ISSN: 2229-7359 Vol. 11 No. 8S, 2025

https://www.theaspd.com/ijes.php

Bilayer Tablets: An Innovative Approach for Potential Drug Delivery System

Unnati Rajput¹, N. G. Raghavendra Rao^{2*}, Anuj Pathak³, Ridhima Sharma⁴ and Pratibha⁵

- ^{1,4,5}PG Research Scholar, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Muradnagar, Ghaziabad-201206, U.P., India.
- ^{2,3}Department of Pharmaceutics, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Muradnagar, Ghaziabad-201206, U.P., India.

*Corresponding author: Dr. N. G. Raghavendra Rao, Professor, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad; Email: raghavendra.rao@kiet.edu and drngraghu@gmail.com

Abstract: Over the past three decades, focus is increased in field of sustained, controlled or delayed release drug delivery system because of their advantages over the conventional drug delivery system. The controlled release mechanism has entered a new era with the bilayer tablet. Bilayer tablet technology, which has a controlled release layer for maintenance doses and an immediate release layer for loading doses, aids in the separation of two incompatible substances. To release the medication at an interval other than just after delivery, a delayed-release dosage form is used. These tablets are used as advanced technique to subdue the problem of conventional singlelayered tablet because they improved bioavailability of drug and fewer doses are needed. Bilayer tablets is an innovative formulation, which allow the controlled drug release, targeted delivery and combination therapies. They are mainly used to manage the chronic diseases, such as diabetes and hypertension. Many times, people with hypertension find it difficult or impossible to manage their blood pressure with just one medication or a drug. It has been shown that mono-therapy is very useful in treatment of patients with type 1 hypertension but it did not shown the desired therapeutic effects in some patients or with the type 2 hypertension patients, therefore combination of an antihypertensive drugs is required to achieve a desired therapeutics effects and the different drugs are combined to formulate a bilayer tablet for treating a hypertension. A combination of two or more antihypertensive drugs is significantly more successful or effective at lowering blood pressure than either one would be alone. This is due to the complementary types of action of the drugs. The introduction of techniques, advantages of the bilayer tablet, its components, and its benefits were the main topics of this review article. It also provided an explanation of the product quality.

Keywords: Bilayer tablets, techniques, tablet press, controlled drug release, delayed release, enteric-coated.

1. BILAYER TABLET INTRODUCTION

In the preceding decade, a great deal of attention being paid to the commercialization of novel drug molecules which accelerated the emergence of sustained or controlled drug delivery system, these new therapeutic compounds have been combined and grown to combat a variety of diseases that call for varying dosing schedules (1,2). Many developed and underdeveloped nations are now considering combination therapy, to treat conditions like diabetes, cardiovascular disease, and hypertension that call for long-term treatments (3). Over 90% of contemporary formulations are intended for oral ingestion. This demonstrates how popular this formulation type is worldwide, which is why the majority of scholars or researchers decide to addresses this. Its objective is to decrease frequency of doses (4). A bilayer tablet is introduced and one of its layers aims for a quick increase in serum concentration and is made to ensure the drug's instant extraction. A hydrophilic matrix with regulated release makes up its second layer, which provide an efficient plasma level for a long time (5).

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

https://www.theaspd.com/ijes.php

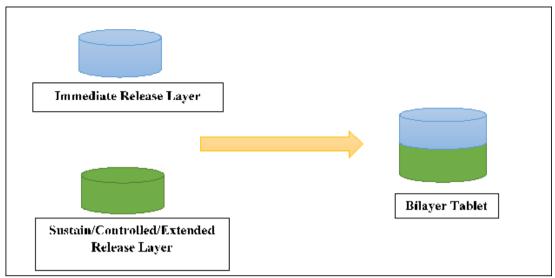


Fig 1: Bilayer Tablet

1.1 TYPES OF BILAYER TABLETS

HOMOGENEOUS BILAYER TABLETS

It contain same medication in two layers, although their release profiles differ.

HETEROGENEOUS BILAYER TABLETS

 It can be used to constantly release two drugs together or to separate two incompatible substances (6).

1.2 NEED OF BILAYER TABLET

- In order to provide fixed dosage combinations of various APIs with dual release.
- For the development of innovative methods, such as gastro-retentive and buccal/muco-adhesive delivery systems. It helps to control how quickly one or two drugs delivers.
- To create a swell able/erodible barrier for modified release, one or two active layers should be positioned between bi-layer tablets so that the active ingredient layer get more surface area.
- By using the property of another layer, this facilitates controlled release of an API from a single layer, allowing two incompatible APIs to be combined in a single dosage (7, 8).

1.3 OPTIMAL CHARACTERISCTICS OF BILAYER TABLET

- During production, transportation, dispensing and packaging, a bilayer tablet should be strong enough to withstand mechanical force.
- Free from chips, cracks, discolorations, and contaminants.
- Elegant appearance.
- It ought to possess the physical as well as chemical stability so that the API doesn't change and physical properties should be maintained throughout life.
- It should releases reliably and consistently its drug components. (9, 10).

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

https://www.theaspd.com/ijes.php

1.4 ADVANTAGES AND DISADVANTAGES OF BILAYER TABLET

ADVANTAGES	DISADVANTAGES
 By physically separating APIs, it helps prevent chemical interaction. Inexpensive in comparison to alternative dose forms. The highest level of microbiological and chemical stability when compared to other oral dosing methods. Coating technology can cover up offensive tastes and smells. Bilayer tablets eliminate the need for repetitive dosing that comes with traditional dosage forms. Provide the least amount of content uniformity and the highest level of precision. Simple to swallow, with few hang-up issues. Smaller, lighter, and less expensive to carry and remove (11, 12). It maximize the effectiveness of a combination of two medications by preventing direct contact between them. The potential application of feed granules for a single entity. Better patient compliance results in more effective medication regimens. Compared to a typical delivery system, fewer daily doses are needed, which improves patient compliance. Keep things stable chemically and physically. It is simple to identify the product (11, 13). 	 Difficult for kids and unconscious or paralyzed individuals to chew and swallow. A number of drugs are amorphous and low density, making them difficult to condense into dense compacts. Drug that is sensitive to the surroundings, has a bad smell, or is a bitter testing medication may need to be encapsulated or coated. Inaccurate weight management for individual layers. Inter-layer cross-contamination (14).

1.5 PROCEDURES USED IN THE PRODUCTION OF BILAYER TABLETS

The bilayer tablet is made up with a two layer of drugs or APIs, the API can be same or can be different in both the layers, first layer of tablet releases drug instantly, while the other layer releases later, as an extended-release version. Technique of making tablets with two incompatible APIs is to compress the inert layer between the two incompatible drugs layers so that the contact between the layers will be lessen (15).

1.5.1 Compaction:

Some specifications, like the mechanical strength and drug release profile, are necessary for creation of a bilayer tablet, however formulators find it difficult to achieve these requirements.

The materials compaction is influenced by consolidation and compression:

- Compression: It is a process of eliminating voids by applying mechanical force to materials to bring particles closer together to reduce bulk volume is known as compression. Procedures for Compressing Bilayer Tablets:
- i. Compaction and die filling of the first layer.
- ii. The major stress transmission characteristic is indicated by the initial layer compaction.
- iii. Initial layer density profile prior to final layer die filling.

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

https://www.theaspd.com/ijes.php

- iv. Compaction and die filling for the final layer.
- v. Compaction of last layer displaying main profile of stress transmission.
- vi. The bi-layer tablet's density profile prior to ejection.
- vii. A bilayer tablet is ejected (16, 17).

