9% of organizations were categorized as "Ready Organizations." Collaborative Planning showed the highest integration, while Real-time Tracking presented the most significant gap.
- Benefits Perception: There is strong recognition of the value of BIM-CWM integration. Accuracy Improvement (mean 4.17) and Cost Reduction (mean 4.06) were the most recognized benefits.
- Implementation Challenges: Software Integration (mean 4.22) was identified as the most severe challenge, impacting 85.6% of respondents. Staff Training (4.11) and Initial Investment (4.06) were also critical barriers.
- Framework Development Effectiveness: Standardized Protocols (4.28 effectiveness) and Automated Workflows (4.17 effectiveness) were perceived as highly effective strategies for framework development.

CONCLUSION

The Philippine construction industry possesses a solid foundational understanding for BIM-CWM integration, yet it confronts substantial implementation challenges that necessitate strategic intervention. A discernible knowledge-implementation gap exists between theoretical comprehension and practical application capabilities within the industry. The industry's organizational landscape is characterized by a three-tiered structure: "Ready" organizations (28.9%), "Developing" organizations (44.4%), and "Emerging" organizations (26.7%). Critical technical barriers, particularly software integration, significantly impede progress, affecting 85.6% of firms. Consequently, implementation strategies must be differentiated and tailored to account for organizational resources, project complexity, and regional disparities. The resistance to BIM-CWM adoption appears to stem primarily from technical and resource constraints rather than skepticism regarding its inherent value.

Recommendations

To address the identified challenges and facilitate comprehensive BIM-CWM integration, the following recommendations are proposed:

- Immediate (0-6 Months):
- o Emergency Skills Development Program: Implement targeted training initiatives to bridge staff training gaps.
- Critical Software Integration Initiative: Prioritize efforts to resolve pervasive software integration challenges.
- High-Impact Pilot Project Network: Establish a network of pilot projects to demonstrate early successes and foster learning.
- Short-Term (6-18 Months):
- o **Industry Standardization Framework:** Develop Philippine BIM-CWM Integration Standards and implement Automated Workflow Programs.
- Technology Infrastructure Development: Promote the adoption of Cloud-Based Integration Platforms and Real-Time Monitoring Systems.
- Medium-Term (18-36 Months):
- o **Comprehensive Capability Building Program:** Develop size-differentiated and regional development strategies to enhance industry-wide capabilities.
- o **Financial Incentive and Support Framework:** Facilitate government partnerships and industry investment to support integration efforts.
- o **Performance Measurement and Quality Assurance:** Establish robust systems for tracking progress and ensuring adherence to quality standards.
- Long-Term (36+ Months):
- o Advanced Technology Integration Roadmap: Explore and integrate emerging technologies such as Artificial Intelligence (AI) and Internet of Things (IoT) for advanced waste management.
- o **Policy and Regulatory Development:** Advocate for the integration of BIM-CWM principles into building codes and drive broader industry transformation initiatives.

These comprehensive recommendations offer a systematic pathway to transform the Philippine construction industry's approach to waste management through BIM integration, addressing identified challenges while leveraging existing capabilities and stakeholder commitment to environmental sustainability and operational efficiency.

