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Abstract This research work is conducted in Jaisalmer district, located in the western part of Rajasthan, India, an
arid region highly vulnerable to persistent drought conditions. The area experiences low and erratic rainfall, making
it critical for early drought detection and long-term hydrological forecasting. This research proposes an
Adaptive Weighted Long Short-Term Memory (AW-LSTM) model to forecast the Standardized Precipitation
Index (SPI) using high-resolution gridded hydroclimatic variables indices of precipitation, vegetation condition
index (VCI), and temperature condition index (TCI). AW-LSTM integrates dynamic attention weights that
prioritize relevant time steps and input features to enhance the long-term drought forecasting accuracy. The
interpolated gridded layered stack of Precipitation-VCI-TCI input features is trained for the period June-
September (year 1991 to 2020) and validated for the year 2021 to 2023 across lead times of I to 12 months.
The AW-LSTM model achieved a high level of predictive accuracy, with an R? of £ 0.98, RMSE of £ 0.02, and
Mean Absolute Error (MAE) of + 0.08, successfully capturing the beginning, duration, and severity of droughts. The
model revealed that the western and southwestern parts of Jaisalmer are the most drought-prone, whereas the
northeastern and central-eastern regions received relatively high rainfall. These findings support the
development of real-time drought monitoring systems and enhance adaptive decision making for water resource
planning in arid regions.
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I. INTRODUCTION

Owing to accelerated changes in climate, a significant challenge facing arid grasslands is the mapping of drought
and the analysis of its trends. Improving monitoring techniques enhanced preservation and management of these
critical ecosystems. This research aims to assess the utility of Geographic Information System (GIS) and remote
sensing technologies in tracking the spatial and temporal progression of agricultural drought, with a focus on
precipitation as a core indicator [1]. In arid environments, drought plays a pivotal role in shaping grassland
ecosystems and acts as a significant constraint on agricultural productivity [1].

Precipitation serves as the primary determinant of climate variability and impact, directly influencing ecosystem
dynamics through its timing and quantity [2][3]. These fluctuations, especially prolonged dry spells, adversely
affect agricultural productivity, water resources, and rural livelihoods. As a result, understanding and forecasting
drought have become essential for effective resource planning and risk management, particularly in vulnerable
regions such as the Indian subcontinent. The increasing frequency and severity of droughts due to climate change
have motivated the scientific community to develop various indices and techniques to characterize drought
events [4]. Among these, the Standardized Precipitation Index (SPI) has gained widespread acceptance for its
simplicity and effectiveness in capturing meteorological drought across varying timescales. Accurate forecasting
of SPI enables the early detection of drought onset, thus strengthening drought early warning systems and
preparedness strategies [S][6][7].
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In recent years, Artificial Neural Networks (ANNs) have emerged as a powerful data-driven technique for drought
forecasting, showing competitive results in both short- and long-term predictions [8]. Several studies have
demonstrated the applicability of ANNs in forecasting drought indices such as SPI by utilizing lagged climatic
variables as input features [9][10]. However, despite their success, traditional neural networks often face
challenges such as overfitting and difficulty capturing non-stationary and nonlinear patterns inherent in time-
series climate data.

To address these limitations, researchers have increasingly adopted Long Short-Term Memory (LSTM) networks,
a type of recurrent neural network (RNN) specifically designed to capture long-term dependencies through
memory gates [11][12]. LSTM has proven effective in modelling temporal dependencies in drought-relevant
variables such as precipitation [13], temperature [14], and vegetation indices [10]. Its architecture allows it to
retain crucial climatic patterns over extended periods, which is particularly beneficial for forecasting complex
drought dynamics.

While LSTM models have shown promise in drought prediction, many existing approaches still fall short in
addressing the nonlinear and dynamic interactions between multiple climate drivers and drought behaviour [17].
Studies such as [9] and [15] have utilized ANN-based models for one-month lead precipitation forecasting,
reporting better accuracy than conventional methods. Yet, these models often neglect spatial dependencies and
may not generalize well across regions with diverse climatic regimes.

