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Abstract: 
Due to ever-increasing demand of power globally, the focus is now shifted on renewable energy sources like 
hydro, wind, solar energy from non-renewable energy sources. Solar energy stands is a leading contributor in 
the sustainable energy revolution. The solar cells which are used to harness the solar energy suffer from several 
defects arising during the manufacturing or installation processes. Identifying these defects is crucial to prevent 
degradation in the performance of solar cells. However, manual detection is time consuming and tedious. 
Hence, automatic defect detection methods must be developed to improve efficiency. This paper proposes a 
novel image enhancement integrated Convolution Neural Network (IE-CNN) for defect detection in solar 
cells that involves pre-processing the input image through image enhancement and defect detection using 
CNN. The hyperparameters of the CNN are selected after extensive experimentation. The method converges 
fast and also takes care of the overfitting phenomenon. A dataset of electroluminescence (EL) images is used 
for the implementation of the proposed method. The proposed method achieved a precision of 0.97 and recall 
of 0.98, culminating in an elevated F1-score of 0.90.  
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1. INTRODUCTION 
The contribution of energy in the development of world’s economy is significant. The rate at which the 
consumption of energy in the world is growing is huge. So many countries of the world have started looking 
for renewable sources of energy and solar energy is a major contributor for renewable energy sources. 
The advancements and usage of solar energy is increasing at a fast pace and the total capacity of solar energy 
generated increased by 179 TWh in 2021 exhibiting a growth of 22% on 2020 according to the International 
Energy Agency. To achieve net zero emission by 2050 the average annual growth in generation must reach 
25% for the period 2022-2030 [1]. 
An array of solar cells is the primary component for construction of Photovoltaic (PV) systems. The array of 
cells is encased in glass and housed within an aluminium frame, signifying the readiness of the PV system for 
installation. However, there are some factors like mechanical stress, thermal fluctuations, hailstorms, 
manufacturing defects, poor installation practices, corrosion, electrical overload, and exposure to certain 
chemicals or pollutants in the environment [2] which results into cracks or damage in the PV module 
cells[3][4]. This can reduce the efficiency of the entire system. Hence it is vital to find and replace damaged 
cells so that the efficiency of the PV System is maintained. 
Visual identification of damaged cells in the PV module is not an easy and efficient method. When the cells 
are damaged in the module the temperature of the cell increases so Infrared (IR) imaging can be used to 
recognize those high temperature areas in a cell [5]. But a high temperature area may not be always a defect in 
an IR image. Therefore, using IR imaging for defect detection has its own limitations and may not be a good 
solution as mentioned by Ebner et al in[6]. It is also difficult to determine the precise region of the defect in 
IR images [7] and micro-cracks cannot be detected by IR images[8]. 
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An alternative to IR imaging is electroluminescence (EL) imaging which can be used before installation of the 
PV module as well as after the installation to check the defects in the PV module [9].The EL images are 
extensively used by many researchers for defect identification in solar cells. Checking of PV cell EL images 
manually is a very tedious task and it is not possible to inspect the large solar farms manually. Therefore, 
automated defect detection methods are required to identify defective cells for further course of action [10]. 
 
The paper is structured as mentioned ahead: Section 2 gives a summary of the previous works. The 
methodology given in Section 3 covers the description of the dataset used along with in-depth discussion of 
the proposed approach. Section 4 outlines the experimental evaluation and results. Section 5 concludes the 
present work and lastly a comprehensive list of references is provided for further exploration. 
 