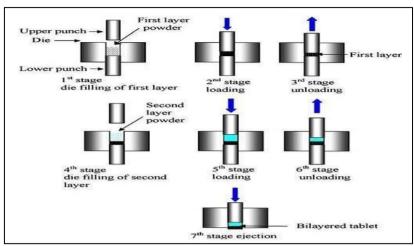


Fig 2: Preparation of bilayer tablet compaction

- **Consolidation:** It is the characteristic of the substance whereby its mechanical strength is enhanced because of interinteraction of particles. In bilayer tablet compression force was a significant element which affect the delamination of tablet, the first layer compression force need to be monitored to prevent from delamination (18, 19).
- **1.5.2** The importance of GMP and quality: According to Good Manufacturing Practices, to manufacture a bi-layer tablet of an excellent or high quality, the chosen tablet press must be able to:
- Creating a distinct visible division between the two layers of drugs.
- · Offer a high yield.
- Provide adequate tablet hardness.
- Distinct and precisely regulate the both layers weight.
- Prevention from the capping and separation.
- Preventing the two layers of drugs from becoming contaminated (20).

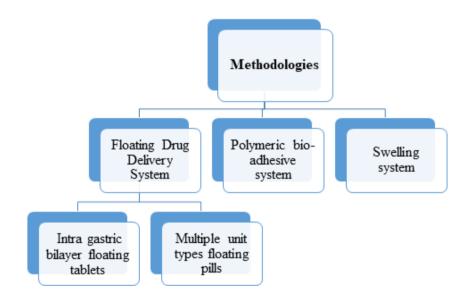
1.6 OBSTACLES IN THE BILAYER TABLET MANUFACTURING PROCESS

However, despite the previously mentioned benefits offered by the bi-layer technology, several problems related to compression and manufacturing processes are stated in the literature of past years.

The main hindrances include:

- 1) In accurate weight control for individual layers (21).
- 2) Cross-contamination among layers (22-26).
- 3) Inconsistency in the elasticity modulus of layers that are adjacent (27).
- 4) A lower manufacturing yield and a propensity for successive compacted layers to delaminate (separate different layers) at the non-planer interface (28).
- 5) A low dosage paired with an uneven layer weight distribution (29).

ISSN: 2229-7359 Vol. 11 No. 8S, 2025


https://www.theaspd.com/ijes.php

- 6) Inadequate hardness (30).
- 7) Long-term chemical and physical stability over the course of the shelf life.
- 8) Large pill size, which may affect how easily the unit dose is swallowed.
- 9) The effect of humidity or temperature on adherence of layers while being stored (31).

To overcome the above obstacles or hindrances, a concentrated effort must be made to address the following areas pertaining to:

- 1) Parameters for bilayer processing and material properties.
- 2) The first layer compression force is optimized.
- 3) Figuring out each layer's mechanical characteristics.
- 4) Measuring and comprehending the elements that lead to delamination.
- 5) Maximizing the layers' interfacial adhesion.
- 6) Evaluation of the effects of the layer weight ratio and layer sequence.
- 7) Choosing suitable tablet press for bilayer tablet with reliable weight-control delivery systems (30, 32, 33).

2. DIVERSE METHODOLOGIES FOR BILAYER TABLETS

2.1 Floating Drug Delivery System (FDDS)

FDDS is designed be buoyant above the contents of stomach due to their decreased density. When this type of system is given, they will continue to do so until the fluid is absorbed by the device, lowering its buoyancy and density so that it can easily exit the stomach and causes the stomach to empty. One layer is intended to deliver an immediate dosage of the medication, which ensures a quicker onset of action, and a floating layer (second layer), on the other hand floats inside the stomach (3, 13,).

Example: Indomethacin, Furosemide, Cefuroxime axetil, Atenolol, Lovastatin (34).

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

https://www.theaspd.com/ijes.php

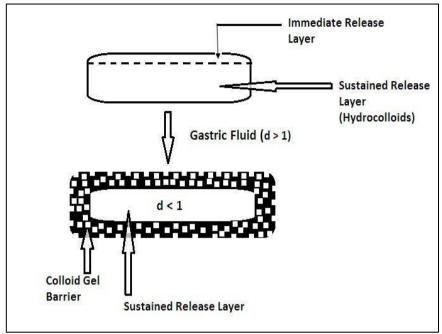


Fig 3: Floating drug delivery system

Advantages and Disadvantages

Advantages	Disadvantages
✓ Increased bioavailability	✓ Use of high dose of water soluble drugs is
✓ Sustained delivery of medication	not possible or recommended.
✓ Decreased frequency of dose	✓ They may not regulate density loss.
✓ Targeted treatment for upper	✓ Alignment may also affect how well a
gastrointestinal tract conditions	floating formulation works. Therefore, it is
✓ Less variation in drug concentration	reasonable to assume that the applications
✓ Enhanced receptor activation	of floating dosage forms will be restricted.
selectivity (18, 35).	

Types of FDDS:

- **2.1.1 Intra Gastric FDDS:** The two main layers of this system are the immediate layer, which releases the first dose of medication and rapidly affects the region of interest, and the sustained release layer, that creates a barrier of gel around the surface of tablet, this barrier is made by absorbing the gastric fluid by a bilayer tablet. Since of the gel barrier, a medication floats in the stomach since it is less dense than gastric juice.
- **2.1.2 Multiple Unit Types FDDS:** The double-layered seeds that creates this system have an enlarged or sustained release. Effervescent agents make up the inner layer chemically, whereas the swellable membrane layer makes up the outer layer. Such tablets initially sink in a solution at normal temperature, but because of their low density, they expand up like a balloon and float on the surface (35).

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

https://www.theaspd.com/ijes.php

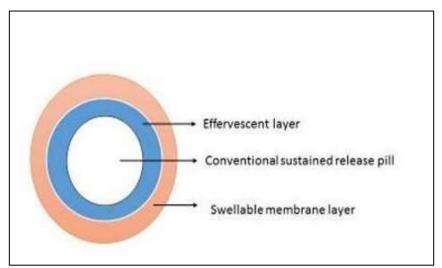


Fig 4: Oral FDDS in several units

2.2 Polymeric Bio-adhesive System

This system absorb the liquid once it is delivered. After then, the outer layer thickens and sticks or adhere to mucus membrane of stomach. In order to tilt the adhesiveness, this promotes stomach preservation. These have two layers: one for instant dosage and the other with bio-adhesive qualities (36).

Example: Propranolol HCL, Famotidine (34).

Disadvantages:

- ✓ Human mucous membranes can easily shed and carry drugs with them.
- ✓ The device sticks to mucous rather than mucosa (37, 38).

2.3 Swelling System

A formulation in a swelling system swells as it comes into touch with bodily fluids, like gastrointestinal fluids. These are intended to be much smaller. Soon after ingestion, they break apart, swell and stops it passing from pylorus till release of drug is increased to proper level. After proper release of drug start, the system eventually breaks down in small fragments and escape the stomach. While the other layer system swells and releases the leftover drug over time, guaranteeing extended action, the first layer can provide fast release (39, 40).

3. VARIOUS BILAYER TABLET TECHNIQUES

3.1 OROS ® Push-Pull Technology

This technique usually has a number of layers, first layer contain the APIs, followed by two three others and the push layer at the bottom. The drug layer is prepared by APIs and a small number of excipients and are constituted of a weakly soluble substance. Additionally, an osmotic and suspending agent might be included. Tablet core and surrounds are kept apart by a semipermeable layer (41-46).

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

https://www.theaspd.com/ijes.php

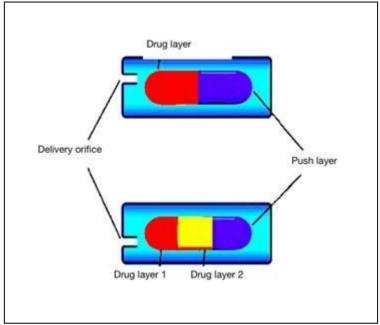


Fig 5: Osmotic-Controlled Release Oral Delivery System

3.2 L-OROS Tm Technology

Delivering insoluble medications and macromolecules is especially well suited for a liquid formulation and this technology solve the solubility problem. ALZA is the maker of this technology. Prior to the semipermeable membrane being pierced to form an exit canal, the drug was first covered with a barrier membrane, then push layer made up of osmotic agent. Continuous distribution of liquid drug formulation and enhanced drug bioavailability were the goals of the L-OROS system's design (47-50).