Recent advances in deep learning—highlighted in Nature [ 16]—underscore the potential of hybrid and ensemble-
based architectures in environmental prediction tasks. However, there remains a research gap in designing models
that dynamically adapt to changing climatic inputs while effectively learning from both temporal and spatial
features. Moreover, very few studies have explored the application of adaptive ensemble LSTM models in
drought forecasting, particularly with long-lead-time predictions and complex environmental datasets [5][18].

To fill this gap, the present study proposes an Adaptive Weighted Long Short-Term Memory (AW-LSTM)
ensemble model tailored for monthly SPI forecasting in the drought-prone Jaisalmer district. The proposed model
incorporates multiple independently trained LSTM networks with varying sequence lengths to enhance temporal
diversity. Each network focuses on learning distinct drought-related patterns from input features including SPI,
VCI, TCI, and precipitation. A novel attention-based weighting mechanism is integrated to adaptively assign
importance to each base learner, thereby improving generalization and reducing prediction error. This dynamic
ensemble approach allows the model to adjust to evolving climate patterns and enhances its robustness across
varying drought scenarios.

The core aims of this research can be summarized in threefold:

(1) To examine variations in predicted outcomes by incorporating different drought characteristics, including
intensity, duration (in months), and spatial extent;

(2) To create an ensemble model using adaptive weighted LSTM for drought prediction; and

(3) To examine the predictive capability of the AW-LSTM model for SPI estimation across multiple timescales in
the Jaisalmer region of India.

The paper continues with section 2 that defines the spatial coverage and location-specific characteristics of the
Jaisalmer region and outlines the characteristics of the dataset used. Section 3, titled results and discussion,
provides insights into SPI calculations, optimal time selection, drought monitoring, drought prediction models,
and model evaluation metrics. The following section presents model assessment. The last section presents the key
findings and discusses directions for future research.
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II. METHODOLOGY

A.  LOCATON SITE AND DATASET
The Jaisalmer district in western Rajasthan, India is selected because of its high vulnerability to agricultural
droughts. The region spans approximately 32,401 km? [18] and lies between latitudes 26.25°N and 28.00°N and
longitudes 70.25°E and 72.00°E. As shown in Fig. 1, daily gridded precipitation data for 55 grid points, spanning the
period from 1991 to 2023, are obtained from the India Meteorological Department (IMD), Pune
(https://www.imdpune.gov.in/). The data are provided at a spatial resolution of 0.25° x 0.25°. The dataset included 55
spatial grid points distributed across districts. Additionally, satellite-derived vegetation and temperature indices were
obtained from NOAA-AVHRR, including SPI, VCI, TCI, VHI. These indices are selected based on their relevance
to drought assessment and availability at appropriate temporal and spatial scales [19][20][21][22].
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FIGURE 1. Drought Spatial region for Long-Lead Drought Forecasting: Jaisalmer district, Rajasthan, India

SPI-3 has been identified as the most appropriate timescale for drought prediction in this region, based on its
responsiveness to seasonal precipitation variability and established relevance in previous studies [23][24][25]. To
effectively model the temporal dynamics of drought, a sequence-to-sequence (seq2seq) learning framework is
employed. The model utilizes input sequences comprising 12-monthly time steps and five key features: precipitation,
SPI, VCI, TCI, and VHI. These vegetation health indices are derived from the NOAA-AVHRR dataset, which
provides satellite observations with a temporal resolution of seven days and a spatial resolution of 4 km. This high-
resolution data supports a detailed assessment of drought severity and duration, enabling consistent spatial and
temporal monitoring.
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As shown in Fig. 2, a 55-point spatial grid is applied to align the SPL, VCI, VHI, and TCI inputs across the study area.
While the irregular and sparse distribution of ground-based precipitation gauges introduces potential uncertainties in
long-term precipitation records, they remain widely adopted due to their affordability, operational reliability, and
statistical robustness. However, monitoring large and heterogeneous regions poses inherent challenges. In this context,
remote sensing (RS) techniques offer a valuable alternative, particularly for capturing the dynamics of grassland and
semi-arid ecosystems [22]. The integration of ground-based precipitation data with satellite-derived vegetation indices
enhances the model’s capacity to learn both short- and long-term drought patterns across spatial scales, which is crucial
for reliable long-lead drought forecasting.
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FIGURE 2. Gridded points (0.5° x 0.5°) over Jaisalmer district for drought analysis

