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ABSTRACT  
With cyberattacks growing more complex and harder to predict, defending digital networks requires innovative 
approaches that combine multiple detection strategies. This study presents a novel ensemble approach for Intrusion 
Detection Systems (IDS) that synergistically combines Random Forest (RF) and Bidirectional Long Short-Term Memory 
(Bi-LSTM) models to achieve superior performance over individual models. We evaluate three distinct ensemble 
strategies: weighted voting, stacking with meta-learner, and hybrid prediction fusion using the CSE-CICIDS2018 
dataset. Our comprehensive evaluation demonstrates that the ensemble approach achieves 98.7% accuracy, 
significantly outperforming individual RF (96.8%) and Bi-LSTM (98.02%) models. The weighted voting ensemble 
shows the most balanced performance with 98.7% accuracy, 98.1% precision, 98.5% recall, and 98.3% F1-score, 
while maintaining computational efficiency. The stacking ensemble achieves the highest accuracy at 98.9% but 
requires additional computational overhead. The hybrid fusion approach provides robust performance with enhanced 
interpretability. Results indicate that ensemble methods effectively combine RF's computational efficiency and 
interpretability with Bi-LSTM's ability to capture complex sequential patterns, resulting in more reliable and 
comprehensive intrusion detection. Statistical significance testing confirms that all performance improvements are 
statistically significant (p < 0.01). This work demonstrates that strategic ensemble combinations can address the 
evolving landscape of cybersecurity threats while maintaining practical deployment feasibility.  
Keywords: Ensemble Learning, Intrusion Detection System (IDS), Bi-LSTM, Random Forest, Network Traffic, 
CSECIC-IDS2018, Cybersecurity, Weighted Voting, Stacking.  

 
1. INTRODUCTION  
The escalating sophistication and frequency of cyber threats necessitate advanced intrusion detection 
systems capable of adapting to evolving attack patterns [1]. While individual machine learning and deep 
learning models have shown promising results in network security, they often exhibit specific limitations 
that can be exploited by sophisticated attackers [2]. Random Forest (RF) excels in computational efficiency 
and interpretability but may struggle with complex sequential patterns [3], while Bidirectional Long Short 
Term Memory (Bi-LSTM) models capture temporal dependencies effectively but require significant 
computational resources and lack interpretability [4]. Recent advances in ensemble learning have 
demonstrated that combining multiple models can overcome individual limitations while amplifying their 
strengths [5]. Ensemble approaches in cybersecurity have shown remarkable success in improving 
detection accuracy, reducing false positive rates, and enhancing system robustness against adversarial 
attacks [6,7]. This study presents a comprehensive evaluation of ensemble methodologies that strategically 
combine Random Forest and Bidirectional Long Short-Term Memory models for enhanced intrusion 
detection. Our research contributes three distinct ensemble architectures: (1) a weighted voting ensemble 
that combines predictions based on individual model confidence, (2) a stacking ensemble employing a 
meta-learner to optimize final predictions, and (3) a hybrid fusion approach that leverages both models' 
intermediate representations. Each approach is rigorously evaluated using the CSE-CIC-IDS2018 dataset 
[8] with careful attention to computational efficiency, interpretability, and real-world deployment 
considerations. The evolution of ensemble methods in cybersecurity has gained significant momentum 
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due to their ability to mitigate individual model weaknesses while capitalizing on diverse learning 
paradigms [9]. Research has shown that combining different algorithmic approaches can significantly 
improve detection rates for both known and zero-day attacks [10]. Ensemble techniques have proven 
particularly effective in handling class imbalance issues common in intrusion detection datasets, where 
malicious traffic represents a small fraction of total network activity [11]. This study addresses critical gaps 
in existing ensemble approaches by providing a systematic comparison of different combination strategies, 
evaluating computational trade-offs, and demonstrating practical deployment considerations. Our 
methodology ensures reproducible results while maintaining focus on real-world applicability and 
scalability requirements essential for production cybersecurity systems.  
 