2. RELATED WORKS 
 
Deitsch et al. [5] introduced two distinct approaches to defect detection. The first approach relies on Support 
Vector Machine (SVM) and incorporates handcrafted features, while the second approach leverages 
Convolutional Neural Networks (CNN) for defect detection. There was limited discussion on potential 
challenges or limitations of the proposed method, which could impact the interpretation and practical 
implementation of the findings. 
In [11] the authors used YOLO [12] for defect detection and ResNet18 [13]  for defect classification. In [14] 
Akram et al. devised a CNN based method for detecting photovoltaic cell defects for improving solar energy 
system efficiency. They employed geometric transformations for data augmentation. The method had a limited 
generalizability to other defect types or imaging conditions. Due to reliance on biased training data, there is a 
risk of overfitting. 
Tang et al. [15] in their work combined the generative adversarial network (GAN) based data augmentation 
with CNN architecture for identification of defects. The adaptability of the proposed technique to various 
defect types or image quality variations may be explored further. 
Chunpeng et al., [16] presented a hybrid approach combining fuzzy logic and convolutional neural networks 
for accurate defect detection in photovoltaic cells, potentially enhancing quality control in solar panel 
manufacturing. With this Hybrid Fuzzy CNN, they were able to take care of the uncertainties in the PV cell 
data to improve the performance of their system. The complexity of the hybrid mechanism leads to high 
computational overhead and implementation challenges, potentially limiting its practical applicability in real-
time defect detection systems.  
In [17] the authors used Image Net pretrained ResNet101 as the backbone network and then bidirectional 
attention feature architecture was proposed which highlights the features of the defect and suppresses the 
background when performing the defect detection. Then they used a region proposal network to identify the 
region containing defect and mapped it to the matching level features of ResNet101. 
The authors in [18] used contrast limited adaptive histogram equalization (CLAHE) for image enhancement 
and introduced a graph channel attention module for capturing pixel level interconnection in an image. Then 
they developed a light neural network using EfficientNet-B0 as the backbone network for defect detection.  
Bartler et al. [19] introduced a CNN pipeline for defect detection and a balanced error rate (BER) of 7.73 % 
was achieved for binary classification. They also studied the effect of class imbalance in their work. 
A high resolution deep learning network with a self-fusion network was introduced by the researchers in [20] 
for defect detection in PV modules. They also performed data augmentation prior to defect detection so as to 
create a balanced dataset. 
The researchers in [21] proposed a CNN with eight convolutional and pooling layers followed by the dense 
layer for detection of dust on the solar panels. The scope of the CNN was limited to identifying dust on the 
panels and there is a scope for improving the capability of the architecture developed.  
The research done in [22]involved feature extraction, selection and classification using a deep feature based 
support vector machine for binary and multiclass classification. The study done in [23] presented an 
investigation of YOLOv8 and enhanced YOLOv5 based model for automated defect detection. They 
integrated a Global Attention Module (GAM) with YOLOv5 to improve object representation. Further to 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 3S, 2025 
https://www.theaspd.com/ijes.php 

157 
 

improve feature fusion and model performance they incorporated an adaptive feature space fusion in the 
model. 
 
2.1 Gaps identified 
In summary, the literature review provides a thorough analysis of the defect detection methodologies. Despite 
the multitude of proposed approaches, certain persistent challenges are evident within the existing literature, 
such as concerns related to overfitting and the resource-intensive nature of hardware requirements. 
Additionally, there is a notable gap in addressing the application of image enhancement before CNN 
implementation. Furthermore, the prevalence of time-consuming and intricate methods emphasizes the 
necessity for more efficient and simplified approaches to be developed. Following are the gaps identified:   

 Further exploration is required to investigate the integration of image enhancement techniques before 
implementing CNNs as including image enhancement in the proposed methods can lead to improved 
performance metrics.  

 Complexity of hybrid mechanisms lead to increased computational overhead and implementation 
challenges like necessitating the use of GPUs and other specialized hardware accelerators. 

 Training GANs requires momentous computational resources such as high-performance GPUs and 
huge memory expanses. Also training a GAN takes significant duration of time and it is expensive for 
high dimensional data. 
 

2.2 Contribution 
This study seeks to address these gaps through the integration of image enhancement techniques, the 
introduction of a tailored Convolutional Neural Network (CNN), and a meticulous comparative analysis. The 
insights gained from this review lay the foundation for advancing defect detection methodologies and 
contribute to the on-going evolution of automated defect detection systems. The experiments were performed 
within the Google Colab environment, showcasing its remarkable hardware resource efficiency for defect 
detection. Unlike previous efforts that placed limited emphasis on data pre-processing and image 
enhancement, this work makes notable contributions as given below: 

 Implementation of image enhancement techniques, specifically contrast and brightness adjustments, 
applied to the images before the training process. After experimenting with different values, the final 
values are selected for image enhancement. 

 The utilization of deep learning methodologies on the enhanced image dataset to detect defects, 
introducing a CNN based model designed specifically for defect detection. 

 A comparison of this research with previous studies confirms the effectiveness of the proposed 
method. It also highlights advancements in defect detection achieved through improved pre-
processing techniques and a customized CNN model. 