The SPI is determilned using (1):
gx) = : )x“‘le‘x/ﬁ forx > 0 (1)

Where
« is a shape parameter (¢ > 0)
[ is the scale parameter (f > 0)
x denotes the precipitation amount (x > 0)
7(a) represents the gamma function [25]

For each calendar month and across various temporal scales (one, three, six, nine, and 12 months), the shape(a)
and scale(f3) parameters of the gamma probability density function are calculated [10]. The gamma function r(a)
and the amount of precipitation x, where x>0, are given. Different pixel values acquired from satellite images can
yield different indices. The next phase involves identifying the lag duration for climate predictors. The lag duration
is not predefined, and various studies have utilized different lag periods. In this research, the optimal lag periods
for climatic indices are evaluated using the mean gridded value through cross-correlation. This method is
implemented on precipitation data and other predictor variables during the model training phase.

For improved spatial analysis, distinct color ramps are used to denote each drought class. After the classification,
the data is exported as maps. June, July, August, and September are the seasonal months that indicate how the
drought category varies annually. The Rajasthan Water Resource Department(https://water.rajasthan.gov.in/)
provided ground data-based meteorological values that is used to validate the results. Fig. 3 illustrates the
methodology for long-lead drought forecasting in detail. Based on a literature review [25][26][27], SPI distribution
can be classified into five drought classes. The agricultural drought index values are listed in Table 1.
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Quantifying and predicting droughts continue to be a major challenge for those responsible for making decisions on
water resources. Time series with values that indicate the severity of drought are known as drought indices. A zero
threshold is applied to identify drought episodes, enabling the extraction of detailed information on each event
including its peak, duration, and severity. Drought is indicated by SPI values below zero, and its diagnosis can be

TABLE I. CLASSIFICATION OF AGRICULTURAL DROUGHT

Level Drought Category Range
1. NO drought >0
2. Mild 0to-1.0
3. Moderate -1.0to -1.5
4. Severe -1.5t0-2.0
5. Extreme <-20

made more easily if the zero threshold is compatible with this problem.

Following the collection of SPI data, all predictor values are obtained from relevant sources. The following categories
apply to the predictors employed in this research: a) hydrometeorological, which comprises elements such as

temperature, precipitation, and cloud cover, and b) climatic indicators, which include vegetation.
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FIGURE 3. Workflow of the Adaptive Ensemble LSTM model for drought prediction
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B. LSTM Architecture

The LSTM structure exhibited a chain-like configuration, with a cell functioning as the fundamental building block
and its state determining the operational mode [25]. The status of a cell can be ascertained using three types of gates:
input, forget, and output gates [28]. The gates use point-wise multiplication operation and sigmoid neural layer to
evaluate and regulate the amount of data that can pass through them. The following formulas can be used to express
the operation of the gates and information flow:

fe = o(Wr.[he—y, x] + b (2)
ip = oW [heoy, xc] + by 3)

Coe = tanh(We.[hy_q, ;] + b, “4)
€t = feCo1 FHip.Cop (%)
0, = o(Wp.[he_q,xc] + by (6)
h; = o;.tanh (c;) (7

In (2), (3), (4), (5), (6) and (7), where o is the sigmoid function; Wy, W;, W,, and W, denote the weight matrices;
And by, b;, b, and byare their corresponding biases. These parameters had values ranging from 0 to 1. where ¢,

denotes the current cell state, At represents the cell's output information, and c¢; denotes newly generated
information.

C. Adaptive weighted ensemble LSTM

The Adaptive Weighted Long Short-Term Memory (AW-LSTM) model is developed to address the key challenges
associated with long-lead-time drought prediction, particularly those involving complex temporal dependencies and
feature relevance across climate variables. Traditional LSTM models, although capable of learning from sequential
data, often treat all temporal features equally, which can dilute the influence of critical indicators such as sudden
precipitation drops or vegetation stress responses. The AW-LSTM model mitigates this by embedding an attention
mechanism that adaptively assigns weights to the hidden states at each time step. This mechanism enhances the
model’s ability to focus on the most informative features while suppressing less relevant noise, thereby improving
interpretability and prediction accuracy in the presence of multidimensional drought-related data [21].

