ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

Molecular Detection Of Virulence And Antibiotics Resistance Gene Of Acinetobacter Baumannii Isolated From Burned Wound Patients

Ayhan Kamil Ismail¹, Siham Sh.AL-Salihi²

^{1,2}Northern technical University, College of Health and Medical Techniques Kirkuk, Kirkuk, Iraq,Ayhan.ka.ismail88@ntu.edu.iq, siham196@ntu.edu.iq

Abstract

Background: Acinetobacter baumannii is identified as one of the most common infections in burn units globally. Objective: The purpose of this study was to assess antibiotic resistance and apply molecular method to clinical isolates of A. baumannii that were obtained from burned wound. Methods: A total of 150 specimens (burned wound swab) were collected from patients who admit in burns units throughout the period of December 2023 to the Februry 2024. The collected specimens were streaked directly on culture media incubated for 24 hrs at 37°C. All bacteria isolates were examined by confirm by vitik 2 system. Antibiotic susceptibility test was prepared by vitik 2 system. Acinetobacter baumannii isolates was performed by using Polymerase chain reaction to detect blaoxa 51 Bap, OmpA, CsuE and PgaA genes. Results: Flame were higher in females, while Electric was higher in males. Burn surface area < 15% and 15 - 25% were higher in males. Second / degree burns was higher percentage injury from other degree of burn. Patients injury by flame was more infected with A. baumannii bacteria by 80 (53.3%). A total of 30 isolates of A. baumannii have been discovered. A PCR was conducted on 15 Multi-Drug Resistant (MDR),(XDR) isolates to identify the presence of genes associated with virulence factors. The results showed that the bap ompA, pgaA blaOXA-51-like genes were found to be present in all 15 isolates A. baumannii clinical, while CsuE pili was 0%. Conclusions: Our findings revealed a correlation between genes of antimicrobial resistance and significant biofilm formation.

Keywords: A.baumannii , Resistance Gene, Causes of Burns

INTRODUCTION

Burn infections are regarded as one of the most serious consequences of thermal injury [1]. Burn infections can be fatal if bacteria penetrate the tissue layers underlying the dermis burn injuries can be caused by high temperatures, electricity, friction, radiation, or chemicals [2]. Burn injuries can be defined based on a variety of variables, including their depth, aetiology, and percentage of body surface area injured; the combination of these categories determines the degree of burn injury; burns can be classed as "partial-thickness" or "full-thickness" [3]. In addition to the form of the burn infections, the number of bacteria inhabiting them is significant, as it can lead to bacteremia, sepsis, and multiple-organ failure syndrome [4]. Due to their considerable antibiotic resistance, Gram-negative bacteria have been identified as the primary pathogens of burn infections, Acinetobacter baumannii is identified as one of the most common infections in burn units globally [5] Acinetobacter spp., notably Acinetobacter baumannii, have emerged as opportunistic pathogens, causing a wide range of severe, life-threatening nosocomial infections in immunocompromised people, particularly burn patients [6]. The bacteria are capable of surviving in dehydrated and severe environmental circumstances for extended periods of time and may colonize in hospitalized patients, causing delayed wound healing, infection, and even death [7]. In recent years, the widespread appearance of multi- and pan-drug-resistant A. baumannii strains has demonstrated this organism's ability to rapidly adapt to environmental changes [8]. Biofilm development is one of the distinguishing features of opportunistic infections such as A. baumannii [9]. A biofilm is a population of bacterial cells that are attached to biotic or abiotic surfaces and interact intimately with one another. A. baumannii may create a wide range of virulence factors in the biofilm mode, which contribute to the various stages of biofilm cell adhesion to biotic or abiotic surfaces [10].

Bacteria in the biofilm state have more antibiotic tolerance than bacteria in the planktonic mode, allowing them to tolerate 100 to 1000 times higher concentrations of antimicrobial agents [11]. Many investigations in most countries have revealed the ability of A. baumannii strains to produce biofilms, as

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

well as the frequency of genes associated with it [12]. In recent decades, clinical isolates of A. baumannii have developed antimicrobial resistance to frequently prescribed antimicrobial drugs, primarily in hospitalized patients worldwide [13]. It has been accurately described that one of the most important factors contributing to the high mortality of patients with nosocomial infections caused by A. baumannii is the ability to acquire a wide range of antibiotic resistance genes and the rapid development of multidrugresistant (MDR), extensively drug-resistant (XDR), and even pan-drug resistant (PDR) strains [14]. The introduction and dissemination of drug-resistant A. baumannii strains has drastically reduced the number of viable therapeutic choices for treating infections caused by the bacteria, resulting in a worse clinical outcome [15]. A. baumannii develops multidrug resistance by many mechanisms, including decreased membrane permeability, loss of porins, acquisition of extended-spectrum β -lactamase, and multidrug efflux systems [16].

MATERIAL And METHODS:

2.1 Specimens collecti

An amount of 150 specimens (burned wound swabs) were collected from patients admitted to the burns unit at Baquba Teaching Hospital, Khanaqin General Hospital, and outpatients between December 2023 and February 2024.