2. RELATED WORK  
2.1 Individual Model Approaches  
Traditional machine learning approaches for intrusion detection have extensively utilized Random Forest 
due to its robustness, interpretability, and computational efficiency [12,13]. Studies have demonstrated 
RF's effectiveness in handling high-dimensional feature spaces typical in network traffic analysis, achieving 
consistent performance across diverse attack types [14]. However, these approaches often struggle with 
sophisticated attack patterns that evolve over time and exhibit complex temporal dependencies [15]. Deep 
learning models, particularly LSTM variants, have emerged as powerful alternatives for capturing 
sequential patterns in network traffic [16]. Bidirectional LSTM models have shown superior performance 
in detecting advanced persistent threats and sophisticated attack campaigns that unfold over extended 
periods [17,18]. Despite their effectiveness, these models require substantial computational resources and 
lack the interpretability crucial for security analysts [19].  
2.2 Ensemble Methods in Cybersecurity  
Ensemble learning has gained prominence in cybersecurity applications due to its ability to combine 
diverse learning paradigms [20]. Voting-based ensembles have shown effectiveness in improving overall 
accuracy while reducing variance in predictions [21]. Stacking approaches, utilizing meta-learners to 
optimize final predictions, have demonstrated superior performance in complex classification tasks but at 
increased computational cost [22,23]. Recent research has explored heterogeneous ensemble 
combinations, mixing tree-based algorithms with neural networks to leverage complementary strengths 
[24,25]. These approaches have shown particular promise in addressing class imbalance issues prevalent 
in intrusion detection datasets [26]. However, existing studies often lack comprehensive evaluation of 
computational trade-offs and practical deployment considerations.  
2.3 Gaps in Current Research  
While individual studies have explored various ensemble combinations, there exists a significant gap in 
systematic comparison of different ensemble strategies specifically tailored for intrusion detection [27]. 
Most existing work focuses on accuracy improvements without adequate consideration of computational 
efficiency, interpretability, and real-time deployment requirements [28]. Our study addresses these 
limitations by providing comprehensive evaluation across multiple ensemble architectures with explicit 
attention to practical deployment considerations.  
  
3. DATASET PREPARATION  
3.1 Dataset Consolidation  
The CSE-CIC-IDS2018 dataset serves as the foundation for our ensemble evaluation, representing one of 
the most comprehensive and realistic intrusion detection datasets available [8]. The dataset encompasses 
diverse attack scenarios including Distributed Denial of Service (DDoS) attacks, botnets, brute force 
attempts, and sophisticated infiltration techniques. This dataset was selected for its realistic network traffic 
patterns and comprehensive attack coverage, making it ideal for evaluating ensemble performance across 
diverse threat categories. The preprocessing pipeline begins with systematic extraction and compilation of 
raw network traffic data, ensuring data integrity and compatibility with ensemble learning requirements. 
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Multiple CSV files representing different network scenarios are consolidated into a unified dataset, 
facilitating consistent evaluation across all ensemble approaches.  
3.2 Data Preprocessing and Feature Engineering  
Our preprocessing approach incorporates advanced feature engineering techniques specifically designed 
for ensemble learning [29]. Beyond standard data cleaning and normalization, we implement feature 
selection strategies that optimize performance for both RF and Bi-LSTM components. This includes 
identifying features that contribute most effectively to RF's decision-making process while ensuring 
temporal features essential for LSTM performance are preserved. The preprocessing pipeline addresses 
missing values through intelligent imputation strategies, removes duplicate records that could bias 
ensemble performance, and implements robust outlier detection to ensure data quality. Special attention 
is given to maintaining feature distributions that support both individual model requirements and 
ensemble optimization.  
3.3 Advanced Class Balancing for Ensemble Learning  
Class imbalance presents unique challenges for ensemble methods, requiring sophisticated balancing 
strategies that consider the diverse learning paradigms of constituent models [11]. Our approach 
implements a multi-stage balancing process combining Random Under-Sampling (RUS) and Synthetic 
Minority Over-Sampling Technique (SMOTE) optimized for ensemble performance [30]. The balancing 
strategy ensures that both RF and Bi-LSTM models receive appropriately balanced training data while 
maintaining the diversity necessary for effective ensemble combination. This includes careful 
consideration of class distribution effects on voting mechanisms and meta-learner training in stacking 
approaches.  
Table 1: Enhanced Data Distribution after Ensemble-Optimized Preprocessing  

Attack Category Original Count After RUS After SMOTE Ensemble Split  

NORMAL 3,830,384 100,000  100,000  80,000/20,000  
DoS/DDoS Attack 972,523 100,000  100,000  80,000/20,000  