A key innovation in the proposed approach is the integration of multiple LSTM networks into an ensemble
framework, where each network serves as an independent base learner or “foundational prediction model” [29]. To
maximize the diversity of the ensemble, each LSTM model is trained with a different sequence length. This variation
allows each learner to capture temporal patterns across different time horizons—ranging from short-term fluctuations
to more persistent trends—which contributes to the model’s capacity to generalize over diverse drought scenarios.
The heterogeneous sequence lengths introduce variation in the memory capacity of each LSTM unit, fostering the
learning of a broader spectrum of temporal relationships. This ensemble diversity not only enhances robustness but
also minimizes overfitting, which is a common issue in deep learning models trained on limited or noisy
environmental datasets [30].

The proposed Adaptive Weighted Ensemble LSTM (AW-LSTM) model is composed of ten independently trained
LSTM models (M=10), each configured to process temporal input sequences spanning twelve months (Nsime steps=12).
Each input sequence contains four key drought-related features: precipitation, the Standardized Precipitation Index
(SPI), the Vegetation Condition Index (VCI), and the Temperature Condition Index (TCI). These features were
selected based on their proven relevance in drought detection, with precipitation and SPI reflecting meteorological
drought conditions and VCI and TCI capturing vegetation stress responses. The inclusion of both atmospheric and
ecological indicators enables the model to more effectively represent the multifaceted nature of drought events.

Each LSTM model in the ensemble learns the temporal dynamics of these variables independently. Once trained, the
outputs of the ten models are not simply averaged. Instead, they are aggregated using an adaptive weighting strategy,
wherein each model’s contribution to the final prediction is determined by its validation loss—models with lower
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validation loss receive higher weights. This adaptive mechanism ensures that better-performing models exert more
influence on the final prediction, thereby improving the ensemble's overall generalization capability. By combining
multiple LSTM models with diverse initialization or training paths and dynamically assigning weights based on
performance, the AW-LSTM model enhances robustness, reduces prediction variance, and delivers superior accuracy
in long-lead drought forecasting. This design is particularly effective in capturing the non-linear and lagged
interactions characteristic of drought phenomena, which often challenge conventional single-model approaches. Fig.
3 illustrates the working model used in this research.

Fig. 4 illustrates the architecture of the AW-LSTM model. It highlights the flow of input sequences through each
LSTM base model, the incorporation of the attention mechanism, and the final output stage where predictions are
aggregated. The ensemble not only improves accuracy but also provides resilience against temporal shifts and
anomalies in the data. By capturing both short-term variability and long-term dependencies, the AW-LSTM
framework is well-suited for operational drought forecasting in data-scarce and climate-sensitive regions such as
Jaisalmer. Overall, this model demonstrates the benefits of combining deep temporal learning, attention-based feature
weighting, and ensemble diversity in a single architecture tailored for real-world climate risk prediction.

This research employs a sliding window approach or sequence-to-sequence (seq2seq) forecasting method, where
predictions for time t; estimate values for time ti+1. As the forecast lead time increases, the number of dense layers
increases proportionally; a six-month lead time results in six dense layers. The prediction accuracy of the AW-LSTM
ensemble is influenced by combining the weights w™ for m=1..., M. A dynamic weighting algorithm proposed to
adaptively adjusts the time-varying dynamics of the underlying time series. This ensemble of LSTM models employs
an adaptive weight-adjustment strategy that modifies the weight of each model based on its validation loss during
training. Models with higher validation losses received greater weight, increasing their influence on ensemble prediction.
This procedure involved several steps. First, the validation loss for each LSTM model is computed using a distinct
validation dataset following each training epoch. Subsequently, the inverse of the validation loss is calculated for
each model, thereby prioritizing the models with lower validation losses. To ensure that the weights add up to one,
each inverse validation loss is divided by the total of all inverse losses, normalizing them in the process. Weights are
subsequently allocated to the LSTM models based on the normalized inverse validation losses. The weights are
updated at the end of each epoch during the training process. In the weighted ensemble prediction phase, the
predictions of each LSTM model are multiplied by their respective weights and aggregated. The final prediction is
derived from the sum of the weighted forecasts. The AW- LSTM approach emphasizes models that perform well on
unseen data by adjusting the weights in response to validation loss, resulting in more accurate ensemble predictions
than those produced by a single model. The overall methodology of AW-LSTM for Long-Lead Drought Forecasting
is given in Algorithm 1.1.