Isolation of Acinetobacter baumannii

Under aseptic conditions, specimens were streaked on blood agar and MacConkey agar and incubated at 37°C for 24 hours. The non-hemolytic opaque creamy colonies on blood agar and non-lactose fermenting colonies on MacConkey agar and chrom agar were subcultured and incubated for an additional 24 hours at 37°C. Bacterial isolates were tested for gram stainability and growth at 44°C. The Vitik 2 system was used to confirm the isolates and produce an antibiotic susceptibility test [17].

Genotype confirmation of A. baumannii by PCR

Acinetobacter baumannii isolates was performed by using Polymerase chain reaction (PCR) to detect blaoxa 51 Bap ,OmpA, CsuE and PgaA and the sequences of primers pair used were shown in table 1 and 2, DNA of each isolate was extracted using a commercial purification system (BIONEER/ Korea).

Table 1: Sequences of primers pair of genes

Gene	Sequences (5'_3')	Product size/bp
blaoxa 51	TAATGCTTTGATCGGCCTTG	353
biaoxa 51	TGGATTGCACTTCATCTTGG	333
1	TGCTGACAGTGACGTAGAACCACA	184
bap	TGCAACTAGTGGAATAGCAGCCCA	
and E	ACCAATGCTCAGACCGGAG	751
csuE	CTTGTACCGTGACCGTATCTTG	
A	GAGTCGTATTGCACTTGCTAC	594
ompA	GCAGGCTTCAAGTGACCACC	
A	ATTCAAAAGTCAGTTGATGGGC	460
pgaA	CCCCTGCTCATCATAATGTAAG	

Template DNA was prepared by the boiling method according to [18] and supernatant was used as template DNA in PCR analyses.

Table 2:Amplification program of primers

Amplified	Initial	No.of	Denaturation	Annealing	Elongation	Final
	denaturation	cycle				extension
blaoxa 51	95°C/ 5min	35	95°C/ 30 sec	54°C/ 30	72°C/ 30 sec	72°C/ 7 min
DiaOxa 31				sec		
	95°C/ 5min	35	95°C/ 30 sec	54°C/ 30	72°C/ 30 sec	72°C/ 7 min
bap				sec		
csuE	95°C/ 5min	35	94°C/ 1min	59°C/	72°C/ 1min	72°C/ 10 min
CSUE				1min		

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

ompA	95°C/ 5min	35	94°C/ 1min	59°C/	72°C/ 1min	72°C/ 10 min
				1min		
	95°C/ 5min	35	94°C/ 1min	59°C/	72°C/ 1min	72°C/ 10 min
pgaA				1min		

RESULTS

The distribution of males and females among Study groups

The results shown in table (3A) showed cause of burn among males and females as follow: Flame (35 (45. 75 %) male, 45 (56. 25 %) female), Hot liquid (26 (48 . 15 %) male, 28 (51. 85 %) female), Electric (15 (93.75%) male, 1 (6.25%) female) with significant was < 0.001. The results shown in table (3B) showed burn surface area among males and females as follow: < 15 % (33 (22 %) male, 19 (12.7%) female), 15 - 25% 28 (18.7%) male, 24 (16%) female), 26 - 50% (13 (8.7%) male , 20 (13.3%) female), > 50% 2 (1.3%) male, 11 (7.3%) female) with significant was < 0.001. The results shown in table (3C) showed Burn degree among males and females as follow: First / degree burns 11 (7.3%) male, 5 (3.3%) female), Second / degree burns 39 (2.6%) male, 37 (14. 7 %) female), Third / degree burns 25 (16. 7 %) male , 33 (22 %) female) with significant was < 0.001 .

Table 3: Distribution of male and female among Study groups									
Male ,N	Female ,N	Total ,N	P . value						
76 (50 .7 %)	74 (49 .3 %)	150 (100 %)							
25 (15 75 %)	15 (56 25 9/)	90 (52 2 9/)							
26 (48 . 15 %)	28 (51 . 85 %)	54 (36 %)							
15 (93 . 75 %)	1 (6.25%)	16 (10.7%)	< 0.001						
33 (22 %)	19 (12 . 7 %)	52 (34 . 7 %)							
			< 0.001						
2(1.5%)	11 (7.5%)	13 (8 . 0 %)							
11 (7.3%)	5 (3 . 3 %)	16 (10.6 %)							
39 (2.6%)	37 (14 . 7 %)	76 (50.7%)	< 0.001						
		·							
25 (16 . 7 %)	33 (22 %)	58 (38 . 7 %)							
	,	, ,							
	Male ,N 76 (50.7%) 35 (45.75%) 26 (48.15%) 15 (93.75%) 33 (22%) 28 (18.7%) 13 (8.7%) 2 (1.3%)	Male ,N 76 (50.7%) 35 (45.75%) 45 (56.25%) 26 (48.15%) 15 (93.75%) 1 (6.25%) 33 (22%) 19 (12.7%) 28 (18.7%) 24 (16%) 13 (8.7%) 20 (13.3%) 2 (1.3%) 11 (7.3%) 5 (3.3%) 39 (2.6%) 37 (14.7%)	Male (50.7%) Female (49.3%) Total (50.100%) 35 (45.75%) 45 (56.25%) 80 (53.3%) 26 (48.15%) 28 (51.85%) 54 (36%) 15 (93.75%) 1 (6.25%) 52 (34.7%) 28 (18.7%) 24 (16%) 52 (34.7%) 13 (8.7%) 20 (13.3%) 33 (22%) 2 (1.3%) 11 (7.3%) 13 (8.6%) 11 (7.3%) 5 (3.3%) 16 (10.6%) 39 (2.6%) 37 (14.7%) 76 (50.7%)						