Botnet Activity  144,535 100,000  100,000  80,000/20,000  

Brute Force Attack 837 837  15,000  12,000/3,000  

Infiltration 140,694 100,000  100,000  80,000/20,000  
SSH Brute Force Exploits 94,048 94,048  100,000  80,000/20,000  

 
The data distribution table demonstrates our systematic approach to addressing severe class imbalance, 
ensuring each attack type receives adequate representation for effective ensemble training Our original 
dataset was severely imbalanced with 3.8 million normal samples versus only 837 brute force attacks, 
creating a significant challenge for effective model training. We addressed this through strategic 
rebalancing, reducing the overwhelming majority class while synthetically augmenting rare attack samples 
using proven techniques. This approach provided our models with balanced 100K samples per class, 
enabling them to learn meaningful patterns for detecting real threats rather than defaulting to majority 
class predictions.  

 
Figure 1: Dataset Distribution Analysis -Preprocessing Impact Comparison  
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This visualization clearly illustrates the transformation from severely imbalanced original data to 
wellbalanced samples suitable for ensemble learning.  
4. ENSEMBLE METHODOLOGY  
4.1 Ensemble Architecture Overview  
Our ensemble approach implements three distinct combination strategies, each designed to leverage 
different aspects of RF and Bi-LSTM model capabilities [5]. The architecture ensures that individual model 
strengths are preserved while mitigating their respective weaknesses through intelligent combination 
mechanisms.   

 
Figure 2: Comprehensive Ensemble Framework Architecture  
The framework incorporates parallel training pipelines for RF and Bi-LSTM models, with carefully 
designed combination strategies that optimize both accuracy and computational efficiency.  
4.2 Weighted Voting Ensemble  
The weighted voting ensemble assigns dynamic weights to individual model predictions based on their 
confidence levels and historical performance on similar attack patterns [21]. This approach recognizes that 
different models may excel at detecting specific attack types, allowing for adaptive combination based on 
prediction context.  
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Mathematical Formulation: For 
input sample , let:  

 PRF(𝑥):  Random Forest prediction probabilities  
 𝑃𝐵𝐼𝐿𝑆𝑇𝑀  (𝑥): Prediction Probabilities form the Bi-LSTM model  
 𝑤𝑅 ,𝐵𝑖𝐿𝑆𝑇𝑀 : Dynamic weights based on entropy and historical accuracy.  

Ensemble Prediction  
The ensemble prediction is computed as:  

  

Weight Calculation  
Weight calculation incorporates prediction entropy and historical accuracy: 

wRF = α × (1 − H(PRF (𝑥))) + β × ACCRFhistorical  

wBiLSTM = α × (1 − H(PBiLSTM  (𝑥))) + β × ACCBiLSTMhistorical  

where   

 H(P)represents prediction entropy  
 α, β are tuning parameters  
 ACCRFhistorical is the historical accuracy of random Forest  
 ACCBiLSTMhistorical is the historical accuracy of Bi-LSTM  

Entropy Calculation  
Prediction entropy H(P)H(P)H(P) is defined as:  

  

Where:  
 𝑝𝑖 is the predicted probability for class iii  
 𝑛  is the total number of classes  