3. METHODOLOGY 
Within this section, we discuss the proposed framework, explaining its architecture and providing intricate 
details about the CNN employed. Figure 1 below displays the workflow of the proposed work. 

 
Figure 1 Workflow of the proposed work 
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3.1 Data Description   
This research employed a dataset comprising of images categorized into two classes: defective and non-
defective. Images from a publicly available dataset of EL images are used in this work [5] [24]. The source of 
these 2,624 EL images are 44 different PV modules and 18 modules are of monocrystalline and 26 are of 
polycrystalline type. The dimensions of the image are 300*300. Few images from the dataset are given in Figure 
2 below. 
 

            
                      (a)                                                  (b)                                                   (c) 
Figure 2 Sample images from the dataset [5] [24]  (a) and (b) represent defective images (defect- crack) and 

(c) represents non-defective image 
 
3.2 Image pre-processing and enhancement 
 
The images are resized to 128×128 before applying the image enhancement operations to enhance their 
features for improved model training. Each image, denoted by I is pre-processed using image enhancement 
techniques before being fed into the CNN. The enhancement process involved applying a contrast adjustment 
function C (𝐼, 𝛼) and a sharpness enhancement function S (𝐼, 𝛽) to each image. The enhanced image I’ is 
obtained as follows:  

                                                      I’ = 𝑆(𝐶(𝐼, 𝛼), 𝛽)                                                            (1) 
where α and β are enhancement parameters controlling the degree of contrast adjustment and sharpness 
enhancement respectively. After experimenting with different values, the parameter α is set to 1.5, while β is 
assigned a value of 2. 
Image enhancement prior to CNN implementation serves to improve the quality, consistency, and 
discriminative power of the input data, leading to more effective and reliable classification results. It helps the 
CNN extract meaningful features from the images, enhances model generalization, and leads to the overall 
success of the deep learning task. 
To the best of our knowledge the potential benefits of pre-processing images with enhancement techniques 
has not been used previously and our work focuses specifically on integrating image enhancement into the 
proposed CNN. By refining the quality of images through contrast adjustment and sharpness enhancement, 
we aim to improve the quality and discriminative power of the input.  
The application of contrast and sharpness enhancement using the specified factors resulted in noticeable 
improvements in image quality across the dataset. Visual comparisons and quantitative analysis demonstrated 
enhanced clarity, detail, and feature differentiation, which are essential for subsequent image analysis tasks 
such as object detection and classification. 
 
3.3 Convolutional Neural Network Architecture 
Our methodology involved thorough experimentation, where the images are pre-processed using enhancement 
techniques prior to training the proposed CNN model. After experimental evaluation it is deduced that the 
image enhanced CNN model outperforms previous approaches in terms of classification accuracy and other 
metrics. By highlighting the effectiveness of image enhancement in improving CNN performance, our research 
offers a sustainable advancement to the field of defect detection. 
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The convolutional neural network (CNN) architecture employed in this study is designed to identify the 
defective and non-defective images. The CNN consists of multiple layers, including convolutional, max-
pooling, batch normalization, dropout, and fully connected layers. 
3.3.1 Convolutional Layers 
The first layer in our architecture is a convolutional layer CNN followed by max pooling and batch 
normalization. The role of convolution layer is to extract the low-level features from the enhanced input 
images. The convolutional layer applies a set of learnable filters to the input feature maps, generating output 
feature maps that capture spatial patterns in the images. Mathematically, the output feature map 𝑌(𝑙) of the l-
th convolutional layer is computed as follows:  
                                               𝑌(𝑙) = 𝑅𝑒𝐿𝑈(𝑊(𝑙) ∗ 𝑋(𝑙−1) + 𝑏(𝑙)                                                (2) 
where 𝑊(𝑙) represents the learnable weights (filters) of the l-th convolutional layer,  𝑋(𝑙−1) denotes the input 
feature maps from the previous layer, 𝑏(𝑙)is the bias, and ∗ signifies the convolution operation. The activation 
function used is ReLU. Each convolutional layer in the CNN is augmented with L2 regularization and a 
regularization term is added to the loss function. The regularization term penalizes the L2 norm of the weights, 
encouraging smaller weights and preventing overfitting. By incorporating L2 regularization into the 
methodology, we ensure that the CNN model is effectively regularized during training, leading to improved 
generalization performance and better handling of overfitting. 

3.3.2 Batch Normalization 
Batch normalization layers are inserted after each convolutional layer to normalize the activations, which helps 
stabilize and accelerate the training process.   