Isolation and identification of Acinetobacter baumannii isolates

All isolates from a total of 150, 30 specimens were Gram-negative coccobacilli, occasionally grouped in diplococci. All isolates were confirm diagnosised by vitik 2 system table 4(A,B). Also, when A. baumannii isolates were cultivated on MacConkey agar, they appeared as small, pale, lactose-free fermenter colonies, on blood agar, they appeared as opaque, creamy, and non-hemolytic colonies, whereas on chrom agar appeared as light purple with a halo around the colonies. All A. baumannii isolates demonstrated good growth at 44°C. This test was used to distinguished A. baumannii (which wasable to grow at this temperature degree) from other Acinetobacter species which unable to grow at this temperature degree [19]. Antibiotics sensitivity test of A. baumannii was done by vitik 2 system.

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

Table 4 A: Biochemical test of vitik for A. baumannii

bioMérieux Customer:						Hasan Lab. Microbiology Chart Report						Printed January 4, 2024 5:05:52 PM CS					
Loca	ent Name: 1 ation: ID: 175	16														nt ID: 1 Physici Jumber	
			Acin	etobacter b	auma	mnii	complex									Cı	allecter
Cor	nments:																
Ide	ntification	Infor	matio	•			Analysis Tir	ne:		5.85 hou	19		Stat	us:		Final	
Sele	cted Orga	nism				Section 1	9% Probabi Bionumber:	- F		Acinetal 0201010			rannii com	plex			
ID.	Analysis M	essag	es						-13								
Bin	chemical I	etail	•		363					Dect.				Section 1			
2	APPA	-	3	ADO	-	4	PyrA		5	IARL	-	7	dCEL	+	9	BGAL	-
10	H2S		11	BNAG	-	12	AGLTp	7	13	dGLU	+	14	GGT		15	OFF	
17	BGLU	-	18	dMAL	-	19	dMAN	-	20	dMNE	+	21	BXYL	-	22	BAlap	1-3
23	ProA	-	26	LIP	-	27	PLE	12.	29	TyrA	-	31	URE		32	dsor	2000
23	SAC	-	34	dTAG	-	35	dTRE	2.15	36	CIT	+	37	MNT	+	39	5KG	
-	1 44	+	41	AGLU	-	42	SUCT	1	43	NAGA		44	AGAL		45	PHOS	
33 40	lLATk		47	ODC	-	48	LDC	-	53	1HISa	1.	36	CMT	5+-	37	BGUR	
33	GlyA	-	59	-			IMLTa		62	ELLM		64	ILATa				

Table 4 B: Antibiotics sensitivity test of A. baumannii

Organism Quantity: Selected Organism: Acinetoba Source: Burned wound	cter bauman	nii			Collected:
Comments:					
Susceptibility Information	Analysis T	ime: 7.52 hours		Status:	Final
Antimicrobial	MIC	Interpretation	Antimicrobial	MIC	Interpretation
Ticarcillin	>= 128	R	Amikacin		
Ticarcillin/Clavulanic Acid	>= 128	R	Gentamicin	8	I
+Mezlocillin		R	Tobramycin	>= 16	R
Piperacillin	>= 128	R	Ciprofloxacin	>= 4	R
Piperacillin/Tazobactam	>= 128	R	Pefloxacin		
Ceftazidime	>= 64	R	Minocycline	<=1	S
Cefepime	>= 64	R	Colistin	<= 0.5	s -i-
Aztreonam			Rifampicin		
Imipenem	>= 16	R	Trimethoprim/ Sulfamethoxazole	>= 320	R
Meropenem	>= 16	R			

The Relation of A. baumannii with Cause of burn

The results shown in table 5 and figure 1 showed A. baumannii bacteria infected with Cause of burn as follow: Flame 80 (14 (46 \cdot 7%)), Hot liquids 54 (12 (40%)), Electricity 16 (4 (13.3%)) with significant was > 0.05.

