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ABSTRACT 
Heritable cardiomyopathies have been strongly linked to pathogenic variants in the TNNT2 gene [1], which encodes 
cardiac troponin T – a critical regulatory subunit of the troponin complex within the sarcomere. These mutations 
compromise the normal calcium-dependent regulatory mechanism of cardiac contraction by destabilizing the structural 
and functional integrity of the troponin-tropomyosin complex. Depending on their specific location and biochemical 
nature, TNNT2 mutations [2] may lead to altered calcium sensitivity, impaired contractile signaling, or sarcomeric 
disorganization. Such molecular perturbations are associated with divergent clinical outcomes, including hyper 
contractile phenotypes typical of hypertrophic cardiomyopathy [3] and hypo contractile states characteristic of dilated 
cardiomyopathy [4]. These changes not only reduce cardiac efficiency but also contribute to maladaptive remodeling, 
promoting arrythmogenic substrates and progressive cardiac dysfunction. In this investigation, we employ advanced 
computational strategies-specifically molecular docking and virtual screening-to identify novel small-molecule 
modulators that can potentially rectify the structural and functional deficits caused by disease-associated TNNT2 
mutations. 
Keywords: TNNT2-Troponin T2, Hypertrophic Cardiomyopathy, arrythmogenic, Dilated Cardiomyopathy 
 
INTRODUCTION 
Cardiomyopathy encompasses a heterogeneous group of myocardial disorders characterized by structural 
and functional abnormalities in the absence of coronary artery disease, hypertension [4], or valvular 
pathology sufficient to explain the phenotype. It is broadly classified into hypertrophic, dilated, and 
restrictive and arrhythmogenic subtypes, each associated with distinct clinical manifestations and genetic 
underpinnings. At the molecular level, cardiomyopathies often result from mutations in genes encoding 
sarcomeric or cytoskeletal proteins, leading to impaired contractility, ventricular remodeling, and 
arrhythmias [5]. The condition poses a significant risk of heart failure and sudden cardiac death, 
necessitating early diagnosis and a molecularly guided approach to treatment and risk stratification. 
The TNNT2 protein (Cardiac troponin T) integrates with tropomyosin and troponin (TNNI3) [6] to 
regulate calcium-mediated contraction of cardiac muscle through its association with actin filaments. 
Mutations in TNNT2 [7] disrupt this regulatory mechanism, leading to altered calcium sensitivity, 
sarcomeric instability [8], and impaired contractile dynamics [9]. These molecular dysfunctions contribute 
to the onset of cardiomyopathies, primarily in the form of hypertrophic or dilated phenotypes [10]. The 
Figure 1 illustrates the mechanistic transition from a structurally stable troponin complex to a 
dysfunctional state caused by genetic variation, establishing a direct link between TNNT2 mutations and 
cardiac disease progression. 
Figure A. Schematic illustration of TNNT2 mutation causing Cardiomyopathy 
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METHODOLOGY 
Retrieval of Protein Data and 3D structure information 
The UniProt database [11] is a cornerstone resource in the field of bioinformatics offering an extensive and 
meticulously curated collection of protein sequences and associated annotations. It aggregates 
information from reliable sources such as Swiss-Prot, TrEMBL, and PIR, making it indispensable for 
biological and biomedical studies. UniProt includes a wide array of details about protein function, 
structural characteristics, sequence attributes, and taxonomic data.Similarly, the Protein Data Bank (PDB) 
[12] is an openly accessible repository containing three-dimensional structures of biological 
macromolecules, including proteins and nucleic acids. Data in the PDB is contributed by researchers 
around the world and is primarily derived from the experimental methods like X-ray crystallography, 
nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy. The PDB plays a pivotal 
role in the field of structural biology and supports advance in drug design and computational biology. 
Structural Validation 
To ensure the quality of the predicted 3D structure of the TNNT2 protein, the model underwent 
stereochemical evaluation using the PROCHECK tool [13] [14], which is accessible through the SAVES [15] 

