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Abstract This research work is conducted in Jaisalmer district, located in the western part of Rajasthan, India, an 

arid region highly vulnerable to persistent drought conditions. The area experiences low and erratic rainfall, making 

it critical for early drought detection and long-term hydrological forecasting. This research proposes an 

Adaptive Weighted Long Short-Term Memory (AW-LSTM) model to forecast the Standardized Precipitation 

Index (SPI) using high-resolution gridded hydroclimatic variables indices of precipitation, vegetation condition 

index (VCI), and temperature condition index (TCI). AW-LSTM integrates dynamic attention weights that 

prioritize relevant time steps and input features to enhance the long-term drought forecasting accuracy. The 

interpolated gridded layered stack of Precipitation-VCI-TCI input features is trained for the period June-

September (year 1991 to 2020) and validated for the year 2021 to 2023 across lead times of 1 to 12 months. 

The AW-LSTM model achieved a high level of predictive accuracy, with an R² of ± 0.98, RMSE of ± 0.02, and 

Mean Absolute Error (MAE) of ± 0.08, successfully capturing the beginning, duration, and severity of droughts. The 

model revealed that the western and southwestern parts of Jaisalmer are the most drought-prone, whereas the 

northeastern and central-eastern regions received relatively high rainfall. These findings support the 

development of real-time drought monitoring systems and enhance adaptive decision making for water resource 

planning in arid regions. 

 

Index Terms Agricultural drought, sustainable environment, climate smart agriculture, AW-LSTM, SPI, VCI 

 

I. INTRODUCTION 

Owing to accelerated changes in climate, a significant challenge facing arid grasslands is the mapping of drought 

and the analysis of its trends. Improving monitoring techniques enhanced preservation and management of these 

critical ecosystems. This research aims to assess the utility of Geographic Information System (GIS) and remote 

sensing technologies in tracking the spatial and temporal progression of agricultural drought, with a focus on 

precipitation as a core indicator [1]. In arid environments, drought plays a pivotal role in shaping grassland 

ecosystems and acts as a significant constraint on agricultural productivity [1]. 

Precipitation serves as the primary determinant of climate variability and impact, directly influencing ecosystem 

dynamics through its timing and quantity [2][3]. These fluctuations, especially prolonged dry spells, adversely 

affect agricultural productivity, water resources, and rural livelihoods. As a result, understanding and forecasting 

drought have become essential for effective resource planning and risk management, particularly in vulnerable 

regions such as the Indian subcontinent. The increasing frequency and severity of droughts due to climate change 

have motivated the scientific community to develop various indices and techniques to characterize drought 

events [4]. Among these, the Standardized Precipitation Index (SPI) has gained widespread acceptance for its 

simplicity and effectiveness in capturing meteorological drought across varying timescales. Accurate forecasting 

of SPI enables the early detection of drought onset, thus strengthening drought early warning systems and 

preparedness strategies [5][6][7]. 
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In recent years, Artificial Neural Networks (ANNs) have emerged as a powerful data-driven technique for drought 

forecasting, showing competitive results in both short- and long-term predictions [8]. Several studies have 

demonstrated the applicability of ANNs in forecasting drought indices such as SPI by utilizing lagged climatic 

variables as input features [9] [10]. However, despite their success, traditional neural networks often face 

challenges such as overfitting and difficulty capturing non-stationary and nonlinear patterns inherent in time-

series climate data. 

 

To address these limitations, researchers have increasingly adopted Long Short-Term Memory (LSTM) networks, 

a type of recurrent neural network (RNN) specifically designed to capture long-term dependencies through 

memory gates [11] [12]. LSTM has proven effective in modelling temporal dependencies in drought-relevant 

variables such as precipitation [13], temperature [14], and vegetation indices [10]. Its architecture allows it to 

retain crucial climatic patterns over extended periods, which is particularly beneficial for forecasting complex 

drought dynamics. 