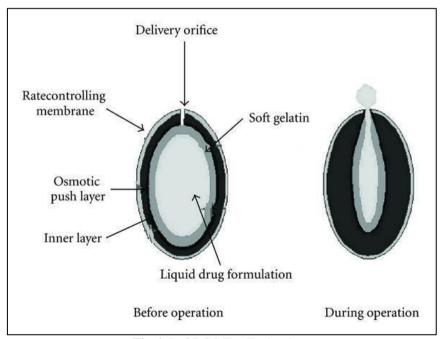


Fig 6: L-OROS Tm Technology

3.3 DUROS Technology (Miniature drug dispensing technology)

The distribution of many therapeutic components, such as proteins, peptides, and other biochemical substances, can be replaced by this implant-based technology. It functions in the same way of a tiny needle which dispenses drug steadily and continuously in a concentrated form gradually and

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

https://www.theaspd.com/ijes.php

continuously for a lengthy duration. DUROS made up of an exterior reservoir made of titanium alloy that is cylindrical. With its great impact strength, this reservoir shields molecules of drug from the enzymes and make them resistant. With this device, a semipermeable membrane allows water to enter one end of the cylinder, while a port at the other end delivers the medicine at a regulated rate suitable for the particular therapeutic agent (51, 52, 53, 15).

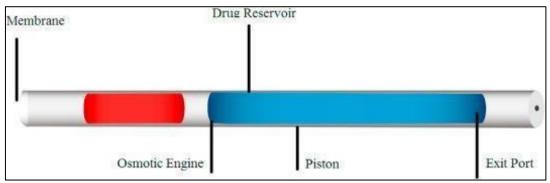


Fig 7: DUROS Technology

3.4 DUREDAS Technology (Dual release drug delivery system)

With these techniques, the two layers were combined into a sole tablet through two separate direct compression stages. It provides a release of two or more drugs in combined form or either unique release of one drug. DUREDAS TM Technology accomplishes it different release patterns by combining hydrophilic polymers to manufacture the bilayer tablet. The development of OTC release anesthetics was the initial application of this technology (3, 16, 54, 55, 56).

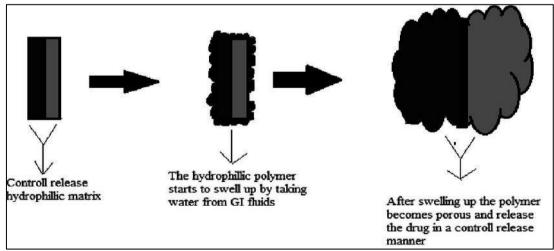


Fig 8: Schematic diagram of DUREDAS

3.5 ENSOTROL Technology

Solubility can be improved with help of this technology. Using a combined approach for the drug delivery system, the Shire laboratory efficiently finds and adds the solubility enhancer or agent to achieve the best dosage form in the controlled release drug delivery system (57).

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

https://www.theaspd.com/ijes.php

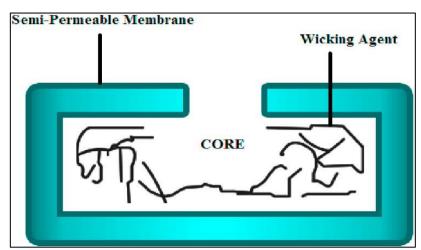


Fig 9: EN SO TROL Technology

3.6 Geminex Technology

This method significantly improves the therapeutic efficacy of drugs while reducing adverse effects. With a single dose, it release the drugs combination at different rates. Penwest, a pharmaceutical company which uses it widely for many diseases. The foundation of this technique is a bi-layer tablet that uses a TIMERx matrix in the controlled release layers (58).

3.7 PRODAS Technology

It is a multi-particulate drug technology, in this technology a single formulation or tablet contains a combination of various mini-tablets that give desired release rate such as immediate, sustain, controlled, or delayed release and it is also referred as "Programmable oral drug absorption system". The method combines the advantages of hydrophilic matrix tablets and multi-particle tablets to deliver the combined effects of both medications in a single dosage. Sometimes, Minitab is integrated with different APIs to create products with expected release schedules. PRODAS technology helps deliver drugs to the GIT in a targeted manner (59, 60).

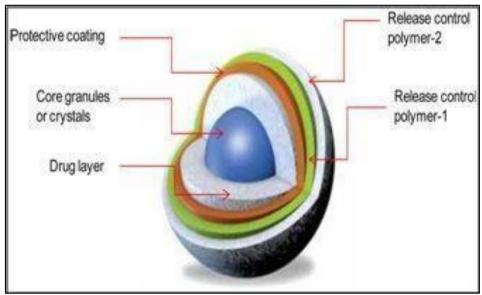


Fig 10: PRODAS Technology

3.8 Erodible Molded Multilayer Tablet

It has a coat and matrix and is manufactured using ordinary plastic injection molding and pattern of release is determined by engineering and design of the matrix and coat. It has biodegradable coat which possesses least permeability to water. This method helps distribute the drug in a zero-order release

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

https://www.theaspd.com/ijes.php

pattern without affecting gastrointestinal disorders. For drugs that have stability issues when subjected to water, such as chemical as well as physical stability issues, this technique is particularly beneficial. Additionally, it production cost is cheap and offers correctness and reproducibility (31, 61, 62, 63).

4. BILAYER TABLET PRESS TYPES

4.1 Single Sided Rotary Tablet Press

With its independent doublet feeder chambers, the single-sided press is thought to be most fundamental type model. The powder has passed beneath the feeder, it is first put into the die for the first layer and then again for the second layer to create a two separate layers of tablet and then the separate layers are connected by a few steps at their interface, to strengthening the bond between them and decreasing the possibility of separation (64-67).

4.1.1 Constraints of the one-sided press

- The layers don't appear to be distinct from one another.
- The initial layer's short dwell time because of the tiny compression roller could lead to less capping, hardness, and de-aeration (16, 67).
- Insufficient control and weight measurement for the two separate layers (16, 68, 69).

4.1.2 Dwell time

It denotes the time interval taken by the force of compression to exceeds 90% of its maximum value. Extended period of dwell are a feature of high-quality tablets, particularly when a complex composition is compacted (7, 70, 71).

4.1.3 Compression force

Since the bonding between first and second layer may weaken if the compression force above 100 daN is applied to first layer, so to preserve the ability of layers to link with one another, compression force on initial film is likely <100 daN. Inadequate layer bonding reduces the tablet's hardness (2, 72, 73).

4.2 Double Sided Rotary Tablet Press

The tablet weight is managed, tracked, and adjusted using the compression force (10, 74). Each tablet effective peak compression force is determined by the control system compression on main layer. When required, control system adjusts die's filling depth and rejects tablets that are not within tolerance using this force of compression as a signal (75, 76).

4.2.1 Merits of double sided tablet press

- Better weight monitoring and independent mass management
- Avoid capping, by using minimal compression on the initial layer.
- Their dwell time has been extended to ensure adequate hardness (77, 78).

4.2.2 Constraints of the double-sided press

- Minimal compression given to first layer, which could lead to weak bindings or interaction between the layers.
- Sometime compression force is Insufficient, and it can contribute to the restricted accuracy of weight monitoring (79, 80).

4.3 Bilayer Tablet Press With Displacement

It operates differently; during displacement measurement, the control system's responsiveness depends on delivered pre-compression force (81). Pre-compression force decreases to enhance, the connection among the initial and subsequent layers. The bilayer tablet press consists of two compressors: the top and bottom pre-compression rollers. While the latter, that controls height of compression, hangs on the yoke and former is attached to an air piston (8, 71, 82, 83).

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

https://www.theaspd.com/ijes.php

4.3.1 Merits of press with displacement

- This type of press provides precise weight monitoring and independent weight adjustment for each layer.
- It also provides sufficient strength at maximum wheel speed.
- By employing a modest pre-compression force, it also avoids capping and the breakage of the twolayer connection.
- By eliminating the visual contrast among layers, it maximizes profit.
- Prevent layers from becoming contaminated with one another (1, 13).