Algorithm 1.1: AW-LSTM for Long-Lead Drought Forecasting

stepl Define the number of input features, LSTM units, and layers.
step2 Initialize weights, biases, and adaptive weights.
step3 Prepare input data and split into batches.
step4 Initialize hidden and cell states for each batch.
step5 For each batch

a. Compute the adaptive weighted input

b. Calculate forget, input,,,...,,, and output gates

c. Update cell state using adaptive weights.

d. Compute new hidden state and output.
step6 Calculate loss between predicted and actual outputs.
step7 Update model parameters using adaptive gradient descent.
step8 Repeat steps 4—7 for defined epochs or until convergence.
step9 Apply the trained model to generate predictions on unseen data.
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step10 Evaluate performance with RMSE, Mean Absolute Error (MAE,) and R2.
stepl1 Adjust adaptive weights based on performance.

stepl2 Tune batch size and learning rate for optimal performance.

stepl13 Save final model parameters for future use.
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FIGURE 4. Architecture of Adaptive weighted LSTM model

D. Performance evaluation

The effectiveness of the proposed drought forecasting model is quantitatively assessed using three standard
statistical metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), and the Coefficient of Determination
(R?), as defined in Equations (14)—(16). These metrics provide a rigorous framework for evaluating the model's
predictive accuracy, error distribution, and overall explanatory power.

MAE = 2=l Zeiled (14)
1

MSE = —3i,(xi — y)? (15)
SSres

R?=1- o (16)

II1. RESULTS AND DISCUSSIONS

A visual inspection of the monthly precipitation anomalies from May to September over the period 1991-2023
(Fig. 5) reveals substantial inter-annual variability in monsoonal rainfall. Years such as 2000, 2002, 2009, and 2021
display consistently negative anomalies across all five months, indicating widespread monsoon failure and
prolonged drought conditions. Particularly, May and June show early signs of anomaly onset, underscoring their
critical role in triggering seasonal drought. This reinforces the utility of early-month indicators for drought
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prediction models. The wide spread of positive and negative values further validates the inclusion of multi-month
inputs in the proposed AW-LSTM and GNN-LSTM models to better capture these dynamics. Grid colors represent
varying levels of drought severity, with the western part of the district consistently emerging as the most affected. Fig.
6 provides a clearer view of the model performance, and a detailed comparison is conducted for the year 2023 using a
one-month lead time. The predicted SPI values indicated that the percentages of drought- affected grids in June,
July, August, and September are 28.8%, 27.2%, 21.0%, and 27.6%, respectively. August exhibited the lowest
drought severity. In July, the northeastern and eastern regions showed the highest SPI values (above 8.0), indicating
wet conditions, whereas the southwest region showed red hues (0.15-0.5), reflecting low rainfall. In September, the
same southwestern area recorded nearly zero precipitations, suggesting persistent drought. The central-western region
in August had SPI values close to 0.32, confirming the consistency of the drought conditions across months. Rainfall
peaks are also observed in the north-central grids in August (~3.23) and in the eastern patches of June (above 1.6).

The drought prediction is conducted for 2023 using a model trained on historical data from 1991 to 2020. In addition
to forecasting accuracy, analyzing the spatial variability of drought characteristics is essential for understanding pixel-
wise variation across the study region. The proposed Adaptive Weighted Ensemble LSTM method outperformed
conventional deep learning approaches, as demonstrated in Fig. 6. The model performance is primarily evaluated
using the coefficient of determination (R?), which achieved a high value 0f 0.98, indicating a strong correlation between
the predicted and observed values. Complementary error metrics— MSE and MAE—are also computed, yielding values
0f 0.02 and 0.08, respectively. These metrics are selected for their distinct advantages: R?, ranging from 0 to 1, captures
the proportion of variance in the observed data that is explained by the model; MSE amplifies larger errors due to
the squaring of residuals, while MAE provides a clear indication of the average magnitude of prediction errors.
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FIGURE 6. Comparison of the first-instance SPI 3 values observed and predicted, with lead times of one month for
months of a) June, b) July) c)August, and d) September. The predicted values are shown in the bottom row, and the
observed values are shown in the top row