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

Table 5: Distribution of A. baumannii according Cause of burn

Origin of Sample Collection	Flame	Hot liquids	Electricity	Total	P value
No . Sample %	80 (53 .3%)	54 (36%)	16 (10. 7%)	150 (100 %)	< 0.001
No . A. baumannii	14 (46 . 7%	12 (40 %)	4 (13. 3 %)	30 (100 %)	> 0.05

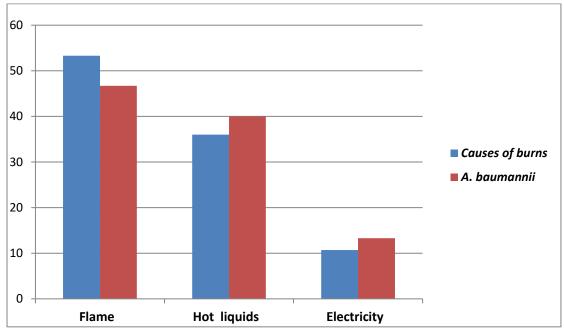


Figure 1: Prevalence of A. baumannii according to causes of the burns

Identification of Acinetobacter baumannii by Polymerase Chain Reaction (PCR)

The bap ompA, pgaA blaOXA-51-like genes were found to be present in all 15 (100%) A. baumannii clinical , while CsuE pili was 0% in all A. baumannii as shown in table 6 and environmental studied isolates as shown in figures $2a,2b,3a,3b,4 \le 0.001$.

Table 6: Frequency of the virulence and antibiotic resistance gene of Acinetobacter baumannii isolated from burned wound patients

Gene	Present	Absent	Total	P.value
	No.%	No.%	No.%	
blaoxa 51	15 (100%)	0 (100%)	15 (100%)	< 0.001
bap	15 (100%)	0 (100%)	15 (100%)	< 0.001
csuE	0(100%)	15 (100%)	15 (100%)	< 0.001
ompA	15(100%)	0 (100%)	15 (100%)	< 0.001
pgaA	15 (100%)	0 (100%)	15 (100%)	< 0.001



Figure 2A: Agaros gel electrophoresis (1.5% agarose,7v/cm² for 60 min) for blaoxa51 gene (353bp amplicon) and bap gene (184bp amplicon) lane7 represent M100bp DNA Ladder, lanes 1-6 and 8-13 represent of bands.

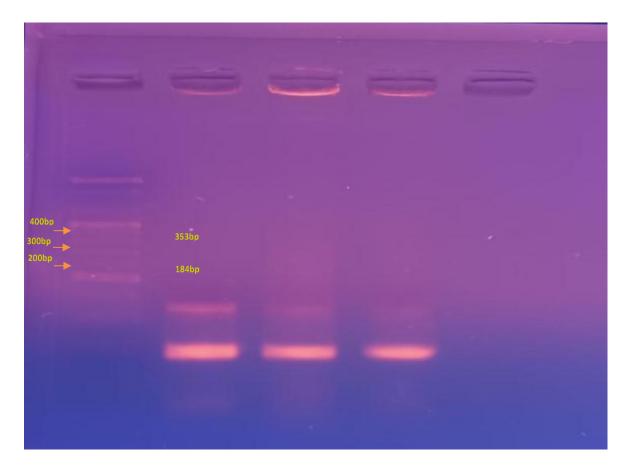


Figure 2B: Agaros gel electrophoresis (1.5% agarose,7v/cm2 for 60 min) for blaoxa51 gene (353bp amplicon) and bap gene (184bp amplicon) lane1 represent M100bp DNA Ladder, lanes 2-4 represent of bands.

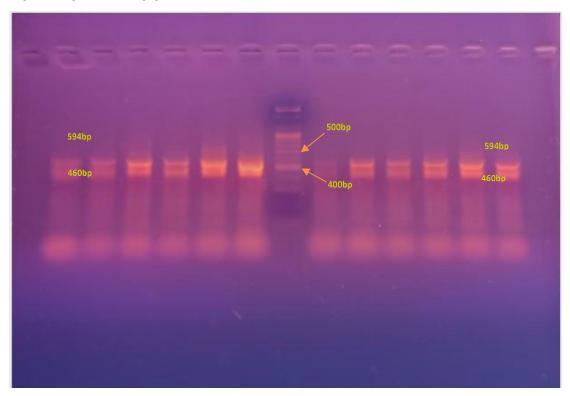


Figure 3A: Agaros gel electrophoresis (1.5% agarose,7v/cm2 for 60 min) for ompA gene (594bp amplicon) and pgaA gene (460bp amplicon) lane7 represent M100bp DNA Ladder, lanes 1-6 and 8-13 represent of bands.

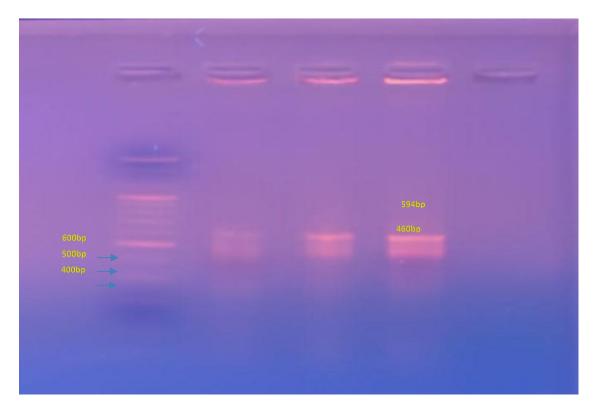


Figure 3B: Agaros gel electrophoresis $(1.5\% \text{ agarose,} 7\text{v/cm}^2 \text{ for } 60 \text{ min})$ for ompA gene (594bp amplicon) and pgaA gene (460bp amplicon) lane7 represent M100bp DNA Ladder, lanes 2-4 represent of bands.