5. BILAYER TABLET CHARACTERIZATION

5.1 Physical Appearance

When it comes to customer acceptability of a tablet, there are a number of variables that are vital to consider. These factors include the general look, visual identity, and style of the tablet. The sizes, forms, colors, flavors, surface textures, physical defects, scents (or not), consistency, and distinguishing markings of tablets vary widely (84, 85, 86).

5.2 Thickness of Bilayer Tablets

Uniform tablet thickness is used by some filling machinery to count. For tablet size consistency, tablet thickness and diameter were crucial. A micrometer device for ten tablets or an standard vernier caliper are utilised to gauge the thickness of tablets. To guarantee consistency and uniformity in bilayer pills, the thickness must be uniform within the statistical limit (13, 86, 87).

5.3 Weight Variation

The official books provide standard techniques to be followed for the evaluation of weight variance. An approximate level of content consistency is ensured by the study's appropriate outcome. In the weight variation test, selection of twenty tablets at random is done, than determine their average weight, and compare it with regular procedures that are followed are described in full in the official books (88, 89).

5.4 Distribution of Particle Sizes

The sieving method was used to measure the distribution of particle sizes (90).

5.5 Angle of Repose

Diameter and angle of repose of the powder cone were estimated using the following formula:

Tan ø=h/r

Where, h = Height,

r = Radius of the powder cone.

The flow properties of powder mixtures are found using the following formulas:

Hausner ratio = Tapped density/Bulk density

Carr's index = (Tapped density – Bulk density)/ Tapped density

5.6 Moisture sorption capacity

Every disintegrant has the ability to take in moisture from the air, that has an impact on the drugs that are sensitive to moisture. One gram of disintegration was used to test the moisture sorption capability. The one gram of disintegrant uniformly dispersed in a petri dish, maintained for two days at $37\pm1^{\circ}$ C and 100% relative humidity in a stability chamber, and the amount of moisture absorbed by weight difference was examined (91, 92).

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

https://www.theaspd.com/ijes.php

5.7 Hardness of Bilayer Tablet

The crushing strength is another term for the hardness. An extremely delicate tablet is unable to withstand abrasion on subsequent processes, whereas an excessively rigid tablet might fail shatter when necessary to meet the dissolution criteria. Optimal tablet crushing requires a minimum breaking force of 4 kg, and the power needed to break them is expressed in kilograms (kg) (93). A tablet's density and porosity, among many other characteristics, are largely related to its hardness. It largely depends on tablet attributes such as size, dimensions, excipients, composition, and compression force and differs throughout tablet types. In the 1930s, Monsanto created a compact, portable testing device that is currently referred to as the Monsanto or Stokes hardness tester. Later, the Schleuniger and Pfizer Strong-Cobb device was also introduced (94).

5.8 Friability of Bilayer Tablet

The friability test is focuses on the tablet's hardness, assesses how well a tablet can tolerate stress and friction during handling, packaging, and shipping. A percentage is used to measure the friability value. Tablets that show a weight loss of no more than 1% are collected, while broken tablets are left uncollected (95). Typically, friability is determined using the Roche Friabilator, in which already weighs a set number of tablets were places in the device, rolls them repeatedly, gives them shocks, and causes them to fall 6 inches with each turn. The tablets are weighed once more after almost four minutes have passed, and the difference between their current weight and the initial weight is determined as the tablet's friability (96).

Friability= (Wo-Wf)×100/Wo

Where, W₀ is the initial weight of tablets,

W_f is the final weight of tablets.

5.9 Buoyancy Determination

The gastro-retentive bilayer tablets are used for this test. The 900 ml of 0.1N HCl is used as the dissolution medium, one tablet is placed inside it, and then suitable rotation per minute (rpm) is established, and the temperature is then kept at $37\pm2^{\circ}$ C. The two key parameters that define it are "Total Floating Time" and "Floating Lag Time." TFT measures how long a tablet stays afloat on medium, whereas FLT measures how long it takes a tablet to float on medium; both times will be tracked and recorded (97).

5.10 Swelling Index

After being carefully weighed, each tablet would be kept in fifty milliliters of water. Shortly after an hour, the tablets would require being carefully removed, dried using filter paper to get rid of any last bits of water, and then weighed exactly. The following formula would be used to get the percentage of swelling: (98)

Swelling study = Wet weight - Dry weight x 100/ Dry weight

5.11 Drug Content

After the dissolving process is finished, a sample of the solvent used for the dissolution study can be taken in order to ascertain the drug content of compounds present in various layers. To make up for sampling loss during the dissolution investigation, the right amount is calculated. At least three duplicates of the study are conducted, and the standard deviation is used to express the results (67).

5.12 Dissolution Studies

The tablets need to go through an in-vitro drug release test to see if they could offer the desired controlled drugs delivery. Under controlled circumstances, dissolution tests calculate the length of time require by drug to break apart from a tablet into a solution. A site of dissolution can influence the

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

https://www.theaspd.com/ijes.php

choice of dissolution medium. Researchers use the United States Pharmacopeia (USP) dissolution apparatus to perform in vitro drug release experiments. The percentage of a drug that dissolves in a solvent system under conditions outlined in the drug's official monograph is known as dissolution. One or more pharmacological substances may be present in the two layers of bilayer tablets (86, 99).

5.13 Stability Studies

Following appropriate packaging, the bilayer tablets are stored under ideal circumstances for the amount of period recommended by the ICH (International Council for Harmonization of Technical *Requirements* for Pharmaceuticals for Human Use) guidelines. After fifteen days, these tablets are removed and their chemical and physical properties such as their durability, visual defects, pharmaceutical ingredients, dissolution, and friability are assessed. The kinetics of deterioration are ascertained by fitting the gathered data into the deregulations. The Arrhenius equation is used to plot the accelerated stability data in order to determine the tablets' shelf life at room temperature, or 25 °C (100, 101).

5.14 Transmission Raman Spectroscopy (TRS)

Transfer Raman Spectroscopy (TRS) is a technology that is being used more and more in pharmaceutical tablet analysis for quality control, formulation, and process understanding. Because of its intricate construction, the bilayer tablet poses an exceptionally difficult scenario. Predicting the API content of stacked tablets was the goal of our quantitative analysis methodology (102, 103).

5.15 Scanning Electron Microscopy

The shape and structure of tablets can be seen using the SEM. The tablets are cut using a scalpel, attached with adhesive tape to a brass stub, covered by thin coating of gold (about 150 Å) for a short while under vacuum, and then examined under a microscope (104).

5.16 Differential Scanning Calorimeter

Using DSC, thermal analysis is done. When exposed to nitrogen (N2) gas, pure pharmaceutical components, excipients, and bilayer tablets should be tightly packed in aluminum pans and provided with temperatures ranging from 20 to 300 °C at a linear heating rate of 10 °C min–1. Each component of a drug has a unique peak. Drug material is molecularly distributed throughout the tablet matrix system if this peak is absent from the DSC thermo-gram (105).

5.17 X-Ray powder diffraction (XRPD)

XRPD is employed for evaluating the active components crystallinity. XRPD tests utilizing a Cu anode and a graphite mono-chromator were carried out at a room temperature with an input voltage of 35 kV and the current-voltage of 20 mA. The process parameters were adjusted to a scan step-time of 25s and a scan-size of $0.02\,^{\circ}$ (20). The 20 diffraction angle is used to evaluate bilayer tablets at a range of 5 to 50 °. Potential alterations in the pharmacological compounds' distinctive peaks suggest that they are changing from crystalline to amorphous forms (106).

6. APPLICATIONS OF BILAYER TABLETS

6.1 Hypertension

Due to its complicated nature, a mono therapy strategy to high blood pressure treatment is typically unproductive. To achieve their ideal blood pressure, most people need to take multiple drugs from different classes (107). Bilayer technology offers a number of benefits over alternative therapies, such as a more straightforward dosage schedule, better patient adherence, fewer adverse effects, a slower emergence of antibiotic resistance, and possibly cheaper costs associated with production, handling, packing, and shipping. The goal of developing sustained delivery systems is to guarantee uniform drug distribution, enhance therapeutic effectiveness, or reduce the frequency of doses (108).