4.3 Stacking Ensemble with Meta-Learner  
The stacking ensemble employs a fundamentally different approach by training a secondary model 
(metalearner) that learns how to optimally combine predictions from Random Forest and Bi-LSTM 
models [22]. This meta-learner acts as an intelligent coordinator that understands when to trust one model 
over another based on specific characteristics of network traffic samples. Our implementation uses two 
base models working in parallel. The Random Forest operates with 200 decision trees, providing fast and 
interpretable predictions, while the Bi-LSTM model uses 128 hidden units enhanced with an attention 
mechanism to capture complex temporal patterns. The meta-learner is a neural network that receives 
predictions from both base models along with selected features from the original dataset, providing 
additional context for informed decision-making. The network architecture includes dense layers with 
dropout regularization (dropout rates of 0.2 and 0.1) to prevent overfitting. The meta-learner is trained 
using cross-validation to ensure it never sees the same data used for base model training, forcing it to learn 
genuine patterns about model reliability rather than memorizing training examples.  
4.4 Hybrid Fusion Approach  
The hybrid fusion method combines internal representations from both models rather than just their 
final predictions. This approach leverages Random Forest's feature importance insights alongside 
BiLSTM's sequential pattern recognition to create a unified understanding of network behavior [24]. The 
implementation extracts feature importance scores from the trained Random Forest, which guide the Bi-
LSTM's attention mechanisms. Weighted representations from both models are merged through a learned 
fusion layer, and a final classification layer with ensemble-specific regularization produces the intrusion 
detection decision. This approach offers significant advantages in interpretability, maintaining clear 
connections between Random Forest's feature importance rankings and final predictions while benefiting 
from Bi-LSTM's sophisticated pattern recognition capabilities.  
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5. EXPERIMENTAL SETUP AND EVALUATION  
5.1 Training Configuration  
Our experimental setup prioritizes both computational efficiency and reproducibility, ensuring that results 
can be reliably reproduced by other researchers [29]. Each ensemble approach requires careful tuning to 
optimize not just individual model performance, but also how effectively the models work together. For 
the individual models, we configured the Random Forest with 200 estimators and a maximum depth of 
15, specifically optimized for ensemble performance rather than standalone operation. We set the 
minimum samples split to 5 and used a fixed random state of 42 to ensure reproducible results. The Bi-
LSTM model operates with 128 hidden units and incorporates a dropout rate of 0.3 to prevent overfitting. 
Training uses batches of 256 samples with an initial learning rate of 0.001 that adapts during training, 
and we enabled the attention mechanism to help the model focus on the most relevant temporal patterns. 
The ensemble-specific parameters vary by approach. Our weighted voting system balances entropy weight 
(α = 0.6) with historical accuracy weight (β = 0.4), using a confidence threshold of 0.8 to determine when 
predictions are reliable enough to influence the final decision. The stacking meta-learner employs a neural 
network architecture that progressively reduces dimensionality from 64 to 32 neurons across dense layers, 
with dropout rates of 0.2 and 0.1 respectively, before producing final classifications across 6 attack 
categories. We use 5-fold cross-validation and a conservative learning rate of 0.0001 to ensure stable 
training.  
5.2 Evaluation Metrics  
Our evaluation strategy employs multiple complementary metrics to provide a comprehensive assessment 
of ensemble performance. The primary metrics include accuracy for overall classification correctness, 
precision to measure the system's ability to avoid false alarms, recall to assess detection capability for actual 
attacks, F1-score as the harmonic mean of precision and recall, and AUC-ROC to evaluate performance 
across different decision thresholds. Beyond standard classification metrics, we examine ensemble-specific 
characteristics including ensemble diversity to measure how much the base models disagree in their 
predictions, computational overhead to quantify the additional processing requirements compared to 
individual models, and confidence consistency to assess how reliably the ensemble produces confident 
predictions. Our advanced evaluation includes detailed per-class performance analysis to understand how 
well each attack type is detected, confusion matrix analysis to identify specific misclassification patterns, 
statistical significance testing to ensure our improvements are meaningful, and comprehensive 
computational efficiency benchmarking to assess real-world deployment feasibility.  
  
6. RESULTS AND ANALYSIS  
6.1 Individual Model Performance Baseline  
To establish the value of ensemble approaches, we first evaluated individual model performance under 
identical training and testing conditions. The Bi-LSTM model outperformed Random Forest across most 
metrics, achieving 98.02% accuracy compared to Random Forest's 96.8%. However, this performance 
advantage comes at significant computational cost, with Bi-LSTM requiring 12 minutes for training versus 
45 seconds for Random Forest.  
Table 2: Individual Model Performance Baseline  

Metric Random Forest Bi-LSTM 
Accuracy 96.8% 98.02% 
Precision 96.5% 97.0% 
Recall 97.0% 98.0% 
F1-Score 96.7% 97.5% 
Training Time 45 seconds 12 minutes 
Inference Time 0.2 seconds 2.1 seconds 

The baseline comparison establishes clear performance-efficiency trade-offs that motivate our ensemble 
approaches to achieve optimal balance.  
6.2 Ensemble Performance Results  



International Journal of Environmental Sciences  
ISSN: 2229-7359  
Vol. 11 No. 15s,2025  
https://theaspd.com/index.php  

1039  
  

Our ensemble methods demonstrate clear improvements over individual models, validating the 
hypothesis that combining different algorithmic approaches yields superior intrusion detection 
performance. The stacking ensemble achieves the highest accuracy at 98.9%, while weighted voting 
provides optimal balance between performance and computational efficiency at 98.7% accuracy.  
Table 3: Comparative Performance Metrics of Ensemble Techniques and Best Individual Model 
(BiLSTM)  
Metric   Weighted Voting   Stacking   Hybrid Fusion   Best Individual 