[16] (Structural Analysis and Verification Server) suite. A Ramachandran plot [17] was generated to assess 
the distribution of backbone dihedral angle among amino acids, providing insight into structural 
accuracy. Additionally, energy-based assessments were conducted using the ProSA tool [18], which 
calculated a Z-score to compare the existing 3D structure reliability against the other experimentally 
determined protein structures. 
Determination of Active sites of the Protein  
Accurately pinpointing a protein’s active site is crucial for elucidating its biological role and plays a 
fundamental part in the rational design of drugs based on molecular structure. To achieve this, 
computational techniques are often employed to forecast potential ligand-binding regions within the 
three-dimensional architecture of the protein. Tools such as CASTp [19] and SiteMap [20], included in the 
Schrödinger software suite, and are widely utilized to identify hydrophobic cavities and other structural 
features favorable for ligand attachment.  
Structure-Based Virtual Screening via Molecular Docking 
Molecular docking is a widely adopted computational strategy used to predict the interaction between 
small molecule ligands and biological targets, often proteins. 
This approach is integral to the drug discovery process, enabling identification of compounds that may 
elicit specific biological effects through binding. The effectiveness of docking relies on a deep 
understanding of the target protein’s structural features and energetic landscape. 
In the context of this research, 3D structure of TNNT2 was employed for virtual screening using GLIDE 
(Grid-Based Ligand Docking with Energetics), version. This tool stimulates ligand binding and estimates 
interaction strength through a hierarchical screening workflow. Docking parameters were set with a van 
der Waals scaling factor of 1.0 and a partial charge cutoff of 0.25. A cubic docking grid of size X Å × Y Å 
× Z Å was centered on the active site. 
Ligands were sourced from the CMNPD (Comprehensive Marine Natural Products Database) [21]-[23] 
library. These molecules were processed in Maestro (v9.1, Schrodinger, LLC, New York) using the LigPrep 
Module (version 4.0) to generate 3D structures at physiological pH (7.0 ± 2.0), applying the OPLS_2004 
force field. Various stereoisomers, tautomer’s, and ionization states were generated using default 
parameters to ensure optimal conformational diversity. 
Following this, flexible docking was conducted in stages: initial screening with High Throughput Virtual 
Screening (HTVS) mode filtered out low-affinity ligands; the top 10% of hits progressed to Standard 
Precision (SP) docking for detailed scoring. Finally, the best candidates underwent Extra Precision (XP) 
docking for the highest accuracy in pose prediction. The docked complexes were refined based on bond 
geometry and scored using the GLIDE scoring algorithm. Top-scoring ligands were then evaluated for 
their pharmacokinetic properties through ADMET analysis. 
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ADMET evaluation  
A thorough assessment of Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) [24] 

[25] characteristics is a crucial step in early drug discovery, as it plays an essential role in determining the 
feasibility of clinical development and the potential for market success of candidate compounds. Ligand 
molecules identified through virtual screening and molecular docking-particularly those showing strong 
binding affinity to TNNT2-undeerwent ADME analysis using the QikProp [26] module integrated within 
the Schrödinger software suite. To evaluate toxicity risks and ease of clinical synthesis, the ProTox 3.0 [27] 

[28] web-based platform was utilized. Ligands with optimal pharmacokinetic and safety profiles were 
prioritized as viable therapeutic leads for cardiomyopathy treatment. 
 

1. RESULTS AND DISCUSSION 
Protein Structure Retrieval, Analysis, and Validation 

a) Acquisition of the TNNT2 protein Structure 
The three-dimensional structure of the TNNT2 protein was obtained from the Protein Data Bank (PDB) 
using the accession code 1J1D_B. This particular model was selected due to its high resolution of 2.61 Å, 
completeness, and relevance for molecular docking applications. Prior to initiating docking procedures, 
the protein structure was preprocessed using the Schrodinger software suite. This involved removing non-
essential components such as water molecules, unrelated chains, and heteroatoms. To prepare the 
structure for computational studies, polar hydrogen atoms were added, and Kollman charges were 
assigned, ensuring an optimal conformation for subsequent in silico analysis. 

b) Structure Validation  
Figure 2.1 Ramachandran Plot obtained using SAVES Server 

 
Figure 2.1.  Ramachandran plot [29] [30] of TNNT2 reveals 94.1% of residues positioned in the 

most favored regions, which is indicative of a highly stereochemically accurate model. Typically, models 
surpassing 90% in these regions are considered structurally robust. 