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

https://www.theaspd.com/ijes.php

Table 1: Some marketed anti-hypertensive bilayer tablets (109)

S. No.	Class	Name of Drugs	
1.	Combinations of Diuretics	Amiloride and hydrochlorothiazide	
		Spironolactone and hydrochlorothiazide	
		Triamterene and hydrochlorothiazide	
2.	ACE inhibitors and diuretics	Benazepril and hydrochlorothiazide	
		Captopril and hydrochlorothiazide	
		Enalapril and hydrochlorothiazide	
		Lisinopril and hydrochlorothiazide	
		Moexipril and hydrochlorothiazide	
3.	Angiotensin-II receptor	Losartan and hydrochlorothiazide	
	antagonists and diuretics	Valsartan and hydrochlorothiazide	
4.	Calcium channel blockers and	Amlodipine and benazepril	
	ACE inhibitors	Diltiazem and enalapril	
		Felodipine and enalapril	
		Verapamil and trandolapril	
5.	Beta blockers and diuretics	Atenolol and chlorthalidone	
		Bisoprolol and hydrochlorothiazide	
		Metoprolol and hydrochlorothiazide	
		Nadolol and bendroflumethazide	
		Propranolol and hydrochlorothiazide	
		Propranolol ER and hydrochlorothiazide	
		Timolol and hydrochlorothiazide	
6.	Miscellaneous combinations	Clonidine and chlorthalidone	
		Hydralazine and hydrochlorothiazide	
		Methyldopa and hydrochlorothiazide	
		Prazosin and polythiazide	

6.2 Diabetes

Combination therapy is advised to patients when mono therapy is unable to regulate their glycemic parameters. This will help them establish glycemic control and postpone the degradation of their β -cells. Two or three drugs may be used in combination therapy. Oral hypo-glycemic are occasionally used in conjunction with insulin therapy (110,111).

Table 2: Some antidiabetic bilayer tablets available in market (112)

S. No.	Drug's name	Manufacturer
1.	Sitagliptin (DPP-4 inhibitor) and Metformin	Merck.
	(extended-release).	
2.	Empagliflozin (inhibit SGLT2), Linagliptin	Boehringer Ingelheim and Eli Lilly.
	(inhibit DPP-4), and Metformin (extended-	
	release).	
3.	Dapagliflozin (SGLT2 inhibitor) and Metformin	AstraZeneca.
	(extended-release).	
4.	Empagliflozin (SGLT2 inhibitor) and Linagliptin	Boehringer Ingelheim
	(DPP-4 inhibitor)	
5.	Empagliflozin (SGLT2 inhibitor) and Metformin	Boehringer Ingelheim and Eli Lilly.
	(extended-release).	
6.	Alogliptin (DPP-4 inhibitor) and Metformin.	Takeda.
7.	Alogliptin (DPP-4 inhibitor) and Pioglitazone	Takeda
	(thiazolidinedione).	

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

https://www.theaspd.com/ijes.php

8.	Pioglitazone (thiazolidinedione) and Metformin (extended-release).	Takeda
9.	Ertugliflozin (SGLT2 inhibitor) and Metformin (extended-release).	Merck and Pfizer.
10.	Linagliptin (DPP-4 inhibitor) and Metformin (extended-release).	Boehringer Ingelheim and Eli Lilly.

6.3 Nocturnal Asthma

One prevalent condition with a greater circadian disparity is asthma. Treatment for Nocturnal Asthma (NA), which is characterized by an increase in warning signs at night and a loss in lung functions, is necessary. It is an intermittent exacerbation of asthma. These symptoms are referred to as circadian events and are associated with sleep. Since bilayer tablets are made in accordance with the body's circadian cycle, they have attained a notable level of responsiveness. Two layers are combined to create a bilayer tablet: a sustained release layer that releases drug gradually for prolonged period, maintaining therapeutic levels of drug during night and a fast release layer that distributes the medication quickly, relieving asthma symptoms quickly after ingestion. This helps prevent nocturnal asthma attacks and ensures uninterrupted sleep (113).

• Some examples of bi layer tablets are:

- ✓ Fexofenadine and Montelukast (114),
- ✓ Montelukast sodium (115) and
- ✓ Terbutaline sulphate (116).

6.4 Sexually Transmitted Diseases

Another name for (STDs) is venereal diseases. STDs are a major health issue. Gonorrhea, trichomoniasis, chancroid, syphilis, bacterial vaginosis, and genital candidiasis are among the common sexually transmitted diseases. Unwanted toxicity has been found to result from the large range of fluctuations in plasma drug concentration that the conventional form of the drugs causes. Controlled drug delivery systems are necessary due to a number of issues, including recurrent drug dosage and irregular absorption. The current approach of treating STIs (STDs) is fraught with challenges, including drug resistance. Patients who are allergic or pregnant have limited medication options. The bi-layered tablet is a new technology that is widely used today to provide a controlled medication release mechanism that delivers drugs efficiently. When two incompatible medications need to be separated, bi-layer tablet technology is the best option for their continuous release (117). Currently, there are no commercially available bilayer tablets specifically intended for the management STDs. However, research has been conducted to develop such formulations.

• Research include:

- ✓ Cefixime trihydrate and Ofloxacin (118)
- ✓ Disulfiram and 5-Fluorouracil (119)

6.5 Psychosis and Other Mental Health Disorders

Customized drug regimens are frequently necessary for psychosis and other mental health conditions such bipolar disorder, schizophrenia, and depression. Bilayer tablets can be made to simplify regimens, improve drug absorption, and combination of two drugs.

• Some marketed formulations are:

- ✓ Olanzapine and Samidorphan (120, 121)
- ✓ Flupentixol/Melitracen Combination
- ✓ Olanzapine/Fluoxetine Combination

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

https://www.theaspd.com/ijes.php

7. BILAYER TABLET EXAMPLES

S. No.	Name of Drugs	Purpose	References
1.	Statin, Aspirin	To reduce drug-drug interactions and	40
		aspirin adverse effects	
2.	Metformin, Glipizide	Diabetes synergistic impact	122
3.	Telmisartan, Simvastatin	To reduce the interaction between	123
	Duaman alal IICI	telmisartan and simvastatin	124
<u>4.</u> 5.	Propranolol HCl Misorostol, Diclofenac	Bimodal drug release To reduce drug-to-drug contact	124
	Amlodipine, Atenolol	To increase the stability of the	126
6.	Annocipine, Atenoioi	combination drug	120
7.	Telmisartan,	To reduce the amount of	127
	Hydrochlorthiazide	hydrochlorothiazide that comes into	
		touch with the essential elements of	
		telmisartan	
8.	Glipizide, Metformin HCl	To prevent drug interactions when mismatched	128
9.	Salbutamol, Theophylline	combined impact on asthma	54
10.	Montelukast, Levocetirizine	To increase the stability of the combination medicine	129
11.	Pioglitazone HCl,	Treatment for Type II Diabetes	130
	Gliclazide		
12.	Losartan potassium	Treatment of hypertension	131, 132
13.	Trimetazidine HCl,	Platelet inhibitors and cytoprotective	133
	Clopidogrel bisulphate	anti-ischemic drugs for acute coronary	
		crises	
14.	Diclofenac,	combined impact on pain	134
	Cyclobenzaprine		
15.	Metformin HCl	Diabetes synergistic impact	135
16.	Diclofenac,	combined impact on pain	88
	Cyclobenzaprine		
17.	Metformin HCl,	For creating polytherapy NIDDS and	136
	Atorvastatin Calcium	treating hyperlipidemia	
18.	Cefixime Trihydrate, Dicloxacilline Sodium	combined impact on bacterial infections	137
19.	Piracetam, Vinpocetin	The combined impact of Alzheimer's	138
20.	Metformin HCl,	A combined impact on diabetic mellitus	139
	Pioglitazone	<u> </u>	
21.	Cefuroxime Axetil,	synergistic action against microbial	140
	Potassium Clavulanate	diseases and to reduce the dose's adverse	
		effects	
22.	Amlodipine Besilate	synergistic impact on high blood	141, 142
	Metoprolol Succinate	pressure	
23.	Diclofenac Sodium,	combined impact on pain	143
	Paracetamol		
24.	Ibuprofen,	Back pain synergistic impact	144
25.	Paracetamol, diclofenac	combined impact on pain	145