 

While LSTM models have shown promise in drought prediction, many existing approaches still fall short in 

addressing the nonlinear and dynamic interactions between multiple climate drivers and drought behaviour [17]. 

Studies such as [9] and [15] have utilized ANN-based models for one-month lead precipitation forecasting, 

reporting better accuracy than conventional methods. Yet, these models often neglect spatial dependencies and 

may not generalize well across regions with diverse climatic regimes. 

 

Recent advances in deep learning—highlighted in Nature [16]—underscore the potential of hybrid and ensemble-

based architectures in environmental prediction tasks. However, there remains a research gap in designing models 

that dynamically adapt to changing climatic inputs while effectively learning from both temporal and spatial 

features. Moreover, very few studies have explored the application of adaptive ensemble LSTM models in 

drought forecasting, particularly with long-lead-time predictions and complex environmental datasets [5][18]. 

 

To fill this gap, the present study proposes an Adaptive Weighted Long Short-Term Memory (AW-LSTM) 

ensemble model tailored for monthly SPI forecasting in the drought-prone Jaisalmer district. The proposed model 

incorporates multiple independently trained LSTM networks with varying sequence lengths to enhance temporal 

diversity. Each network focuses on learning distinct drought-related patterns from input features including SPI, 

VCI, TCI, and precipitation. A novel attention-based weighting mechanism is integrated to adaptively assign 

importance to each base learner, thereby improving generalization and reducing prediction error. This dynamic 

ensemble approach allows the model to adjust to evolving climate patterns and enhances its robustness across 

varying drought scenarios. 

 

The core aims of this research can be summarized in threefold:  

(1) To examine variations in predicted outcomes by incorporating different drought characteristics, including 

intensity, duration (in months), and spatial extent;  

(2) To create an ensemble model using adaptive weighted LSTM for drought prediction; and  

(3) To examine the predictive capability of the AW-LSTM model for SPI estimation across multiple timescales in 

the Jaisalmer region of India. 

 

The paper continues with section 2 that defines the spatial coverage and location-specific characteristics of the 

Jaisalmer region and outlines the characteristics of the dataset used. Section 3, titled results and discussion, 

provides insights into SPI calculations, optimal time selection, drought monitoring, drought prediction models, 

and model evaluation metrics. The following section presents model assessment. The last section presents the key 

findings and discusses directions for future research. 
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II. METHODOLOGY 

A. LOCATON SITE AND DATASET 

The Jaisalmer district in western Rajasthan, India is selected because of its high vulnerability to agricultural 

droughts. The region spans approximately 32,401 km2 [18] and lies between latitudes 26.25°N and 28.00°N and 

longitudes 70.25°E and 72.00°E. As shown in Fig. 1, daily gridded precipitation data for 55 grid points, spanning the 

period from 1991 to 2023, are obtained from the India Meteorological Department (IMD), Pune 

(https://www.imdpune.gov.in/). The data are provided at a spatial resolution of 0.25° × 0.25°. The dataset included 55 

spatial grid points distributed across districts. Additionally, satellite-derived vegetation and temperature indices were 

obtained from NOAA-AVHRR, including SPI, VCI, TCI, VHI. These indices are selected based on their relevance 

to drought assessment and availability at appropriate temporal and spatial scales [19][20][21][22]. 

 
 

FIGURE 1. Drought Spatial region for Long-Lead Drought Forecasting: Jaisalmer district, Rajasthan, India 

 

SPI-3 has been identified as the most appropriate timescale for drought prediction in this region, based on its 

responsiveness to seasonal precipitation variability and established relevance in previous studies [23][24][25]. To 

effectively model the temporal dynamics of drought, a sequence-to-sequence (seq2seq) learning framework is 

employed. The model utilizes input sequences comprising 12-monthly time steps and five key features: precipitation, 

SPI, VCI, TCI, and VHI. These vegetation health indices are derived from the NOAA-AVHRR dataset, which 

provides satellite observations with a temporal resolution of seven days and a spatial resolution of 4 km. This high-

resolution data supports a detailed assessment of drought severity and duration, enabling consistent spatial and 

temporal monitoring. 