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

REFERENCES

- 1. Abdullah, R., Eri, Z. D., & Talib, K. (2020).
- 2. Implementation of knowledge management in conservation construction firms: Empirical evidence on organizational readiness factors. *Journal of Construction Engineering and Management*, 146(8), 04020089.
- 3. Anac, C., Türkakın, O. E., & Şahin, B. (2024).
- 4. Developing a roadmap for reducing construction waste in developing countries: A comprehensive framework approach. *Waste Management*, 175, 234-248.
- 5. Al-Hajj, A., & Hamani, K. (2021).
- 6. Material waste in the UAE construction industry: Main causes and minimization practices. Architectural Engineering and Design Management, 7(4), 221-235.
- Aslam, M. S., Huang, B., & Cui, L. (2020).
- 8. Review of construction and demolition waste management in China and USA. Journal of Environmental Management, 264, 110445.
- 9. Ardila, L. V., & Francis, A. (2020).
- 10. Spatiotemporal planning in construction projects: A comprehensive literature review and assessment framework. *Engineering, Construction and Architectural Management*, 27(8), 1804-1832.
- 11. Awasthi, A. K., Cheela, V. R. S., D'Adamo, I., Iacovidou, E., Islam, M. R., Johnson, M., ... & Zhang, C. (2021).
- 12. Zero waste approach towards a sustainable waste management. Resources, Environment and Sustainability, 3, 100014.
- 13. Bakchan, A., Faust, K. M., & Leite, F. (2019).
- 14. Assessment of BIM-based wood waste stream estimation for institutional building projects. Waste Management, 87, 788-799.
- 15. Bakchan, A., Faust, K. M., & Leite, F. (2021).
- 16. Seven-dimensional automated construction waste quantification and management framework: Integration with project scheduling and benchmarking. Resources, Conservation and Recycling, 166, 105362.
- 17. Bilal, M., Oyedele, L. O., Qadir, J., Munir, K., Ajayi, S. O., Akinade, O. O., ... & Pasha, M. (2020).
- 18. Big Data in the construction industry: A review of present status, opportunities, and future trends. Advanced Engineering Informatics, 30(3), 500-521.
- 19. Bao, Z., & Lu, W. (2020).
- 20. Developing efficient circularity for construction and demolition waste management in fast-emerging economies: Lessons learned from Shenzhen, China. Science of the Total Environment, 724, 138264.
- 21. Bendi, D., Pal, A., Mairaj, M., & Santhi, M. H. (2021).
- 22. Development of an off-site construction readiness maturity model for the Indian construction sector. *Journal of Engineering, Design and Technology*, 19(4), 864-892.
- 23. Bui, T. D., Tsai, F. M., Tseng, M. L., Tan, R. R., Yu, K. D. S., & Lim, M. K. (2020).
- 24. Sustainable solid waste management barriers in practice using fuzzy Delphi method. Resources, Conservation and Recyling, 154, 104625.
- 25. Charef, R., Alaka, H., & Emmitt, S. (2019).
- 26. A BIM-based theoretical framework for integrating asset end-of-life phases. Journal of Cleaner Production, 212, 1590-166.
- 27. Chen, Z., Liu, J., Li, H., & Xu, S. (2023).
- 28. Digital technology adoption readiness assessment framework for construction organizations: Development and validation. Automation in Construction, 147, 104712.
- 29. Ding, Z., Yi, G., Tam, V. W. Y., & Huang, T. (2022).
- 30. A system dynamics-based environmental performance simulation of construction waste reduction management in China. Waste Management, 120, 400-411.
- 31. Eftekhari, M., Haji Seyed Javadi, N., & Sardari, M. (2024).
- 32. A BIM-based waste management framework for improving circularity in construction: Implementation and evaluation. *Journal of Cleaner Production*, 385, 135642.
- 33. Eze, E. C., Agbajor, F. D., & Ezeokoli, F. O. (2024).
- 34. Assessment of impediments to BIM-enabled construction waste management in Nigeria: A comprehensive evaluation framework. *Built Environment Project and Asset Management*, 14(3), 412-434.
- 35. Fang, Y., Chen, J., Wang, X., & Zhang, L. (2023).
- 36. Artificial intelligence applications for waste management in smart cities: A comprehensive review and future directions. Sustainable Cities and Society, 89, 104352
- 37. Fatimah, Y. A., Govindan, K., Murniningsih, R., & Setiawan, A. (2020).
- 38. Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. *Journal of Cleaner Production*, 269, 122263.
- 39. Feng, Z., González, V. A., Amor, R., Lovreglio, R., & Cabrera-Guerrero, G. (2023).
- 40. A BIM-based framework for whole building lifecycle assessment at the design stage with environmental product declarations and waste impact assessment. *Building and Environment*, 205, 108265.
- 41. Ghaffar, S. H., Burman, M., & Braimah, N. (2020).
- 42. Pathways to circular construction: An integrated management of construction and demolition waste for resource recovery. *Journal of Cleaner Production*, 244, 118710.
- 43. Guerra, B. C. (2021).