To ensure the structural validity of the TNNT2 protein model, stereochemical analysis was 
conducted using a Ramachandra plot (Figure 2.1). The results indicated that 94.1% of the residues were 
located in energetically favorable regions, affirming the high stereochemical accuracy of the protein. 
Figure 2.2 ProSA the Z-Score of the TNNT2 protein  
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Figure 2.2 The Z-score [31] from ProSA analysis was found to be -1.16, which is well, within the range 
expected for native protein structures determined by X-ray crystallography or NMR. This score reflects a 
strong resemblance to experimentally validated protein structures.The ProSA-web server was also used to 
assess both global and local quality (figure 2.3). By comparing the existing structure against proteins of 
similar length in the Protein Data Bank (PDB), the tool confirmed the reliability of the TNNT2 structure. 
Figure 2.3 Local Model Quality of the TNNT2 protein 

 
Figure 2.3 Local quality evaluation using the ProSA energy plot [32] employed knowledge-based scoring 
methods. The plot uses two window sizes (10 and 40 residues) to detect structural inconsistencies. Most 
energy values fell below the baseline, suggesting local regions adopt stable, energetically favorable 
conformities.  

 
1. Secondary Structure Characterization 

Structure visualization confirms that the TNNT2 protein is composed of α helices. Secondary structure 
analysis performed using PDBsum server [33] provides a schematic overview of these elements and their 
arrangement within the protein (Figure 3.1). Two methods of representation of protein secondary 
structure first one is in α helices and second one is cylindrical mode. The figure (3.1) shows two α helices 
which are 203 to 222 and from 225 to 270 amino acid. 
Figure 3.1 The 3D ribbon representation of TNNT2 shows the protein consists of 2 α helices. 

 
1.2. Cylindrical representation of protein using PDBsum server  
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2. Active Site Identification via Computational Approaches 
Computational methods, including CASTp and SiteMap, were employed to predict possible binding 
regions within the TNNT2 structure. CASTp used both Connolly’s molecular surface and Richard’s 
solvent-accessible surface to identify hydrophobic cavities (Table 4.1). These pockets are located in areas 
likely to be functionally relevant. 
Table 4.1 Putative Active sites confirmed using CASTp and SiteMap 

S. NO. Active site server Volume of the active 
site 
(Å) 

Amino acids  
From to To 
 

1 CASTp 27.321 216,217,220,221, 
232,236 

2  SiteMap 18.522 215, 221, 222, 226  
CASTp identified prominent cavities, which were supported by SiteMap’s prediction of similar 
hydrophobic regions, suggesting that the identified regions serve as potential ligand-binding sites for 
TNNT2 protein. 

3. Structure-Based Virtual Screening and Molecular Docking 
Structure-based virtual screening (SBVS) was conducted to discover novel ligands that may bind to 
TNNT2. A docking grid of dimensions 23 Å × 80 Å × -4.95 Å was placed over the identified active site. 
Ligands from the Comprehensive Marine Natural Products Database (CMNPD) were prepared using 
Schrodinger’s LigPrep, which optimized their geometry, protonation states, and tautomerism. 
Approximately 30,000 molecules were processed and generated 45,000 unique structures. These were 
subjected to hierarchical docking using Glide’s HTVS, SP, and XP protocols. From this, 15 ligands 
demonstrated significant binding affinities, with the top five selected based on Glide score (Table 5.1). 
Table 5.1 Binding interactions of ligands with TNNT2 protein 
 
S.NO. 