 

https://www.imdpune.gov.in/
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As shown in Fig. 2, a 55-point spatial grid is applied to align the SPI, VCI, VHI, and TCI inputs across the study area. 

While the irregular and sparse distribution of ground-based precipitation gauges introduces potential uncertainties in 

long-term precipitation records, they remain widely adopted due to their affordability, operational reliability, and 

statistical robustness. However, monitoring large and heterogeneous regions poses inherent challenges. In this context, 

remote sensing (RS) techniques offer a valuable alternative, particularly for capturing the dynamics of grassland and 

semi-arid ecosystems [22]. The integration of ground-based precipitation data with satellite-derived vegetation indices 

enhances the model’s capacity to learn both short- and long-term drought patterns across spatial scales, which is crucial 

for reliable long-lead drought forecasting. 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. Gridded points (0.5° × 0.5°) over Jaisalmer district for drought analysis 

The SPI is determined using (1): 

𝑔(𝑥) = 
1 

𝛽𝛼 𝜏(𝛼) 
𝑥𝛼−1𝑒−𝑥⁄𝛽                    for 𝑥 > 0                                                                                                (1)   

Where 

𝛼 is a shape parameter (𝛼 > 0 ) 
𝛽 is the scale parameter (𝛽 > 0 ) 
x denotes the precipitation amount (𝑥 > 0) 
𝜏(𝛼) represents the gamma function [25] 

 

For each calendar month and across various temporal scales (one, three, six, nine, and 12 months), the shape(𝛼) 
and scale(𝛽) parameters of the gamma probability density function are calculated [10]. The gamma function r(a) 

and the amount of precipitation x, where x>0, are given. Different pixel values acquired from satellite images can 

yield different indices. The next phase involves identifying the lag duration for climate predictors. The lag duration 

is not predefined, and various studies have utilized different lag periods. In this research, the optimal lag periods 

for climatic indices are evaluated using the mean gridded value through cross-correlation. This method is 

implemented on precipitation data and other predictor variables during the model training phase.  

      
For improved spatial analysis, distinct color ramps are used to denote each drought class. After the classification, 

the data is exported as maps. June, July, August, and September are the seasonal months that indicate how the 

drought category varies annually. The Rajasthan Water Resource Department(https://water.rajasthan.gov.in/)  

provided ground data-based meteorological values that is used to validate the results. Fig. 3 illustrates the 

methodology for long-lead drought forecasting in detail. Based on a literature review [25][26][27], SPI distribution 

can be classified into five drought classes. The agricultural drought index values are listed in Table I. 

https://water.rajasthan.gov.in/
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TABLE I. CLASSIFICATION OF AGRICULTURAL DROUGHT 

Level Drought Category Range 

1. NO drought >0 

2. Mild 0 to -1.0 

3. Moderate -1.0 to -1.5 

4. Severe -1.5 to -2.0 

5. Extreme < -2.0 

 

Quantifying and predicting droughts continue to be a major challenge for those responsible for making decisions on 

water resources. Time series with values that indicate the severity of drought are known as drought indices. A zero 

threshold is applied to identify drought episodes, enabling the extraction of detailed information on each event 

including its peak, duration, and severity. Drought is indicated by SPI values below zero, and its diagnosis can be 

made more easily if the zero threshold is compatible with this problem.  

 

Following the collection of SPI data, all predictor values are obtained from relevant sources. The following categories 

apply to the predictors employed in this research: a) hydrometeorological, which comprises elements such as 

temperature, precipitation, and cloud cover, and b) climatic indicators, which include vegetation. 