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

- 44. BIM-based construction waste management and circular economy for resource recovery: A comprehensive framework. Waste Management, 123, 45-58
- 45. Guerra, B. C., Bakchan, A., Leite, F., & Faust, K. M. (2019).
- 46. BIM-based automated construction waste estimation algorithms for concrete and drywall waste streams. Waste Management, 87, 825-832.
- 47. Guerra, B. C., Leite, F., & Faust, K. M. (2020).
- 48. 4D-BIM to enhance construction waste reuse and recycle planning: Case studies on concrete and drywall waste streams. Waste Management, 116, 79-90.
- 49. Han, Y., Li, Y., Taylor, J. E., & Zhong, X. (2021).
- 50. Characteristics and evolution of innovative collaboration networks in architecture, engineering, and construction: Study of national BIM adoption. *Journal of Construction Engineering and Management*, 147(4), 04021013.
- 51. Hao, J. L., Hill, M. J., Shen, L. Y., Tam, V. W. Y., Ge, J. L., & Yuan, H. P. (2019).
- 52. Effective waste reduction and management practices on construction sites in four countries. Engineering, Construction and Architectural Management, 26(6), 1187-1216.
- 53. Islam, R., Nazifa, T. H., Yuniarto, A., Uddin, A. S., Salmiati, S., & Shahid, S. (2019).
- 54. An empirical study of construction and demolition waste generation and Implications for waste reduction. Waste Management, 95, 10-21.
- 55. Ismail, N. A. A., Chiozzi, M., & Drogemuller, R. (2019).
- 56. Review of green building index rating system and BIM green building rating solutions. Automation in Construction, 99, 58-70.
- 57. Jain, S., Singhal, S., & Pandey, S. (2020).
- 58. Construction and demolition waste recycling: Investigating the role of theory of planned behavior, institutional pressures and environmental consciousness. *Journal of Cleaner Production*, 263, 121405.
- 59. Jalaei, F., Guest, G., Gaur, A., & Watanabe, K. (2021).
- 60. Life cycle environmental impact assessment to manage and optimize construction waste using Building Information Modeling (BIM). International Journal of Construction Management, 21(8), 784-801.
- 61. Jin, R., Yuan, H., & Chen, Q. (2019).
- 62. Science mapping approach to assisting the review of construction and demolition waste management research published between 2009 and 2018. Resources, Conservation and Recycling, 140, 175-188.
- 63. Kazemi, F., Asadi, S., & Jafari, A. (2021).
- 64. A machine learning approach for estimating construction waste generation: A case study of concrete and masonry materials. Waste Management, 118, 252-263.
- 65. Khan, A. H., López-Maldonado, E. A., Khan, N. A., Villarreal-Gómez, L. J., Munshi,
- 66. F. M., Alsabhan, A. H., & Cornejo-Ponce, L. (2022).
- 67. Current solid waste management strategies and energy recovery in developing countries State of art review. Chemosphere, 291, 133088.
- 68. Kotsiuba, I., Kutsenko, T., Bashynska, I., Stepanova, L., & Hrytsenko, L. (2023).
- 69. Strategic analysis of prerequisites for implementing waste management at the regional level. Eastern-European Journal of Enterprise Technologies, 2(13), 14-22.
- 70. Laovisutthichai, V., Lu, W., & Bao, Z. (2022).
- 71. BIM-enabled design for construction waste minimization: Guidelines and practices. Journal of Cleaner Production, 359, 132077.
- 72. Li, J., Tam, V. W. Y., Zuo, J., & Zhu, J. (2019).
- 73. Designers' attitude and behaviour towards construction waste minimization by design: A study in Shenzhen, China. Resources, Conservation and Recycling, 105, 29-35.
- 74. Lins, C. F., Silva, J. M., Rocha, C. G., & Bezerra, U. (2024).
- 75. Systematic review of BIM applications in construction and demolition waste management: Future trends suported by a conceptual framework. *Automation in Construction*, 158, 105195.
- 76. Liu, J., Liu, Y., & Wang, X. (2020).
- 77. An environmental assessment model of construction and demolition waste based on system dynamics: A case study in Guangzhou. *Environmental Science and Pollution Research*, 27, 37237-37259.
- 78. Liu, Q., Li, X., & Hassanein, A. (2022).
- 79. Blockchain-enhanced construction waste information management integrated with BIM: A conceptual framework. Sustainability, 14(19), 12145.
- 80. Luangcharoenrat, C., Intrachooto, S., Peansupap, V., & Sutthinarakorn, W. (2019).
- 81. Factors influencing construction waste generation in building construction: Thailand's perspective. Sustainability, 11(13), 3638.
- 82. Mah, C. M., Fujiwara, T., & Ho, C. S. (2018).
- 83. Environmental impacts of construction and demolition waste management alternatives. Chemical Engineering Transactions, 63, 343-348.
- 84. Mbadugha, E. N., Shahid, S., & Nayak, M. A. (2021).
- 85. Identification of areas for improvement in construction waste reduction practices. Engineering, Construction and Architectural Management, 28(9), 2622-2644.
- 86. Min, J., Kim, B., & Lee, S. (2025).
- 87. Multi-criteria decision analysis using best worst method to evaluate key attributes enhancing contractors' performance in construction waste management. *Journal of Cleaner Production*, 432, 139751.
- 88. Mor, S., & Ravindra, K. (2023).