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

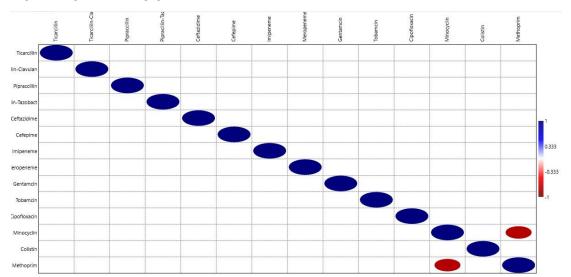


Figure 4: Showing the correlation between antibiotics and the susceptibility of isolates of Acinetobacter baumannii

DISCUSSION

Burns are among the most common unintentional injuries in the world [20]. The current results displayed in table 2 provided cause of burn among males and females, flame and hot liquid were greater in female than male, while electric was higher in male than female. Many studies agree with our results. According to Oseni et al.[21], contact with hot liquids that cause burns (57%), such as cooking oil, appeared to cause the greatest number of burn injuries, followed by flame (25%), and contact with hot objects (16%). In terms of burn causes, this study found that burning fires were the most common, accounting for 58.5%, followed by hot water (32.1%) [22]. Jeschke et al. [23] demonstrated that males were more frequently impacted by electrical injuries (100% and 55.0%, respectively); yet, females are more susceptible to self-inflicted burns or heater injuries than males. Similar to numerous studies, 10 this investigation demonstrated that burn injuries were more common in males across all age categories (54.5% vs 45.5%), demonstrating the considerable influence of gender on injury risk [24]. Liu et al. [25] discovered that thermal burns involve the skin, scalds caused by hot fluid or steam, contact burns caused by hot solids or objects such as hot pressing irons or cooking utensils, as well as lighted cigarettes, and flame burns caused by flames or incandescent fires, such as those started by lighted cigarettes, candles, lamps, or stoves, and electrical burns caused by an electrical current passing through the body. In underdeveloped nations, burn injuries are most commonly caused by fire-related mishaps in the home setting; a substantial proportion of burns occur in households where women are more likely to work with flames and stoves, particularly for cooking [26]. According to table 3a, males had larger burn surface area (15-25%) than females, which is consistent with a research by Rezaee et al. [27]. According to table 3b, the present data demonstrate that second/degree burns cause a larger percentage of injury than other degrees of burns; various studies support our findings. Pirbonyeh et al. [28] conducted a study in Shiraz, Iran, and discovered that out of 713 patients, 510 (71.5%) were male and 203 (28.5%) were female, with 304 (42.6%) having second or higher degree burns. Another study found that the degree of burning was superficial, with redness (first degree) in 69.2%, second degree in 29.7%, and only 1% in the third degree [29]. However, another study discovered that 45.5% of instances were second degree, followed by mixed degree 38.6%, deep second 9%, third 4.8%, and only 1.6% were first degree [30]. In terms of the relationship between burns and gender, multiple studies indicated that females had 79.4% more burns than males (20.6%), and there was a significant association (p = 0.04) [31]. Shokouhi et al. [26] found that females were more affected than males by 74% to 26%, and that females are more responsible for everyday household duties than males. This is the reason that more females sustain flame burn compared to males. Similarly, a notable feature of this study is that gas- or oil-related fire injuries were more common among female than male patients, which can be explained by the fact that some women in this area prefer to be housewives or have limited autonomy to engage in public or social activities on their own [25]. It is also