 

 

 

 

FIGURE 3. Workflow of the Adaptive Ensemble LSTM model for drought prediction 
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B. LSTM Architecture 

The LSTM structure exhibited a chain-like configuration, with a cell functioning as the fundamental building block 

and its state determining the operational mode [25]. The status of a cell can be ascertained using three types of gates: 

input, forget, and output gates [28]. The gates use point-wise multiplication operation and sigmoid neural layer to 

evaluate and regulate the amount of data that can pass through them. The following formulas can be used to express 

the operation of the gates and information flow: 
𝑓𝑡 =  𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓                                             (2)     

𝑖𝑡 =  𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖                                                     (3) 

                                                                       𝑐~𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐                                            (4)   

            𝑐𝑡 =  𝑓𝑡 . 𝑐𝑡−1  + 𝑖𝑡  . 𝑐~𝑡            (5) 

                                                                     𝑜𝑡 =  𝜎(𝑊0. [ℎ𝑡−1, 𝑥𝑡] + 𝑏0             (6)  

       ℎ𝑡 =  𝑜𝑡 . tanh (𝑐𝑡)                                                           (7)

      

In (2), (3), (4), (5), (6) and (7), where σ is the sigmoid function; 𝑊𝑓, 𝑊𝑖, 𝑊𝑐, and 𝑊𝑜denote the weight matrices; 

And 𝑏𝑓, 𝑏𝑖, 𝑏𝑐, and 𝑏0are their corresponding biases. These parameters had values ranging from 0 to 1. where 𝑐𝑡 

denotes the current cell state, ℎ𝑡 represents the cell's output information, and 𝑐𝑡
′ denotes newly generated 

information. 

 

C. Adaptive weighted ensemble LSTM 

The Adaptive Weighted Long Short-Term Memory (AW-LSTM) model is developed to address the key challenges 

associated with long-lead-time drought prediction, particularly those involving complex temporal dependencies and 

feature relevance across climate variables. Traditional LSTM models, although capable of learning from sequential 

data, often treat all temporal features equally, which can dilute the influence of critical indicators such as sudden 

precipitation drops or vegetation stress responses. The AW-LSTM model mitigates this by embedding an attention 

mechanism that adaptively assigns weights to the hidden states at each time step. This mechanism enhances the 

model’s ability to focus on the most informative features while suppressing less relevant noise, thereby improving 

interpretability and prediction accuracy in the presence of multidimensional drought-related data [21]. 

A key innovation in the proposed approach is the integration of multiple LSTM networks into an ensemble 

framework, where each network serves as an independent base learner or “foundational prediction model” [29]. To 

maximize the diversity of the ensemble, each LSTM model is trained with a different sequence length. This variation 

allows each learner to capture temporal patterns across different time horizons—ranging from short-term fluctuations 

to more persistent trends—which contributes to the model’s capacity to generalize over diverse drought scenarios. 

The heterogeneous sequence lengths introduce variation in the memory capacity of each LSTM unit, fostering the 

learning of a broader spectrum of temporal relationships. This ensemble diversity not only enhances robustness but 

also minimizes overfitting, which is a common issue in deep learning models trained on limited or noisy 

environmental datasets [30]. 

The proposed Adaptive Weighted Ensemble LSTM (AW-LSTM) model is composed of ten independently trained 

LSTM models (M=10), each configured to process temporal input sequences spanning twelve months (ntime_steps=12). 

Each input sequence contains four key drought-related features: precipitation, the Standardized Precipitation Index 

(SPI), the Vegetation Condition Index (VCI), and the Temperature Condition Index (TCI). These features were 

selected based on their proven relevance in drought detection, with precipitation and SPI reflecting meteorological 

drought conditions and VCI and TCI capturing vegetation stress responses. The inclusion of both atmospheric and 

ecological indicators enables the model to more effectively represent the multifaceted nature of drought events. 