 
Ligand 

 
Glide 
Score 

 
Glide Energy 
(kcal/mol) 

 
Hydrogen Bond 
with Amino Acid 

 
Hydrogen 
Bond Distance 
(Å) 

 
 
L1 

 

 
 

 
 
-7.423 

 
 
-55.946 

 
L1-ARG216 (1) 
L1-ARG216(2) 
L1-LYS232 
L1-LYS217 

 
2.40 
2.30 
1.72 
1.57 
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L2 

 
 

-7.333 -54.666 L2-GLN257 
L2-LEU250(A) 

1.79 
2.61 

 
L3 

 
 

 
 

 
 
-6.823 

 
 
-49.560 
 

 
 
L3-GLU246 
L3-LEU243 
L3-LYS247 

 
 
1.71 
1.85 
1.93 
 

 
 
L4 

 

 
 

 
 
-5.423 

 
 
-45.946 

 
 
L4-ARG216 

 
 
1.88 

 
 
L5 

 
 

 
 
-5.216 

 
 
-43.265 

 
 
L5-ARG216 

 
 
1.63 

Hydrogen bond interactions were observed, with distances ranging between 1.57 Å and 2.40 Å (Table 
5.1). Visualization performed using Accelrys Discovery Studio [34] [35] confirmed stable and specific 
interactions with TNNT2 protein (Figure 5.1). 

 
Figure 5.1 Ligand (L1 –L5) interaction with TNNT2 protein 
Ligand 1 – TNNT2 Interaction  

                   
Ligand 2 – TNNT2 Interaction 
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Liagnd 3 – TNNT2 Interaction 

                    
  Ligand 4 – TNNT2 Interaction  

                           
  Liagnd 5 – TNNT2 Interaction 
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4. ADMET Evaluation (Absorption, Distribution, Metabolism, Elimination, and Toxicity) 
a) Physicochemical Properties 
Drug-likeness and pharmacokinetics of top-ranked molecules were evaluated using QikProp (Schrodinger 

Suite) [36] [37]. All compounds adhered to acceptable ranges from molecular weight (≤ 395.346), donor (≤ 
4), and acceptors (≤ 10), suggesting favorable physicochemical properties (Figure 6.1). 

b) Pharmacokinetic Profile  
Human oral absorption (HOA) ranged from 91.404 % to 100 %, indicating excellent oral bioavailability. 

Water solubility (QPlogS) values remained within the acceptable range of -2.021 to -6.0. Caco-2 
permeability (QPPCaco) values ranged from 410.376 to 1509.866, suggesting good intestinal 
absorption. Protein binding affinities (QPlogKhsa) were between -0.92 to 1.16, and blood-brain barrier 
permeability (QPlogBB) ranged from -3.00 to -0.403, indicating low risk of CNS toxicity. 

Predicted CNS activity scores were negative, supporting minimal neurotoxic potential. Cardiac safety was 
supported by acceptable hERG inhibition values (-5.979 to -1.761) shown in Figure 6.2. 
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c) Drug-Likeness Properti All candidate molecules complied with Lipinski’s Rule of Five [38] and 
Jorgenson’s Rule of Three [39], which are commonly used to assess drug-likeness. The lipophilicity 
(QPlogPo/w) values were in the range of -1.438 to 5.746. 

 
 
6.1. The Permissible ADME properties  
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Figure 6.2 ADME Properties of Ligands L1 to L5 

 
d) Toxicity Assessment 
To examine metabolic liabilities, the compounds were analyzed for interactions with Cytochrome P450 
enzymes using Pro Tox 3.0 [40] (Figure 6.3). The results showed that several ligands either inhibited or did 
not inhibit key CYP450 isoforms, which is crucial for evaluating drug-drug interactions and metabolic 
stability and shown to be inactive towards Hepatotoxicity, and Cardiotoxicity. Overall, the identified 
compounds exhibited favorable drug-like profiles with reduced toxicity risks, supporting their potential 
as candidate therapeutics for cardiomyopathy treatment 
Figure 6.3 Toxic Profile of Ligands L1 to L5 obtained from Virtual Screening. 

 
CONCLUSION: 
In silico findings suggest that the screened compounds possess both high binding affinity and desirable 
drug-like characteristics, supporting their candidacy as lead molecules for the development of targeted 
therapies against the cardiomyopathy. 
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