(Bi-LSTM)   

Accuracy   98.7%   98.9%   98.5%    98.02%   
Precision   98.1%   98.3%   97.8%   97.0%   
Recall   98.5%   98.7%   98.2%   98.0%   
F1-Score   98.3%   98.5%   98.0%   97.5%   
AUC-ROC   0.992   0.995   0.987   0.989   

Statistical Significance Testing: All ensemble improvements show statistical significance with p < 0.01, 
confirming that performance gains are not due to random variation. All ensemble methods consistently 
outperform individual models across every evaluation metric, demonstrating the effectiveness of our multi-
strategy approach.  

 
Figure 3:  Ensemble vs Individual Model Performance Comparison  
The performance comparison clearly illustrates consistent superiority of ensemble methods over 
individual approaches across all key evaluation metrics. When evaluating different machine learning 
approaches for this classification task, the results reveal some compelling insights about the trade-offs 
between accuracy and computational efficiency. The Stacking Ensemble method emerged as the clear 
winner in terms of pure performance, achieving an impressive 98.9% accuracy that sets it apart from other 
approaches. However, this superior accuracy comes at a price - the computational overhead required for 
stacking makes it significantly more resource-intensive than simpler alternatives. For practitioners who 
need to balance performance with practical constraints like processing time and computational resources, 
the Weighted Voting ensemble presents an attractive middle ground, delivering a robust 98.7% accuracy 
while maintaining much better efficiency than the stacking approach. What's particularly noteworthy is 
that every ensemble method in our comparison consistently outperformed their individual model 
counterparts across all evaluation metrics, reinforcing the well-established principle that combining 
multiple models tends to produce more reliable and accurate predictions. Additionally, when comparing 
the individual models directly, the Bi-LSTM architecture demonstrated notably superior performance 
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compared to the Random Forest approach, suggesting that the sequential nature of the data benefits 
significantly from the temporal modeling capabilities that LSTM networks provide.  
6.3 Per-Class Performance Analysis  
The per-class analysis reveals where ensemble methods provide the most significant benefits. While some 
attack types like SSH bruteforce were already perfectly detected by individual models, challenging 
categories such as infiltration attacks saw substantial improvements of over 1% in F1-score.   
Table 4: Per-Class F1-Scores Comparison  

Attack Type RF Bi-LSTM Weighted Stacking Hybrid Improvement  
NORMAL 0.968 0.980 0.987 0.989 88.5% +0.9% 
DoS/DDoS 0.995  0.998 0.999  0.999  99.5%  +0.1% 
Botnet Activity  0.997 0.999 0.999  1.000  96.5%  +0.1% 
Brute Force 0.972  0.985 0.992  0.994  98.0%  +0.9% 
Infiltration 0.961  0.976 0.983  0.987  87.0%  +1.1% 
SSH  1.000 1.000 1.000  1.000  100.0%    0.0% 

The per-class analysis demonstrates that ensemble methods provide greatest benefits for the most 
challenging attack types, particularly infiltration and brute force attacks. This suggests that ensemble 
methods are particularly valuable for detecting sophisticated attacks that individual models struggle to 
identify consistently.From the below chart, it is evident that ensemble methods such as Weighted Voting 
and Stacking consistently outperform individual models across most attack types. In particular, for 
complex categories like Brute Force and Infiltration, Random Forest performs poorly compared to deep 
learning and ensemble methods. This highlights its limited capacity in handling sequential or subtle 
patterns.In contrast, Stacking shows superior stability and accuracy across all categories, especially in 
lowfrequency attacks such as Infiltration and SSH Brute Force, where it maintains near-perfect F1-Scores. 
Weighted Voting also delivers robust performance, closely trailing stacking. Meanwhile, the Hybrid 
Fusion model, though strong overall, shows a slight dip in performance for certain classes like Botnet and 
NORMAL, indicating room for optimization in fusion strategies.  
  