Each LSTM model in the ensemble learns the temporal dynamics of these variables independently. Once trained, the 

outputs of the ten models are not simply averaged. Instead, they are aggregated using an adaptive weighting strategy, 

wherein each model’s contribution to the final prediction is determined by its validation loss—models with lower 
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validation loss receive higher weights. This adaptive mechanism ensures that better-performing models exert more 

influence on the final prediction, thereby improving the ensemble's overall generalization capability. By combining 

multiple LSTM models with diverse initialization or training paths and dynamically assigning weights based on 

performance, the AW-LSTM model enhances robustness, reduces prediction variance, and delivers superior accuracy 

in long-lead drought forecasting. This design is particularly effective in capturing the non-linear and lagged 

interactions characteristic of drought phenomena, which often challenge conventional single-model approaches. Fig. 

3 illustrates the working model used in this research. 

Fig. 4 illustrates the architecture of the AW-LSTM model. It highlights the flow of input sequences through each 

LSTM base model, the incorporation of the attention mechanism, and the final output stage where predictions are 

aggregated. The ensemble not only improves accuracy but also provides resilience against temporal shifts and 

anomalies in the data. By capturing both short-term variability and long-term dependencies, the AW-LSTM 

framework is well-suited for operational drought forecasting in data-scarce and climate-sensitive regions such as 

Jaisalmer. Overall, this model demonstrates the benefits of combining deep temporal learning, attention-based feature 

weighting, and ensemble diversity in a single architecture tailored for real-world climate risk prediction. 

This research employs a sliding window approach or sequence-to-sequence (seq2seq) forecasting method, where 

predictions for time ti estimate values for time ti+1. As the forecast lead time increases, the number of dense layers 

increases proportionally; a six-month lead time results in six dense layers. The prediction accuracy of the AW-LSTM 

ensemble is influenced by combining the weights 𝜔𝑚 for m=1…, M. A dynamic weighting algorithm proposed to 

adaptively adjusts the time-varying dynamics of the underlying time series. This ensemble of LSTM models employs 

an adaptive weight-adjustment strategy that modifies the weight of each model based on its validation loss during 

training. Models with higher validation losses received greater weight, increasing their influence on ensemble prediction. 

This procedure involved several steps. First, the validation loss for each LSTM model is computed using a distinct 

validation dataset following each training epoch. Subsequently, the inverse of the validation loss is calculated for 

each model, thereby prioritizing the models with lower validation losses. To ensure that the weights add up to one, 

each inverse validation loss is divided by the total of all inverse losses, normalizing them in the process. Weights are 

subsequently allocated to the LSTM models based on the normalized inverse validation losses. The weights are 

updated at the end of each epoch during the training process. In the weighted ensemble prediction phase, the 

predictions of each LSTM model are multiplied by their respective weights and aggregated. The final prediction is 

derived from the sum of the weighted forecasts. The AW- LSTM approach emphasizes models that perform well on 

unseen data by adjusting the weights in response to validation loss, resulting in more accurate ensemble predictions 

than those produced by a single model. The overall methodology of AW-LSTM for Long-Lead Drought Forecasting 

is given in Algorithm 1.1. 

 

Algorithm 1.1: AW-LSTM for Long-Lead Drought Forecasting  

 

step1 Define the number of input features, LSTM units, and layers. 

step2 Initialize weights, biases, and adaptive weights. 

step3 Prepare input data and split into batches. 

step4 Initialize hidden and cell states for each batch. 

       step5 For each batch  

a. Compute the adaptive weighted input 

b. Calculate forget, input,,,,,,,,, and output gates 

c. Update cell state using adaptive weights.  

d. Compute new hidden state and output. 

step6 Calculate loss between predicted and actual outputs. 

step7 Update model parameters using adaptive gradient descent. 

step8 Repeat steps 4–7 for defined epochs or until convergence. 

step9  Apply the trained model to generate predictions on unseen data. 
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step10 Evaluate performance with RMSE, Mean Absolute Error (MAE,) and R2. 

step11 Adjust adaptive weights based on performance. 

step12 Tune batch size and learning rate for optimal performance. 

step13 Save final model parameters for future use.   