                                                            𝑋̂(𝑙) =
𝑋 (𝑙)−µ (𝑙)

√𝜎2(𝑙) +є
                                                               (3) 

where 𝑋̂(𝑙) represents the normalized activations, 𝑋̂(𝑙) is the input activations, µ (𝑙) and 𝜎(𝑙)are the mean and 
standard deviation of the batch, and є is a constant of small value to get numerical stability. 
3.3.3 Max-Pooling Layers 
After each convolution layer there is a max-pooling layer to down sample the feature maps an reduce their 
spatial dimensions while retaining the important information. The max-pooling operation is defined as 
follows: 

                                        𝑌𝑝𝑜𝑜𝑙𝑒𝑑
(𝑙)

[𝑖, 𝑗, 𝑘] = max
𝑚,𝑛

 𝑌(𝑙)[2𝑖 + 𝑚, 2𝑗 + 𝑛, 𝑘]                                    (4) 

where   𝑌𝑝𝑜𝑜𝑙𝑒𝑑
(𝑙)  denotes the output feature maps after max-pooling,  𝑌(𝑙) represents the input feature maps, 

and[𝑖, 𝑗, 𝑘]  denote the spatial location and channel index. 
 
3.3.4 Dropout Regularization 
Dropout layers are added after certain convolutional layers to prevent overfitting by randomly dropping some 
of the neurons throughout training. The dropout operation is defined as follows:   

                                                 𝑌𝑑𝑟𝑜𝑝𝑜𝑢𝑡
(𝑙)

= 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑌(𝑙), 𝑝)                                                 (5) 

where 𝑌𝑑𝑟𝑜𝑝𝑜𝑢𝑡
(𝑙)  represents the output feature maps after dropout, 𝑌(𝑙) denotes the input feature maps, and p 

is the dropout probability. 
3.3.5 Fully Connected Layers 
The output of the convolutional layers is flattened and subsequently given to a series of fully connected layers 
and the classification is done on the extracted features. The fully connected layers in the CNN also incorporate 
L2 regularization to regulate the complexity of the model and improve its generalization performance. The 
output layer consists of two units with a sigmoid activation function, representing the probabilities of the input 
image fitting to each class. 
 
3.4 Model Compilation and Training 
The CNN model is compiled using categorical cross-entropy loss function and the Adamax optimizer. The 
compiled model is trained using a dataset containing pre-processed images and their corresponding labels. 
During training, model checkpoints and early stopping callbacks are employed to monitor the validation loss 
and prevent overfitting. 
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During training, the model's performance was evaluated based on accuracy metrics computed on a separate 
validation set. The training process aimed to minimize the categorical cross-entropy loss while maximizing 
classification accuracy. Additionally, model hyper parameters such as learning rate, dropout rates, and 
regularization parameters are fine-tuned through iterative experimentation to achieve optimal performance. 
Training hyper parameters of the proposed architecture are given in Table 1.   

Table 1. Training hyper parameters 
Parameter Value 
Backbone architecture Custom 
Classes Two 
Batch size 32 
Epochs 150 
Image size 128x128x1 
Kernel regularizer (l2) 0.02 
Optimiser Adamax 
Loss categorical cross entropy 
Activation function Relu (input and hidden layers), Sigmoid (output layer) 
Environment Python 3, T4 GPU on Google Colab 

 
After examining the dataset which consists of both monocrystalline and poly crystalline PV cells it is noticed 
that in images labelled as defective with 33% probability or 66 %, it is difficult to make out whether it is 
defective or not. Also, the homogeneous surface of mono crystalline cells is different from the background 
surface of polycrystalline cells. This makes it difficult to detect the defects. The image dataset is pre-processed 
and a set of architectures are explored as shown in Figure 3. 
After studying few previous works and experimenting with different hyper parameters image enhancement 
integrated CNN is proposed. Different CNN models are implemented before finalizing the model. The 
architectures implemented are given in Figure 3(a), (b) and (c).   
In the proposed model 1 there is an input layer, two hidden layers and one output layer as shown in Figure 
3(a). The model exhibits poor performance and overfitting. To overcome the effect of overfitting and low 
performance of the model an additional hidden layer is added to the model 2.  
Further overfitting is handled by adding kernel regularization to the model. L2 kernel regularizer with L2=0.2 
is added to the hidden layers and output layer to improve the performance of the model. By increasing the 
number of convolution layers the model performance is also increasing. But adding more layers will increase 
the model complexity and it will also make the model computationally expensive. Among Model 1, Model 2, 
and Model 3, Model 3 demonstrates superior performance compared to the others. To enhance the model's 
performance further, image enhancement techniques are employed prior to inputting them into the CNN. 
This involved improving the contrast and brightness of the images before training the CNN architecture 
proposed in Model 3. 