 
Figure 4: Attack Type Detection Performance Matrix  
The performance matrix highlights ensemble methods' superior capability in detecting challenging attack 
categories that traditionally challenge individual models.  
6.4 Computational Efficiency Analysis  
Real-world deployment requires careful consideration of computational trade-offs. While ensemble 
methods increase computational requirements, the overhead remains reasonable for most applications. 
The weighted voting ensemble adds only 30 seconds to training time and 0.3 seconds to inference 
compared to Bi-LSTM alone.  
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Table 5: Computational Performance Comparison  
Approach Training Time Inference  Time Memory Usage  Efficiency Score 
Random Forest   45 seconds   0.2 seconds   2.1 GB   9.2/10 
Bi-LSTM   12 minutes 2.1 seconds 8.3 GB 6.8/10   
Weighted Voting 12.5 minutes 2.4 seconds 8.5 GB   7.9/10   
Stacking 15 minutes 3.2 seconds 9.1 GB   7.2/10   
Hybrid Fusion 13 minutes 2.8 seconds   8.7 GB 7.6/10   

The computational analysis reveals that ensemble methods achieve superior performance with 
acceptable overhead, making them practical for real world deployment. 

Figure 5: Trade off Analysis of Model Accuracy and Training Time  
The trade-off visualization demonstrates optimal positioning of ensemble methods in balancing accuracy 
improvements against computational requirements.  
6.5 Ensemble Diversity and Stability Analysis  
Effective ensemble performance depends on constituent models making different types of errors. Our 
diversity analysis confirms optimal disagreement levels between models. The hybrid fusion approach 
achieves highest diversity at 14.1% disagreement, while stacking ensemble maintains best stability with 
9.1/10 score.  
Table 6: Ensemble Diversity Analysis  

Ensemble Method Disagreement % Q-Statistic  Entropy Stability Score 

Weighted Voting 12.3% 0.68   2.41 8.7/10 
Stacking 8.9% 0.72 2.38 9.1/10   
Hybrid Fusion 14.1% 0.65 2.44 8.4/10   

The diversity analysis confirms that our ensemble methods achieve optimal balance between model 
disagreement and prediction stability.  
 
7. DISCUSSION  
7.1 Ensemble Effectiveness Analysis  
Our experimental results validate the fundamental premise that ensemble approaches significantly 
outperform individual models in intrusion detection [5,6]. Each ensemble method addresses different 
operational priorities effectively.The weighted voting ensemble emerges as the most practical choice for 
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many organizations, achieving excellent balance between improved accuracy (98.7%) and manageable 
computational overhead. This approach excels in scenarios requiring real-time detection with limited 
computational resources.  
For organizations where security is paramount and computational resources are abundant, the stacking 
ensemble delivers highest detection accuracy at 98.9%. While demanding more processing power, the 
performance gains justify additional investment in high-stakes security environments.The hybrid fusion 
approach offers unique interpretability advantages. Security analysts can understand not only what the 
system detected but also why it made that determination, maintaining clear connections between Random 
Forest's feature importance rankings and final predictions while benefiting from Bi-LSTM's sophisticated 
pattern recognition.  
7.2 Attack-Specific Performance Insights  
Per-class analysis reveals that ensemble methods particularly excel at detecting attacks that challenge 
individual models most. Brute force and infiltration attacks showed greatest improvement when moving 
from individual to ensemble approaches, suggesting these sophisticated attack types benefit from multiple 
detection perspectives working together.This makes intuitive sense considering how these attacks operate. 
Infiltration attacks involve subtle, long-term patterns that might be missed by rule-based approaches but 
detected by sequence-aware models, while also containing specific feature signatures identifiable by 
treebased models. Combining both perspectives enables ensemble methods to catch attacks that might 
slip through individual model blind spots.  
7.3 Practical Deployment Considerations  
Organizations operating high-performance security environments with substantial computational 
resources should consider stacking ensemble approaches for maximum detection accuracy. The additional 
processing overhead is justified when the cost of missing sophisticated attacks is extremely high.For most 
organizations with typical resource constraints, weighted voting ensemble offers optimal compromise 
between improved detection and operational feasibility. The modest increase in computational 
requirements delivers meaningful security improvements without overwhelming existing infrastructure. 
In environments requiring explainable security decisions, hybrid fusion approach provides essential 
transparency while delivering superior performance compared to individual models.  
7.4 Limitations and Future Directions  
While results are encouraging, several limitations point toward important future research areas. 
Computational overhead of ensemble methods, though manageable in most cases, could be prohibitive 
in extremely resource-constrained environments such as Internet of Things (IoT) devices or edge 
computing scenarios.Additionally, increased complexity of ensemble systems presents operational 
challenges. Model updates, maintenance, and troubleshooting become more complex when dealing with 
multiple coordinated models rather than single systems. Organizations considering ensemble deployment 
must factor in these ongoing operational costs.Future research should focus on developing more 
computationally efficient ensemble architectures that preserve accuracy benefits while reducing resource 
requirements. Automated ensemble selection mechanisms could help organizations choose optimal 
approaches based on specific operational constraints and threat environments.  
  