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

likely that low literacy, the flammability of women's local clothing, and the unsafe application/design of stoves and heaters, which are the primary sources of cooking and heating in the region, impose a greater load on female injuries than males [28]. In terms of the relationship between the cause of burns and A. baumannii bacteria as shown in table 5 and figure 1, patients injured by flame were more infected with A. baumannii bacteria by 80 (14 (46. 7%)) than those injured by other causes. These findings are consistent with a study conducted by El Hamzaoui et al. [32], which found that the main sources of burns infected with A. baumannii were flames (52.38%) and hot water (28.57%). Burn wounds are typically a vulnerable site for colonization by opportunistic organisms of either endogenous or external origin [33,34]. Both facultative and aerobic gram-negative bacilli and aerobic gram-positive cocci can be isolated from burn wound cultures. Acinetobacter baumannii is one of the causal organisms being isolated from burn wound infections at an increasing rate [31]. This bacterium is a major opportunistic pathogen that causes a wide range of nosocomial infections, including bacteremia, urinary tract infection, secondary meningitis, surgical site infection, nosocomial ventilator-associated pneumonia, and dirty wound infections [28]. Identification of A. baumannii by genes shown in table 6 and figures 2a, 2b, 3a, 3b in A. baumannii, the genes encoding ompA, bap, pgaA, and abaI are recognized to be critical in biofilm formation [12]. Al-Shamiri et al. [35] discovered that the gene profiles of bap, csuE, ompA, pgaA, and abaI were present in all strong biofilm producers as well as some moderate producers. The gene patterns of csuE, ompA, pgaA, and abaI were found in both weak and moderate biofilm producers; these findings suggest that, in addition to the presence of these genes, their expression levels play an important role in determining biofilm formation capacity [36]. Some genes important in biofilm production were found in non-biofilm producing strains; however, the expression levels of these genes were higher in biofilm producers as compared with non-producers [37]. The pgaABCD operon produces poly-\(\beta-1\),6-Nacetylglucosamine (PNAG), which helps build biofilm [38]. Khoshnood et al. [39] demonstrated that the presence of all biofilm-related genes (ompA, ptk, ataA, csuE, and csuA) predicted robust biofilm formation and varying antimicrobial resistance. Wallace reported an investigation of A. baumannii's biofilm-related genes, [40], and discovered that abal and csuE were present in 59.8% of the samples and ompA in 100% of the samples. Khoshnood et al. [13] found that ompA-mediated adhesion plays a substantial role in biofilm development in A. baumanni-associated nosocomial infections, particularly in burn and VAP patients. Previous research has found a link between the presence of biofilm-related genes like ompA and antimicrobial resistance. OmpA is the most abundant porin in A. baumannii, and its role in drug resistance was more prominent in disruption mutants of the gene, which showed reduced resistance to imipenem, meropenem, nalidixic acid, and chloramphenicol [41]. Amin et al.[12] found that a strong potential for biofilm formation was significantly linked with the presence of all the studied biofilm-related genes.Qi et al.[42] discovered that XDR A. baumannii strains have a greater ability for biofilm formation than MDR strains. Several investigations have suggested that XDR bacterial strains generate stronger biofilms than antimicrobial-sensitive strains, which is consistent with our findings that XDR strains have a higher biofilm production capability than MDR strains [43]. The csuE gene, is commonly found in many Acinetobacter species and plays a significant role in biofilm formation, it's possible for certain isolates within the genus Acinetobacter to lack this operon or have mutations that render it non-functional. Overall, the absence of the csu operon in certain Acinetobacter isolates could be attributed to genetic variation, horizontal gene transfer, environmental factors. It highlights the genetic diversity and adaptability of bacterial species, even within the same genus. According to the work by Özkul and Hazırolan [44], the blaoxa-51-like gene, an intrinsic enzyme marker, was used as a trustworthy marker for the identification of A. baumannii. The primary cause of carbapenem resistance in A. baumannii is the synthesis of genes encoding β -lactamases of the OXA type. The ability to treat nosocomial infections has been shown to be significantly impacted clinically by the influence of OXA β-lactamases in conferring carbapenem resistance [45]. From figure 4, The blue circles in the image represent the correlation coefficients between the different antibiotics. The higher the correlation coefficient, the more closely the antibiotics are correlated. This means that they tend to have similar effects on bacteria, and are often either effective or ineffective against the same bacteria. The red tint shows a high positive association, indicating that the antibiotic is efficient against the isolate [42]: distinct Mechanisms of Action: Antibiotics target distinct regions of a bacterial cell. If two antibiotics have very different modes of action,

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

a bacterium may become resistant to one while staying sensitive to the other. Resistance Mechanisms: Some bacteria have acquired resistance mechanisms to specific antibiotic classes. An isolate resistant to one antibiotic may be sensitive to another by a different route, and vice versa [46].

CONCLUSION

This study found a high frequency of genes implicated in biofilm development. There was a strong negative connection between antibiotic resistance and biofilm formation in A. baumannii isolated from burns. Our findings revealed a correlation between antimicrobial resistance and significant biofilm formation, implying that resistance mechanisms are transmitted across bacterial strains within the biofilm niche.

ACKNOWLEDGMENTS

The authors are thankful to all staff Health and Medical Technical College-Kirkuk, Northern Technical University for providing the necessary facilities to carry out the research work. I am really thankful to my friends and lab mates for their constant help and support.