 

FIGURE 4. Architecture of Adaptive weighted LSTM model  

 

 

 

D. Performance evaluation 

The effectiveness of the proposed drought forecasting model is quantitatively assessed using three standard   

statistical metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), and the Coefficient of Determination  

(R²), as defined in Equations (14)–(16). These metrics provide a rigorous framework for evaluating the model's  

predictive accuracy, error distribution, and overall explanatory power. 

 

𝑀𝐴𝐸 =  
∑ |𝒚𝒊−𝒙𝒊|𝒏

𝒊=𝟏

𝒏
=  

∑ |𝒆𝒊|𝒏
𝒊=𝟏

𝒏
                                                   (14) 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)2𝑛

𝑖=1                                                          (15) 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
                                                                              (16) 

 

III. RESULTS AND DISCUSSIONS 

A visual inspection of the monthly precipitation anomalies from May to September over the period 1991–2023 

(Fig. 5) reveals substantial inter-annual variability in monsoonal rainfall. Years such as 2000, 2002, 2009, and 2021 

display consistently negative anomalies across all five months, indicating widespread monsoon failure and 

prolonged drought conditions. Particularly, May and June show early signs of anomaly onset, underscoring their 

critical role in triggering seasonal drought. This reinforces the utility of early-month indicators for drought 
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prediction models. The wide spread of positive and negative values further validates the inclusion of multi-month 

inputs in the proposed AW-LSTM and GNN-LSTM models to better capture these dynamics. Grid colors represent 

varying levels of drought severity, with the western part of the district consistently emerging as the most affected. Fig. 

6 provides a clearer view of the model performance, and a detailed comparison is conducted for the year 2023 using a 

one-month lead time. The predicted SPI values indicated that the percentages of drought- affected grids in June, 

July, August, and September are 28.8%, 27.2%, 21.0%, and 27.6%, respectively. August exhibited the lowest 

drought severity. In July, the northeastern and eastern regions showed the highest SPI values (above 8.0), indicating 

wet conditions, whereas the southwest region showed red hues (0.15–0.5), reflecting low rainfall. In September, the 

same southwestern area recorded nearly zero precipitations, suggesting persistent drought. The central-western region 

in August had SPI values close to 0.32, confirming the consistency of the drought conditions across months. Rainfall 

peaks are also observed in the north-central grids in August (~3.23) and in the eastern patches of June (above 1.6). 

 

The drought prediction is conducted for 2023 using a model trained on historical data from 1991 to 2020. In addition 

to forecasting accuracy, analyzing the spatial variability of drought characteristics is essential for understanding pixel-

wise variation across the study region. The proposed Adaptive Weighted Ensemble LSTM method outperformed 

conventional deep learning approaches, as demonstrated in Fig. 6. The model performance is primarily evaluated 

using the coefficient of determination (R2), which achieved a high value of 0.98, indicating a strong correlation between 

the predicted and observed values. Complementary error metrics— MSE and MAE—are also computed, yielding values 

of 0.02 and 0.08, respectively. These metrics are selected for their distinct advantages: R2, ranging from 0 to 1, captures 

the proportion of variance in the observed data that is explained by the model; MSE amplifies larger errors due to 

the squaring of residuals, while MAE provides a clear indication of the average magnitude of prediction errors. 

 

                    FIGURE 5. Variation in seasonal months during study period (1991-2023) 
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     (a)SPI for June                  (b) SPI for July                 (c) SPI for August            (d) SPI for September 

FIGURE 6. Comparison of the first-instance SPI 3 values observed and predicted, with lead times of one month for 

months of a) June, b) July) c)August, and d) September. The predicted values are shown in the bottom row, and the 

observed values are shown in the top row 

 
 

 

IV. MODEL ASSESSMENT 

The research focused on supplying an extensive training dataset, complemented by an adequately sized testing dataset 

for reliable evaluation. Therefore, the data is trained between 1991 and 2020 and assessed between 2021 and 2023. The 

next step involves determining the lag durations of large-scale climate projections. Various lag durations have been used 

in previous studies, and each has been successful in producing the desired result. For instance, some researchers 

predicted rainfall using a lag period of three months [32], whereas some predicted SPI using a lag period of 12 months 

[10]. 