8. CONCLUSION  
This research demonstrates that combining different machine learning approaches significantly 
strengthens network security defenses. Our investigation into ensemble methods for intrusion detection 
provides compelling evidence that multiple models working together consistently outperform even the 
best individual approaches.The three ensemble strategies developed each address different aspects of 
balancing security needs with practical constraints. The weighted voting approach proved optimal for most 
organizations, delivering 98.7% accuracy while keeping computational demands reasonable. The stacking 
ensemble pushed accuracy higher to 98.9%, though at increased processing cost. The hybrid fusion 
method offered valuable interpretability for understanding why certain network traffic triggered security 
alerts.Ensemble methods particularly excelled at detecting attacks that traditionally challenge individual 
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models most. Infiltration attacks and brute force attempts showed greatest improvement when moving 
from single-model to ensemble detection, suggesting that multiple "expert opinions" create more 
comprehensive security coverage.Computational analysis revealed encouraging news for practical 
deployment. While ensemble methods require more processing power than single models, overhead 
remains manageable for most real-world scenarios. The weighted voting ensemble adds only 30 seconds 
to training time and less than half a second to detection time.This work demonstrates that effective 
cybersecurity doesn't require choosing between accuracy and efficiency. Different ensemble approaches 
can serve different organizational needs: high-security environments can justify computational cost of 
stacking ensembles, while resource-constrained operations can benefit from weighted voting approaches 
that still deliver meaningful improvements.The research reinforces that diverse defensive strategies are 
more robust than any single approach. Just as biological immune systems use multiple defense 
mechanisms, effective cybersecurity benefits from multiple detection perspectives working in concert.Our 
findings provide a roadmap for organizations seeking to strengthen intrusion detection capabilities 
without abandoning existing infrastructure. Rather than replacing current systems entirely, ensemble 
approaches can enhance and extend existing security investments, creating layered defenses that adapt to 
evolving threat landscapes.  
  
9. FUTURE WORK  
Several exciting research avenues have emerged from this work, each representing opportunities to make 
cybersecurity more effective and accessible.Adaptive ensemble selection particularly intrigues us - 
developing systems that automatically recognize when network conditions change and adjust detection 
strategies accordingly. This requires investigating reinforcement learning approaches that continuously 
optimize ensemble weights based on evolving threats.Edge computing presents increasingly urgent 
challenges. As organizations push security processing to network edges, we need ensemble methods that 
work effectively with severe computational constraints. Significant potential exists in developing model 
compression techniques specifically designed for ensemble architectures and exploring distributed 
ensemble processing across multiple edge devices.Adversarial robustness requires focused attention as 
ensemble methods become widely adopted. We expect attackers to develop strategies specifically targeting 
how multiple models work together. Investigation is needed into how adversarial attacks might target 
coordination mechanisms between models and developing defensive strategies that harden ensemble 
systems.Automation of ensemble construction represents perhaps the most ambitious direction. 
Currently, designing effective ensemble architectures requires significant expertise and manual tuning. 
Future work should explore meta-learning approaches that understand dataset characteristics and 
performance requirements, then construct optimal ensemble architectures without human 
intervention.Real-time adaptation capabilities could transform intrusion detection system response to new 
threats. Rather than requiring complete retraining when new attack patterns emerge, future ensemble 
systems should incrementally learn and adapt through sophisticated online learning 
techniques.Interpretability advancement remains crucial for ensemble systems. Security analysts need to 
understand and trust system decisions, especially when investigating incidents or explaining security 
events to stakeholders. This requires developing explainable AI techniques specifically tailored for 
ensemble architectures.Finally, scalability remains fundamental as organizations grow and network 
environments become more complex. Enterprise-level deployment requires addressing distributed 
training challenges, optimizing inference for large-scale monitoring, and ensuring performance benefits 
scale appropriately with system size.  
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