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

https://www.theaspd.com/ijes.php

26.	Metformin HCl,	A combined impact on diabetic mellitus	86
	Pioglitazone		
27.	Tramadol,	combined impact on pain	146
28.	Atorvastatin, Atenolol	Treatment of hypertension and hypercholesterolemia	147, 148
29.	Nifedipine	Treatment of hypertension and angina	149
30.	Aspirin, Isosorbide 5- mono-nitrate	Treatment of pain, fever, and other inflammatory conditions	150, 137
31.	Granisetron HCl	For resolving the problems with bioavailability and minimizing adverse effects	71
32.	Indomethacin	Drug release in two phases	151
33.	Atenolol	Reducing adverse effects, frequency of administration, and bioavailability problems	152
34.	Atorvastatin, Calcium	Reducing adverse effects, frequency of administration, and bioavailability problems	144
35.	Atenolol, Lovastatin	Biphasic release profile and hypertension: a synergistic impact	153
36.	Cefuroxime, Axetil	Bimodal drug release	154, 155
37.	Furosemide	For enhancing bioavailability	156

8. CONCLUSION

In summary, by joining many APIs and excipients, bilayer tablets formulation offer a modern type of therapy that efficiently heals medical conditions. These formulation are prepared correctly while taking into account all GMP guidelines to preserve its quality over time and they have a lesser amount of adverse effects. Different approaches and presses are utilized to achieve these requirements in order to maximize effectiveness and reduce negative effects. To guarantee its efficacy and stability over the course of its shelf life, the produced tablet is assessed chemically and physically. These days, in order to maintain a long-lasting effective plasma level, the similar drug is used in place of a loading or initial dose and a maintenance or extended dose, or multiple bilayer tablets are created with different APIs for combination therapy.

REFERENCES

- 1. Mishra P, Sharma PK, Malviya R. A review on Bi-layer tablets-An emerging trend. Journal of Drug Delivery and Therapeutics. 2014 Jul 14;4(4):110-4.
- 2. Kale SS, Saste VS, Ughade PL, Baviskar DT. Bilayer tablet. International Journal of Pharmaceutical Sciences Review and Research. 2011 Jul;9(1):25-30.
- 3. Gopinath C, Bindu VH, Nischala M. An overview on bilayered tablet technology. Journal of global trends in pharmaceutical sciences. 2013 Apr;4(2):1077-85.
- 4. Yadav A, Jain DK. Formulation development and in vitro characterization of bilayer and floating-bioadhesive tablets of propranolol hydrochloride. Asian Journal of Pharmacy & Life Science. 2011 Jan;1(1):2-12.
- 5. Kiran B, Rao PS, Babu GR, Kumari MV. BILAYER TABLETS-A REVIEW. International Journal of Pharmaceutical, Chemical & Biological Sciences. 2015 Jul 1;5(3).
- 6. Kasperek R, Zimmer L, Zun M, Dwornicka D, Wojciechowska K, Poleszak E. The application of povidone in the preparation of modified release tablets. Current Issues in Pharmacy and Medical Sciences. 2016 Jun 1;29(2):71-8.
- 7. Devtalu SV, Patil AE, Bari MM, Barhate SD. A Review on Novel Approach—Bilayer Tablet Technology. International Journal of Pharmaceutical Sciences Review and Research. 2013 Jul;21(1):46-52.
- 8. Tadavi SA, Patel MR. Brief Overview on Compaction and Compression of Bilayer Technology. Journal of pharmacy research. 2011 Sep;4(9):2987-90.
- 9. Patel M, Shah N. A Sequential Review on Bilayered Tablets. Journal of Pharmaceutical Science and Bio Scientific Research. 2013;3(5):163-9.

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

- 10. Ashok PH, Kumar TA. A novel approach of bilayer tablet technology: a review. The International Research Journal of Pharmacy. 2012 May 7;3(5):30-5
- 11. Siswanto A, Fudholi A, Nugroho AK, Martono S. In vitro release modeling of aspirin floating tablets using DDSolver. Indonesian Journal of Pharmacy. 2015 Apr 4;26(2):94.
- 12. Anusha JS, Karthik M. A Review on Bilayered Tablets. Research and Review: Journal of Pharmacy and Pharmaceutical Sciences. 2016;5:118-20.
- 13. Pujara ND, Gokani RK, Paun JS. Bilayer tablet-an emerging trend. International journal of pharmaceutical research and development. 2012 Jun;4(4):103-4.
- 14. Aggarwal S, Syan N, Mathur P. Bi-layer tablet technology—opening new ways in drug delivery systems: an overview. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2013;4(1):8-16.
- 15. Mishra A, Bhatt GK, Kothiyal P. Review: bilayer tablet and evaluation. Int. J. Drug Res. Tech. 2013;3(2):21-30.
- 16. Patel M, Sockan GN, Kavitha MT. Challenges in the formulation of bilayered tablets: A review. International Journal of Pharma Research and Development. 2010;2(10):3.
- 17. Rudnic EM. Kottke et al MK Tablet dosage form. Modern Pharmaceutics.;72:369.
- 18. Deshpande RD, Gowda DV, Mahammed N, Maramwar DN. Bi-layer tablets-An emerging trend: a review. International journal of pharmaceutical sciences and research. 2011 Oct 1;2(10):2534.
- 19. Kalam MA, Humayun M, Parvez N, Yadav S, Garg A, Amin S, Sultana Y, Ali A. Release kinetics of modified pharmaceutical dosage forms: a review. Cont J Pharm Sci. 2007 Jan;1(1):30-5.
- 20. Li SP, Karth MG, Feld KM, Di Paolo LC, Pendharkar CM, Williams RO. Evaluation of bilayer tablet machines—a case study. Drug development and industrial pharmacy. 1995 Jan 1;21(5):571-90.
- 21. Charman SA, Charman WN. Oral modified-release delivery systems. Modified-release drug delivery technology. 2002 Nov 7;1.
- 22. Hiestand EN, Wells JE, Peot CB, Ochs JF. Physical processes of tableting. Journal of Pharmaceutical Sciences. 1977 Apr 1;66(4):510-9.
- 23. Karehill PG, Glazer M, Nyström C. Studies on direct compression of tablets. XXIII. The importance of surface roughness for the compactability of some directly compressible materials with different bonding and volume reduction properties. International journal of pharmaceutics. 1990 Oct 15;64(1):35-43.
- 24. Poon CY, Bhushan B. Comparison of surface roughness measurements by stylus profiler, AFM and non-contact optical profiler. Wear. 1995 Nov 1;190(1):76-88.
- 25. Inman SJ, Briscoe BJ, Pitt KG. Topographic characterization of cellulose bilayered tablets interfaces. Chemical engineering research and design. 2007 Jan 1;85(7):1005-12.
- 26. Akseli I, Abebe A, Sprockel O, Cuitiño AM. Mechanistic characterization of bilayer tablet formulations. Powder technology. 2013 Feb 1;236:30-6.
- 27. Akseli I, Dey D, Cetinkaya C. Mechanical property characterization of bilayered tablets using nondestructive air-coupled acoustics. AAPS PharmSciTech. 2010 Mar;11:90-102.
- 28. Abdul S, Poddar SS. A flexible technology for modified release of drugs: multi layered tablets. Journal of controlled release. 2004 Jul 7;97(3):393-405.
- 29. Martin K, Abebe A, Raghavan K, Stamato H, Timmins P. Bilayer tablets, effects of upper punch penetration on the potency of the second layer. InAAPS Annual Conference 2012.
- 30. Abebe A, Akseli I, Sprockel O, Kottala N, Cuitiño AM. Review of bilayer tablet technology. International journal of pharmaceutics. 2014 Jan 30;461(1-2):549-58.
- 31. Kottala N, Abebe A, Sprockel O, Bergum J, Nikfar F, Cuitiño AM. Evaluation of the performance characteristics of bilayer tablets: Part I. Impact of material properties and process parameters on the strength of bilayer tablets. Aaps Pharmscitech. 2012 Dec;13:1236-42.
- 32. Wu CY, Seville JP. A comparative study of compaction properties of binary and bilayer tablets. Powder Technology. 2009 Jan 31;189(2):285-94.
- 33. Akhtar M, Jamshaid M, Zaman M, Mirza AZ. Bilayer tablets: A developing novel drug delivery system. Journal of Drug Delivery Science and Technology. 2020 Dec 1;60:102079.
- 34. Santra S, Mahanti B, Bera K. Review on Bilayer Tablet: The New Era.
- 35. Shirwaikar AA, Kumar SM, Jacob S, Rashi W, Ravi K. Recent developments in floating drug delivery systems for gastric retention of drugs, an overview. Indian drugs. 2006;43(9):697-704.
- 36. Fang W, Hsu AL, Song Y, Kong J. A review of large-area bilayer graphene synthesis by chemical vapor deposition. Nanoscale. 2015;7(48):20335-51.
- 37. Chauhan M, Suthar S, Shah A, Polara M, Patel M, Patel J. Bilayer tablet: Immediate release and sustain release: A review. Research Journal of Pharmacy and Technology. 2012;5(6):716-20.