REFERENCES

- 1- MARKIEWICZ-GOSPODAREK, Agnieszka, et al. Burn wound healing: clinical complications, medical care, treatment, and dressing types: the current state of knowledge for clinical practice. International journal of environmental research and public health, 2022, 19.3: 1338.. https://doi. Org/10.3390/ijerph 19031338.
- 2- ŻWIEREŁŁO, Wojciech, et al. Burns: Classification, pathophysiology, and treatment: A review. International journal of molecular sciences, 2023, 24.4: 3749. https://doi.org/10.3390/ijms24043749.
- 3- BURGESS, Matthew, et al. The immune and regenerative response to burn injury. Cells, 2022, 11.19: 3073.https://doi.org/10.3390/cells 11193073.
- 4- VINAIK, Roohi, et al. Management and prevention of drug resistant infections in burn patients. Expert review of anti-infective therapy, 2019, 17.8: 607-619.https://doi. Org/10.1080/14787210.2019.1648208.
- 5- ROBBEN, Paul M., et al. Multi-Drug-Resistant Organisms in Burn Infections. Surgical infections, 2021, 22.1: 103-112.https://doi.org/10.1089/sur.2020.129.
- 6- GONG, Yali, et al. Different infection profiles and antimicrobial resistance patterns between burn ICU and common wards. Frontiers in cellular and infection microbiology, 2021, 11: 681731. https://doi.org/10.3389/fcimb.2021.681731.
- 7- PARK, Jin Ju, et al. Changes in the prevalence of causative pathogens isolated from severe burn patients from 2012 to 2017. Burns, 2020, 46.3: 695-701.https://doi.org/10.1016/j.burns.2019.09.008.
- 8- GALLAGHER, Peter; BAKER, Stephen. Developing new therapeutic approaches for treating infections caused by multi-drug resistant Acinetobacter baumannii: Acinetobacter baumannii therapeutics. Journal of Infection, 2020, 81.6: 857-861.https://doi.org/10.1016/j.jinf.2020.10.016.
- 9- ROY, Subhasree, et al. Convergence of biofilm formation and antibiotic resistance in Acinetobacter baumannii infection. Frontiers in medicine, 2022, 9: 793615. https://doi.org/10.3389/fmed.2022.793615.
- 10-DONADU, Matthew Gavino, et al. Relationship between the biofilm-forming capacity and antimicrobial resistance in clinical acinetobacter baumannii isolates: results from a laboratory-based in vitro study. Microorganisms, 2021, 9.11: 2384.https://doi.org/10.3390/microorganisms9112384.
- 11- URUÉN, Cristina, et al. Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics, 2020, 10.1: 3.https://doi.org/10.3390/antibiotics10010003.
- 12-AMIN, Mansour, et al. Association between biofilm formation, structure, and the expression levels of genes related to biofilm formation and biofilm-specific resistance of Acinetobacter baumannii strains isolated from burn infection in Ahvaz, Iran. Infection and drug Resistance, 2019, 3867-3881.https://doi.org/10.2147/IDR.S228981.
- 13- KHOSHNOOD, Saeed, et al. Antimicrobial resistance and biofilm formation capacity among Acinetobacter baumannii strains isolated from patients with burns and ventilator-associated pneumonia. Journal of Clinical Laboratory Analysis, 2023, 37.1: e24814. https://doi.org/10.1002/jcla.24814.
- 15- KYRIAKIDIS, Ioannis, et al. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens, 2021, 10.3: 373. https://doi. Org/10.3390/pathogens10030373.
- 16- VRANCIANU, Corneliu Ovidiu, et al. Antibiotic resistance profiles, molecular mechanisms and innovative treatment strategies of Acinetobacter baumannii. Microorganisms, 2020, 8.6: 935. https://doi.org/10.3390/microorganisms8060935. 17-GEDEFIE, Alemu, et al. Acinetobacter baumannii biofilm formation and its role in disease pathogenesis: a review. Infection and drug resistance, 2021, 3711-3719. https://doi.org/10.2147/IDR.S332051.
- 18- ABBASZADEH, Faeze, et al. Genetic characterization of extensive drug resistant Acinetobacter baumannii: an appalling impediment. Folia Medica, 2021, 63.5: 726-737.doi: 10.3897/ folmed.63.e56566.
- 19- GHAIMA, Kais Kassim; SAADEDIN, Shurook Mohammad K.; JASSIM, Kifah Ahmed. Isolation, molecular identification and antimicrobial susceptibility of Acinetobacter baumannii isolated from Baghdad hospitals. Burns, 2015, 27: 31.
- 20- PECK, Michael D.; TOPPI, Jason Thomas. Epidemiology and prevention of burns throughout the world. Springer International Publishing, 2020.. doi.org/10.1007/978-3-030-18940-2_2.