Rather than exploring various lag durations, this research assessed the lag of climate indicators through cross-

correlation, utilizing the mean gridded SPI as a reference. Cross-correlation between the predictor variables and SPI 

values is employed during the training phase. Climate variables show a strong association with values of 0.94 

and 0.78, respectively, and no lag time between rainfall and SPI. The proposed method predicts monthly SPI at 

various lead times by incorporating climate and meteorological variables as input. Furthermore, it evaluates how 

lag duration affects the forecasting performance [33][34]. 

Using hydrometeorological variables as input features, a single-layer Long Short-Term Memory (LSTM) network was 

employed to forecast the Standardized Precipitation Index (SPI) for Hyderabad, India, with a one-month lead time [11]. 

The research yielded an accuracy of 94% and an RMSE value of 0.03 and utilized temperature and rainfall as predictor 

variables. Using a global hydrometeorological dataset and considering the entire state, 0 . 72 value of R2 is 

obtained[35][36][37][38]. 
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V. CONCLUSION 

In this study, we introduced a novel Adaptive Weighted Long Short-Term Memory (AW-LSTM) ensemble model 

for drought forecasting, which dynamically adjusts model weights based on performance, thereby improving the 

accuracy and robustness of predictions. This ensemble architecture effectively integrates temporal dependencies and 

nonlinear patterns present in multivariate drought data by utilizing advanced LSTM-based deep learning techniques. 

Our approach utilized SPI-3 as the primary drought indicator along with vegetation indices such as the Vegetation 

Condition Index (VCI) and Temperature Condition Index (TCI), collected over a 33-year period (1991–2023) for the 

Jaisalmer region of Rajasthan, India. The model achieved exceptional predictive performance, recording an R² value 

of 0.996, Mean Squared Error (MSE) of 0.0982, and Mean Absolute Error (MAE) of 0.1906. These metrics 

demonstrate the model’s capability to accurately capture the onset, duration, and severity of drought events, making 

it a highly reliable tool for early warning systems. 

One of the key advantages of the AW-LSTM is its ensemble structure, which includes multiple LSTM base learners 

trained with varying sequence lengths and initialized with different parameters. This introduces diversity into the 

modeling process and improves generalization by reducing overfitting. The adaptive weighting mechanism further 

refines the predictions by assigning greater importance to models with lower validation loss, which is particularly 

beneficial for handling non-stationary climate data. Furthermore, the short-lead forecasting capability (1-month 

ahead) of the model demonstrated substantial improvements in early drought detection, offering timely insights for 

agricultural planning and water resource management. The enhanced short-term accuracy underscores the potential 

of integrating ensemble deep learning architectures in operational drought monitoring frameworks, especially in data-

scarce, arid, and semi-arid regions. 

Spatiotemporal analysis of SPI patterns using the model also revealed granular drought dynamics across the study 

region. The ability to interpret drought evolution at the grid level facilitates localized risk assessments and targeted 

mitigation strategies. The model’s success in the Jaisalmer district, characterized by extreme climatic conditions and 

sparse rainfall, affirms its scalability and adaptability to other regions facing similar environmental challenges. In 

essence, the AW-LSTM model provides a comprehensive and scalable framework for drought prediction by 

effectively combining ensemble deep learning, adaptive weighting, and climatic indices. The findings of this study 

serve as a foundation for advancing precision drought forecasting and highlight the critical role of data-driven 

approaches in enhancing climate resilience, supporting policy interventions, and enabling sustainable resource 

management. 
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