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

- 38. Verma RK, Garg S. Drug delivery technologies and future directions. Pharm. Technol. 2001 Feb;25(2):1-4.
- 39. De-fang OU, Shu-fang NI, Jin ME, Xing-gang YA, Zhi-quan SO, Wei-san PA. Compound Metformin/Glipizide Bilayer Extended Release Tablets: Development and in Vitro Release. Journal of Chinese Pharmaceutical Sciences. 2005 Sep 15;14(3):169.
- 40. Ullah I, Jain N, inventors. Pharmaceutical composition containing a combination of a statin and aspirin and method. United States patent application US 09/824,364. 2002 Mar 21.
- 41. Gaur PK, Mishra S, Prabhakaran P, Bhardwaj S, Puri D, Kumar SS, Dubey J, Verma A, Verma N. Prospectives and potentials of bilayer technology: a novel approach. Journal of Pharmaceutical Sciences and Pharmacology. 2015 Jun 1;2(2):148-61.
- 42. J. Goole, K. Amighi, 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems, Int. J. Pharaam. 499 (1–2) (2016) 376–394.
- 43. Pharmacopoeia I. Controller of publications. New Delhi. 1996;2:764.
- 44. Rameshwar V, Kishor D, Tushar G. Bi-layer tablets for various drugs: A review. Scholars Academic Journal of Pharmacy. 2014;3(3):271-9.
- 45. Conley R, Gupta SK, Sathyan G. Clinical spectrum of the osmotic-controlled release oral delivery system (OROS), an advanced oral delivery form. Current medical research and opinion. 2006 Oct 1;22(10):1879-92.
- 46. Lende LK, Banerjee SK, Gadhave MV, Gaikwad DD, Gaykar AJ. Review on: Bilayer floating tablet. Asian Journal of Pharmaceutical Research and Development. 2013 Jan 1:31-9.
- 47. Ijaz H, Qureshi J, Danish Z, Zaman M, Abdel-Daim M, Bashir I. Design and evaluation of bilayer matrix tablet of metoprolol tartrate and lisinopril maleate. Advances in Polymer Technology. 2017 Jun;36(2):152-9.
- 48. Mohan Kamila M, Mondal N, Kanta Ghosh L, Kumar Gupta B. Multiunit floating drug delivery system of rosiglitazone maleate: development, characterization, statistical optimization of drug release and in vivo evaluation. AAPS PharmSciTech. 2009 Sep;10:887-99.
- 49. Rekhi GS. Advances in solid dose oral drug delivery. ON Drug Delivery: Oral Drug Delivery and Advanced Excipients. 2010:14-8.
- 50. Harika BI, Sirisha VN, Kumar PK, Sruthi B, Namarata M, Rao YK. A review on emerging trends of bilayer tablets. Int J Pharm Res Bioscience. 2012;1(5):1-20.
- 51. Chien Y. Novel drug delivery systems. (No Title). 1991 Oct 31.
- 52. Hu L, Hu Q, Kong D. FORMULATION AND IN VITRO EVALUATION OF ASPIRIN AND ISOSORBIDE 5-MONO-NITRATE SUSTAINED BILAYER TABLETS. International Journal of Pharmacy & Life Sciences. 2014 Mar 1;5(3).
- 53. Melocchi A, Parietti F, Loreti G, Maroni A, Gazzaniga A, Zema L. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. Journal of Drug Delivery Science and Technology. 2015 Dec 1;30:360-7.
- 54. Nagaraju R, Kaza R. Formulation and evaluation of bilayer sustained release tablets of salbutamol and theophylline. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN). 2009 Nov 30;2(3):638-46.
- 55. Kavitha K, Kumar MR, Dakshayani S, SD JS. Bilayer tablet technology: An overview. Journal of Applied Pharmaceutical Science. 2011 Oct 30(Issue):43-7.
- 56. Sarma A, Deb P, Dash S. Bilayer tablet and duredas technology—a review. International Journal of Pharmacy and Biological Sciences. 2013;3(2):554-63.
- 57. Rayakwar N, Dangi YS. Development and characterization of controlled release bilayered tablets of Citicoline sodium. Journal of Drug Delivery and Therapeutics. 2019 Apr 15;9(2-s):125-31.
- 58. Kumar V, Prasad G, Ganesh B, Swathi C, Rashmi A, Reddy A. Development and evaluation of guaifenesin bilayer tablet. International Journal of Pharmaceutical Sciences and Nanotechnology (IJPSN). 2010 Nov 30;3(3):1122-8.
- 59. Yeole PG, Khan S, Patel VF. Floating drug delivery systems: Need and development. Indian journal of pharmaceutical sciences. 2005 May 1.
- 60. Busignies V, Mazel V, Diarra H, Tchoreloff P. Role of the elasticity of pharmaceutical materials on the interfacial mechanical strength of bilayer tablets. International journal of pharmaceutics. 2013 Nov 30;457(1):260-7.
- 61. Kottala N, Abebe A, Sprockel O, Akseli I, Nikfar F, Cuitiño AM. Influence of compaction properties and interfacial topography on the performance of bilayer tablets. International Journal of Pharmaceutics. 2012 Oct 15;436(1-2):171-8.