IV. MODEL ASSESSMENT

The research focused on supplying an extensive training dataset, complemented by an adequately sized testing dataset
for reliable evaluation. Therefore, the data is trained between 1991 and 2020 and assessed between 2021 and 2023. The
next step involves determining the lag durations of large-scale climate projections. Various lag durations have been used
in previous studies, and each has been successful in producing the desired result. For instance, some researchers
predicted rainfall using a lag period of three months [32], whereas some predicted SPI using a lag period of 12 months
[10].

Rather than exploring various lag durations, this research assessed the lag of climate indicators through cross-
correlation, utilizing the mean gridded SPI as a reference. Cross-correlation between the predictor variables and SPI
values is employed during the training phase. Climate variables show a strong association with values of 0.94
and 0.78, respectively, and no lag time between rainfall and SPI. The proposed method predicts monthly SPI at
various lead times by incorporating climate and meteorological variables as input. Furthermore, it evaluates how
lag duration affects the forecasting performance [33][34].

Using hydrometeorological variables as input features, a single-layer Long Short-Term Memory (LSTM) network was
employed to forecast the Standardized Precipitation Index (SPI) for Hyderabad, India, with a one-month lead time [11].
The research yielded an accuracy of 94% and an RMSE value of 0.03 and utilized temperature and rainfall as predictor
variables. Using a global hydrometeorological dataset and considering the entire state, 0.72 value of R? is
obtained[35][36][37][38].
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V. CONCLUSION

In this study, we introduced a novel Adaptive Weighted Long Short-Term Memory (AW-LSTM) ensemble model
for drought forecasting, which dynamically adjusts model weights based on performance, thereby improving the
accuracy and robustness of predictions. This ensemble architecture effectively integrates temporal dependencies and
nonlinear patterns present in multivariate drought data by utilizing advanced LSTM-based deep learning techniques.
Our approach utilized SPI-3 as the primary drought indicator along with vegetation indices such as the Vegetation
Condition Index (VCI) and Temperature Condition Index (TCI), collected over a 33-year period (1991-2023) for the
Jaisalmer region of Rajasthan, India. The model achieved exceptional predictive performance, recording an R* value
of 0.996, Mean Squared Error (MSE) of 0.0982, and Mean Absolute Error (MAE) of 0.1906. These metrics
demonstrate the model’s capability to accurately capture the onset, duration, and severity of drought events, making
it a highly reliable tool for early warning systems.

One of the key advantages of the AW-LSTM is its ensemble structure, which includes multiple LSTM base learners
trained with varying sequence lengths and initialized with different parameters. This introduces diversity into the
modeling process and improves generalization by reducing overfitting. The adaptive weighting mechanism further
refines the predictions by assigning greater importance to models with lower validation loss, which is particularly
beneficial for handling non-stationary climate data. Furthermore, the short-lead forecasting capability (1-month
ahead) of the model demonstrated substantial improvements in early drought detection, offering timely insights for
agricultural planning and water resource management. The enhanced short-term accuracy underscores the potential
of integrating ensemble deep learning architectures in operational drought monitoring frameworks, especially in data-
scarce, arid, and semi-arid regions.

Spatiotemporal analysis of SPI patterns using the model also revealed granular drought dynamics across the study
region. The ability to interpret drought evolution at the grid level facilitates localized risk assessments and targeted
mitigation strategies. The model’s success in the Jaisalmer district, characterized by extreme climatic conditions and
sparse rainfall, affirms its scalability and adaptability to other regions facing similar environmental challenges. In
essence, the AW-LSTM model provides a comprehensive and scalable framework for drought prediction by
effectively combining ensemble deep learning, adaptive weighting, and climatic indices. The findings of this study
serve as a foundation for advancing precision drought forecasting and highlight the critical role of data-driven
approaches in enhancing climate resilience, supporting policy interventions, and enabling sustainable resource
management.
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