 
(a) 

 
(b) 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 3S, 2025 
https://www.theaspd.com/ijes.php 

161 
 

 
(c) 

Figure 3 (a) Proposed model 1 (b) Proposed model 2 (c) Proposed model 3 
 
4. EXPERIMENTAL EVALUATION 
 
4.1 Performance evaluation 
The performance metrics accuracy, precision, recall and F1 score are used to evaluate the model [25].  
(i) Accuracy: It represents the ratio of correctly predicted instances to the total instances in the dataset and is 
computed as the ratio of number of correct predictions to the total number of predictions. However, the 
accuracy provides an overall measure of model performance but it may not be most informative metric in cases 
of imbalanced datasets. 
(ii) Precision: It quantifies the accuracy of positive predictions, measuring the ratio of correctly   predicted 
positive observations to the total predicted positives. Precision is crucial when the cost of false positives is high. 
It helps in assessing the capability of the model to check false alarms. 
(iii) Recall: It gauges the model's ability to identify all relevant instances, measuring the ratio of correctly 
predicted positive observations to the actual positives in the dataset. Recall is important when the cost of false 
negatives is high. It reflects the model's sensitivity in capturing all instances of the positive class. 
(iv) F1 score: It integrates precision and recall into a single value and is particularly useful in case of an uneven 
class distribution (class imbalance). The F1 score is calculated using the harmonic mean of precision and recall, 
providing a balanced measure of a model's performance. 
The F1 score, ranging from 0 to 1, is a valuable metric for defect detection, especially when striking a balance 
between precision and recall is crucial. Its sensitivity to both false positives and false negatives, weighted by the 
harmonic mean, makes it well-suited for tasks requiring a comprehensive evaluation. In defect detection 
scenarios, where achieving a balance between precision and recall is often sought, the F1 score helps prevent 
scenarios where a model excels in one aspect but falters in the other. This metric aids in making informed 
decisions about the trade-off between precision and recall, catering to the specific requirements of the 
application, such as prioritizing high precision in quality control or emphasizing high recall in medical 
diagnoses. Analysing these metrics collectively provides a nuanced understanding of a model's performance, 
guiding informed deployment decisions[26]. 
 
4.2 Results and Discussions 
An analysis and comparison of the proposed methods and other deep learning methods is presented in this 
section. Simple MNIST Convnet [13], CNN for defect detection [5], and three different architectures proposed 
are implemented on the benchmark elpv dataset [10, 11] for defect detection. Precision, recall, F1 score and 
accuracy metrics are computed and given in Table 2 to compare the performance of all the methods.   

The CNN architecture used in [15] has two convolution layers and one fully connected layer which is suitable 
for the MNIST dataset but for elpv dataset a network with a greater number of layers will be suitable as the 
size of images is large as compared to the MNIST dataset images. In [8] the network has four convolution layers 
and two fully connected layers. Both the architectures have used Adam optimizer. In [8] dropout is used in 
output layer only.  

The evaluation of several models on the MNIST dataset reveals insightful findings regarding their classification 
performance. Among the tested models, the MNIST Convnet and Convolution Neural Network [8] 
demonstrate respectable precision scores of 0.81, although with varying levels of recall and F1-scores. Model 
1, while achieving a slightly lower precision of 0.75, maintains a comparable accuracy of 0.75. Notably, Model 
2 exhibits notable improvements in precision, recall, and F1-score, boasting values of 0.83, 0.81, and 0.82, 
respectively, resulting in an accuracy of 0.85. Interestingly, our proposed Model 3 maintains a similar precision 
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to Model 2 but shows a slight reduction in recall, yet maintains a commendable F1-score of 0.73 and an 
accuracy of 0.80. However, the most striking improvement is observed in Model 3 with image enhancement, 
achieving an impressive precision of 0.97 and recall of 0.98, culminating in an elevated F1-score of 0.90 and 
accuracy of 0.87. These results underscore the potential of image enhancement techniques in enhancing the 
performance of CNN. Figures 4, 5, and 6 illustrate the loss and accuracy curves for models 1, 2, and 3, 
respectively. 