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

- 21- OSENI, O. G.; OLAMOYEGUN, K. D.; OLAITAN, P. B. Paediatric burn epidemiology as a basis for developing a burn prevention program. Annals of burns and fire disasters, 2017, 30.4: 247.
- 22- PRICE, Kate, et al. Burn injury prevention in low-and middle-income countries: scoping systematic review. Burns & trauma, 2021, 9: tkab037. https://doi.org/10.1093/burnst/tkab037.
- 23- JESCHKE, Marc G., et al. Burn injury. Nature reviews Disease primers, 2020, 6.1: 11.doi.org/10.1038/s41572-020-0145-5.
- 24- HOLEN, Siri Mariane, et al. Occupational safety in aquaculture-Part 1: Injuries in Norway. Marine Policy, 2018, 96: 184-192.https://doi. Org/10.1016/j.marpol.2017.08.009.
- 25- LIU, Aiping, et al. Modeling early thermal injury using an ex vivo human skin model of contact burns. Burns, 2021, 47.3: 611-620. https://doi.org/10.1016/j.burns.2020.08.011.
- 26- SHOKOUHI, Mohammadreza, et al. Preventive measures for fire-related injuries and their risk factors in residential buildings: a systematic review. Journal of injury and violence research, 2019, 11.1: 1.https://doi.org/10.5249%2Fjivr.v11i1.1057.
- 27- REZAEE, Reza; ALIMOHAMADZADEH, Khalil; HOSSINI, Seyed-Mojtaba. Epiemiologic features and hospitalization cost of burn injuries in Iran based on national burn registry; a cross-sectional study. Archives of academic emergency medicine, 2019, 7 1
- 28- PIRBONYEH, Neda, et al. Cross sectional study of burn infections and antibiotic susceptibility pattern for the improvement of treatment policy. Journal of Patient Safety & Quality Improvement, 2017, 5.2: 535-541.
- 29- ALANAZI, Anwar Ayed, et al. Burn injuries prevalence, causes, complications and improvement in Northern Saudi Arabia. EC Emerg Med Crit Care, 2019, 6: 383-93.
- 30-SOTO, Enrique, et al. Laparoscopy vs. Robotic Surgery for Endometriosis (LAROSE): a multicenter, randomized, controlled trial. Fertility and sterility, 2017, 107.4: 996-1002. e3.
- 31- SALEHI, Seyed Hamid; AS' ADI, Kamran; ABBASZADEH-KASBI, Ali. The prevalence of comorbidities among acute burn patients. Trauma, 2019, 21.2: 134-140. https://doi. Org/10.1177/1460408618773514.
- 32- EL HAMZAOUI, N., et al. Epidemiology of burn wound bacterial infections at a Meknes hospital, Morocco. New microbes and new infections, 2020, 38: 100764. https://doi.org/10.1016/j.nmni.2020.100764.
- 33- KELLY, Edward J., et al. Infection and burn injury. European Burn Journal, 2022, 3.1: 165-179. https://doi.org/10.3390/ebj3010014.
- 34- SALMANI, Abbas, et al. Correlation between biofilm formation and antibiotic susceptibility pattern in Acinetobacter baumannii MDR isolates retrieved from burn patients. Gene Reports, 2020, 21: 100816. https://doi.org/10.1016/j.genrep.2020.100816.
- 35-ALSHAMIRI, Mona Mohamed, et al. Phenotypic and genotypic characteristics of Acinetobacter baumannii enrolled in the relationship among antibiotic resistance, biofilm formation and motility. Microbial Pathogenesis, 2021, 155: 104922. https://doi.org/10.1016/j.micpath.2021.104922.
- 36-BHAVYA, J. N.; ANUGNA, Sureddi Sai; PREMANATH, Ramya. Sub-inhibitory concentrations of colistin and imipenem impact the expression of biofilm-associated genes in Acinetobacter baumannii. Archives of Microbiology, 2024, 206.4: 1-14.doi.org/10.1007/s00203-024-03869-w.
- 37- MOHAMED, Eman Abdelbaset, et al. Acinetobacter baumannii biofilm and its potential therapeutic targets. Future Journal of Pharmaceutical Sciences, 2023, 9.1: 82.doi.org/ 10. 11 86 /s43094-023-00525-w.
- 38- HAQUE, Nayeema. Antibiotic resistance, virulence and biofilm forming capacity of acinetobacter baumannii isolated from Goranchatbari sub-catchment in Dhaka city. 2023. PhD Thesis. Brac University.
- 39- KHOSHNOOD, Saeed, et al. Survey on genetic diversity, biofilm formation, and detection of colistin resistance genes in clinical isolates of Acinetobacter baumannii. Infection and drug resistance, 2020, 1547-1558. doi.org/10.2147/IDR.S253440.
- 40- WALLACE, Lalena. Identification and Characterization of Factors Associated with Biofilm Formation in Acinetobacter baumannii Surveillance Isolates. 2018. PhD Thesis.
- 41- ÖZKUL, Ceren; HAZIROLAN, Gülşen. Oxacillinase gene distribution, antibiotic resistance, and their correlation with biofilm formation in Acinetobacter baumannii bloodstream isolates. Microbial drug resistance, 2021, 27.5: 637-646. https://doi.org/10.1089/mdr.2020.0130.
- 42- QI LIHUA, Qi LiHua, et al. Relationship between antibiotic resistance, biofilm formation, and biofilm-specific resistance in Acinetobacter baumannii. 2016.
- 43- SHENKUTIE, Abebe Mekuria, et al. Biofilm-induced antibiotic resistance in clinical Acinetobacter baumannii isolates. Antibiotics, 2020, 9.11: 817.https://doi.org/10.3390/antibiotics9110817.
- 44- ÖZKUL, Ceren; HAZIROLAN, Gülşen. Oxacillinase gene distribution, antibiotic resistance, and their correlation with biofilm formation in Acinetobacter baumannii bloodstream isolates. Microbial drug resistance, 2021, 27.5: 637-646.https://doi.org/10.1089/mdr.2020.0130.
- 45- SEPAHVAND, Shahriar, et al. Evaluation antibiotic resistance and presence of bla OXA-51, bla OXA-58 and bla OXA-23 genes in Acinetobacter baumannii strains via multiplex PCR. Pakistan Journal of Pharmaceutical Sciences, 2021, 34.5.doi.org/10.36721/ PJPS. 2021.34.5. REG.1667-1671.1
- 46- PETERSON, Elizabeth; KAUR, Parjit. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Frontiers in microbiology, 2018, 9: 426686. https://doi.org/10.3389/fmicb.2018.02928.