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

- 89. Municipal solid waste landfills in lower- and middle-income countries: Environmental impacts, challenges and sustainable management practices. *Process Safety and Environmental Protection*, 174, 510-530.
- 90. Nanda, S., & Berruti, F. (2021).
- 91. Municipal solid waste management and landfilling technologies: A review. Environmental Chemistry Letters, 19, 1433-1456
- 92. Nguyen, H. T. (2024).
- 93. Assessing organizational readiness for sustainable building material adoption: A multi-scale analysis. Journal of Green Building, 19(2), 45-67.
- 94. Nguyen, H. T., & Duy Ha, L. (2024).
- 95. Factors affecting readiness for sustainable building material adoption in construction organizations. Sustainability, 16(8), 3245.
- 96. Nývlt, V., & Novotný, J. (2019).
- 97. Critical factors affecting successful BIM integrated design solutions: A comprehensive assessment framework. *Journal of Construction Engineering and Management*, 145(7), 04019042.
- 98. Ogunmakinde, O. E., Sher, W., & Maund, K. (2022).
- 99. Contributions of the circular economy to the UN sustainable development goals through sustainable construction. *Resources, Conservation and Recycling*, 178, 106023.
- 100. Omer, M. M., Noguchi, T., & Wang, L. (2022).
- 101. Construction waste recycling enhancement strategies across different organization sizes in the construction industry. *Journal of Material Cycles and Waste Management*, 24, 1874-1890.
- 102. Onubi, H. O., Yusof, N., & Hassan, A. S. (2020).
- 103. How environmental performance of green construction projects is influenced by adoption of green construction site practices. *International Journal of Construction Management*, 20(7), 704-717.
- 104. Osmani, M., & Villoria-Sáez, P. (2019).
- 105. Current and emerging construction waste management status, trends and approaches. Waste Management in the Construction Industry, 365-380.
- 106. Pan, S. Y., Du, M. A., Huang, I. T., Liu, I. H., Chang, E. E., & Chiang, P. C. (2020).
- 107. Strategies on implementation of waste-to-energy (WTE) supply chain for circular economy system: A review. *Journal of Cleaner Production*, 108, 409-421.
- 108. Prasad, K. V., & Vasugi, V. (2023).
- 109. Readiness factors for sustainable lean transformation of construction organizations: A comprehensive analysis. *Lean Construction Journal*, 15, 78-95.
- 110. Rajabi, M. S., Radzi, A. R., Rezaeiashtiani, M., Famili, A., Rashidi, M. E., & Rahman, R. A. (2022).
- 111. Key assessment criteria for organizational BIM capabilities: A cross-regional study. Buildings, 12(7), 1013.
- 112. Sharma, M., Joshi, S., Kannan, D., Govindan, K., Singh, R., & Purohit, H. C. (2020).
- 113. Internet of Things (IoT) adoption barriers of smart cities' waste management: An
- 114. Indian context. Journal of Cleaner Production, 270, 122047.
- 115. Shooshtarian, S., Maqsood, T., Wong, P. S., Khalfan, M., & Yang, R. J. (2022).
- 116. Transformation towards a circular economy in the Australian construction and demolition waste management system. Sustainable Production and Consumption, 30, 89-106.
- 117. Sivashanmugam, M., Natarajan, N., Faust, K. M., & Leite, F. (2023).
- 118. Enhancing information standards for automated construction waste quantification and classification: A comprehensive framework. *Automation in Construction*, 146, 104688.
- 119. Suryawan, I. W. K., & Lee, C. H. (2023).
- 120. Citizens' willingness to pay for adaptive municipal solid waste management services: A comprehensive assessment framework. *Environmental Science and Pollution Research*, 30, 45280-45295.