            
Figure 4 Loss and accuracy curve of model 1 

 

           
Figure 5 Loss and accuracy curve of model 2 

 

       
 

Figure 6 Loss and accuracy curve of model 3 
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Table 2. Precision, Recall and F-1 score of proposed models with the existing methods on the ELPV 
dataset 

Method Precision Recall F1-score Accuracy 

 CNN [27]  0.81 0.67 0.73 0.80 

CNN [14] 0.81 0.60 0.69 0.78 

Model 1 0.75 0.59 0.66 0.75 

Model 2 0.83 0.81 0.82 0.85 

Model 3 (Proposed model) 0.83 0.66 0.73 0.80 

Model 3 (Proposed model) 
with image enhancement- 

IE-CNN 
0.97 0.98 0.90 0.87 

5. CONCLUSIONS 
The proposed approach introduces a novel pipeline where an image enhancement method and a deep learning-
based method are integrated to distinguish between defective and non-defective photovoltaic (PV) cells. The 
results are also given to validate the effectiveness of the method. A notable challenge arises from the dataset's 
inclusion of both monocrystalline and polycrystalline PV cells, each with distinct backgrounds, complicating 
defect identification. In this research, attention is given to optimizing hyper parameters such as optimizers, 
loss functions, and regularizers to achieve optimal performance. The advantage of the suggested architecture 
is its simplicity and hardware efficiency leading to a sustainable solution for maintaining the performance of 
the PV modules. Additionally, enhanced results can be attained by implementing data augmentation 
techniques and ensemble learning. Exploring hybrid methods, such as those described in[16] , offers a probable 
avenue for further refining the automatic defect detection process. 
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[19] Università degli studi Roma tre, European Association for Signal Processing, IEEE Signal Processing 
Society, and Institute of Electrical and Electronics Engineers, EUSIPCO 2018 : 26th European Signal 
Processing Conference : Rome, Italy, September 3 - 7, 2018.  

[20] X. Zhao, C. Song, H. Zhang, X. Sun, and J. Zhao, “HRNet-based automatic identification of 
photovoltaic module defects using electroluminescence images,” Energy, vol. 267, no. March, pp. 1–8, 
2023, doi: 10.1016/j.energy.2022.126605. 

[21] M. S. H. Onim et al., “SolNet: A Convolutional Neural Network for Detecting Dust on Solar 
Panels,” Energies, vol. 16, no. 1, Jan. 2023, doi: 10.3390/en16010155. 

[22] M. Y. Demirci, N. Beşli, and A. Gümüşçü, “Efficient deep feature extraction and classification for 
identifying defective photovoltaic module cells in Electroluminescence images,” Expert Syst. Appl., vol. 
175, no. February, 2021, doi: 10.1016/j.eswa.2021.114810. 

[23] F. M. A. Mazen, R. A. A. Seoud, and Y. O. Shaker, “Deep Learning for Automatic Defect Detection 
in PV Modules Using Electroluminescence Images,” IEEE Access, vol. 11, no. June, pp. 57783–
57795, 2023, doi: 10.1109/ACCESS.2023.3284043. 

[24] S. D. C. Buerhop-lutz et al., “Segmentation of photovoltaic module cells in uncalibrated 
electroluminescence images,” Mach. Vis. Appl., vol. 32, no. 4, pp. 1–23, 2021, doi: 10.1007/s00138-
021-01191-9. 

[25] D. Berrar, “Performance measures for binary classification,” Encycl. Bioinforma. Comput. Biol. ABC 
Bioinforma., vol. 1–3, pp. 546–560, 2018, doi: 10.1016/B978-0-12-809633-8.20351-8. 

[26] S. Sagiroglu, T. T. Temizel, and N. Baykal, “Binary Classification Performance Measures / Metrics :,” 
2017. 

[27] W. Tang, Q. Yang, and W. Yan, “Deep Learning-Based Algorithm for Multi-Type Defects Detection 
in Solar Cells with Aerial EL Images for Photovoltaic Plants,” C. - Comput. Model. Eng. Sci., vol. 130, 
no. 3, pp. 1423–1439, 2022, doi: 10.32604/cmes.2022.018313. 