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

- 62. Muzzio FJ, Ierapetritou M, Portillo P, Llusa M, Levin M, Morris KR, Soh JL, McCann RJ. A forward-looking approach to process scale-up for solid dose manufacturing. InPharmaceutical Dosage Forms- Tablets 2008 Jun 3 (pp. 135-168). CRC Press.
- 63. Sheetz MP, Painter RG, Singer SJ. Biological membranes as bilayer couples. III. Compensatory shape changes induced in membranes. The Journal of cell biology. 1976 Jul 1;70(1):193-203.
- 64. Chaudhari SP, Shirsat AE, Bawaskar MS. Formulation and evaluation of bilayer floating tablet of carvedilol phosphate. Journal of Drug Delivery and Therapeutics. 2012 Sep 15;2(5).
- 65. Rahman Z, Ali M, Khar RK. Design and evaluation of bilayer floating tablet of Captopril. ACTA PHARMACEUTICA-ZAGREB-. 2006 Jan 1;56(1):49.
- 66. Ratnaparkhi MP, Ganesh VR. Bilayered Tablet Technology with Recent Advancement-A Review. Research Journal of Pharmacy and Technology. 2014;7(10):1158-64.
- 67. Sharma V. Formulation, optimization and evaluation of bilayer tablet of antihypertensive drug. Journal of Drug Delivery and Therapeutics. 2019 Jul 15;9(4):704-8.
- 68. Abshagen U, Spörl-Radun S. First data on effects and pharmacokinetics of isosorbide-5-mononitrate in normal man. European journal of clinical pharmacology. 1981 Nov;19:423-9.
- 69. Hutt V. Bonn R et al, Fritschi E et al, Jaeger H et al, Evaluation of the pharmacokinetics and absolute bioavailability of three isosorbide-5-mononitrate preparation in healthy volunteers. Arzneim.-Forsch./Drug Res. 1995:142-5.
- 70. Rao SV, Priyanka B, Padmalatha K. Bilayer tablet technology: A novel approach. GSC Biological and Pharmaceutical Sciences. 2019;7(2).
- 71. Vogeleer J, De Smet P, Pharma N. Bi-layer tablets-why special technology is required. European pharmaceutical review. 2002;7(4):44-51.
- 72. Vishwakarma AG, Mogal RT, Pawar AY. Bilayer tablet-a new ways in oral drug delivery system. International Journal of Pharmaceutical Technology and Research. 2014;6(5):1416-28.
- 73. Ghugarkar P, Swain K, Suggala V, Adsare P, Shaik D. Review on bilayer tablet technology. World Journal of Pharmaceutical Research. 2015 Apr 30;4(7):1438-52.
- 74. Singh BN, Kim KH. Floating drug delivery systems: an approach to oral controlled drug delivery via gastric retention. Journal of Controlled release. 2000 Feb 3;63(3):235-59.
- 75. Singh NP, Ganarajan G, Kothiyal P. Bilayer Tablet: A Review. World Journal of Pharmacy and Pharmaceutical Sciences. 2015 Sep 7;4(11):703-17.
- 76. Chakka PG, Bindu VH, Nischala M. An overview on bilayered tablet technology. Journal of Global Trends in Pharmaceutical Sciences. 2013;4(2).
- 77. Singh A, Das S, Gupta S, Ghosh S. The challenges of producing bilayer tablet: A review. Journal of Drug Delivery and Therapeutics. 2021 Aug 15;11(4-S):171-5.
- 78. Bhuiyan MA, Dewan I. Bilayered Tablet Technology: An Overview.
- 79. Pulgamwar GV, Pentewar RS, Bharti RU, Sugave BK, Adepawar SP, Bilayer tablet-technology-a review.
- 80. Kottala N, Abebe A, Sprockel O, Bergum J, Nikfar F, Cuitiño AM. Evaluation of the performance characteristics of bilayer tablets: Part II. Impact of environmental conditions on the strength of bilayer tablets. AAPS PharmSciTech. 2012 Dec;13:1190-6.
- 81. Sandhyarani T, Srinath B, Reddy CS, Sowmya C. Bilayer Tablet and IT'S TECHNOLOGY: an Overview. International Journal of Pharmaceutics and Drug Analysis. 2014;2(9):719-26.
- 82. Pv S, Kinagi M, Biradar S, Gada S, Shilpa H. Formulation design and evaluation of bilayer buccal tablets of granisetron hydrochloride. Ind J Pharm Edu Res. 2011 Jul;45(3):242.
- 83. Roshani K, Code QR. A brief review on bilayer floating tablet.
- 84. Kale SG, Divate KR. International Journal of Pharma Research and Technology.
- 85. Dey S, Chattopadhyay S, Mazumder B. Formulation and Evaluation of Fixed-Dose Combination of Bilayer Gastroretentive Matrix Tablet Containing Atorvastatin as Fast-Release and Atenolol as Sustained-Release. BioMed research international. 2014;2014(1):396106.
- 86. Ramesh DS, Guruvaiah HA. Formulation and evaluation of bilayer sustained release matrix tablets of Metformin HCl and Pioglitazone. Amer-Euras J Sci Res. 2010;5(3):176-82.
- 87. Patel Chirag J, Tyagi S, Halligudi N, Yadav J, Pathak S, Singh SP, Pandey A, Singh D, Kamboj PS. Journal of Drug Discovery and Therapeutics 1 (8) 2013, 01-08. Journal of Drug Discovery and Therapeutics. 2013;1(8):01-8.
- 88. Jain J, Marya BH, Mittal RP, Patel M. Formulation and evaluation of indomethacin bilayer sustained release tablets. Int J PharmTech Res. 2011;3(2):1132-8.

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

- 89. Udayakumar T, Suresh AG, Ubaidulla U. Formulation and evaluation of immediate and sustained release bilayered tablet with glibenclamide and metformin hydrochloride.
- 90. Shukla S, Pandya V, Bhardia P, Jonwal N, Bhatt D. Bi-layer Tablet system—An Innovative trend. Asian Journal of Pharmaceutical Research. 2013;3(2):49-56.
- 91. Fell JT, Newton JM. Determination of tablet strength by the diametral-compression test. Journal of pharmaceutical sciences. 1970 May 1;59(5):688-91.
- 92. XXIII U, XVIII N. The United States Pharmacopoeia, United States Pharmacopoeial Convention. Inc., Rockville. 1995;1522.
- 93. Preeti K, Kasture PV. Formulation and in vitro evaluation of bilayer tablets of zolpidem tartrate for biphasic drug release. Int. J. Pharmtech Res. 2011;3:1919-29.
- 94. Johnston AP, Cortez C, Angelatos AS, Caruso F. Layer-by-layer engineered capsules and their applications. Current opinion in colloid & interface science. 2006 Oct 1;11(4):203-9.
- 95. Singh PK. Bilayer and floating-bioadhesive tablets: innovative approach to gastroretension. Journal of Drug Delivery and Therapeutics. 2011 Oct 25;1(1).
- 96. John AS, Sathesh BP, Divakar G, Jangid MK, Purohit KK. Development and evaluation of buccoadhesive drug delivery system for Atorvastatin calcium. journal of current pharmaceutical research. 2010;1:31-8.
- 97. Biswal B. Design development and evaluation of trimetazidine dihydrochloride floating bilayer MR tablets. The International Research Journal of Pharmacy. 2011 Jul 10;2(7):36-41.
- 98. Sonar GS, Jain DK, More DM. Preparation and in vitro evaluation of bilayer and floating- bioadhesive tablets of rosiglitazone maleate. Asian J Pharm Sci. 2007 Sep;2(4):161-9.
- 99. Pavazhaviji P, Rajalakshmi AN. Fixed-Dose Combination drugs as Tablet in Tablet: A review. International Journal of Pharmacy Research & Technology (IJPRT). 2022;12(2):39-45.
- 100. Karudumpala S, Gnanaprakash K, Venkatesh B, Sankar P, Balaji G, Vidya Sagar N. Formulation and evaluation of gastro-retentive floating bilayer tablets of nifedipine. AJADD. 2013;20131(3):341-57.
- 101. Podczeck F. Theoretical and experimental investigations into the delamination tendencies of bilayer tablets. International journal of pharmaceutics. 2011 Apr 15;408(1-2):102-12.
- 102. Paudel A, Raijada D, Rantanen J. Raman spectroscopy in pharmaceutical product design. Advanced drug delivery reviews. 2015 Jul 15;89:3-20.
- 103. Zhang Y, McGeorge G. Quantitative analysis of pharmaceutical bilayer tablets using transmission Raman spectroscopy. Journal of Pharmaceutical Innovation. 2015 Sep;10:269-80.
- 104. Agiba AM, Abdel-Hamid S, Nasr M, Geneidi AS. Geriatric-oriented high dose nutraceutical ODTs: formulation and physicomechanical characterization. Current drug delivery. 2018 Feb 1;15(2):267-77.
- 105. Agiba AM. Liquisolid technology: A state-of-the-art review on the current state, challenges, new and emerging technologies for next generation. Current Drug Delivery. 2020 Oct 1;17(9):736-54.
- 106. Agiba AM, Abul-Ella SS, Abd El-Monem RA. Pharmacotechnical development and optimization of multilayered tablets: An updated industrial review with emphasis on bilayer tablets. Int. J. Appl. Pharm. 2021;13:55-64.
- 107. Nguyen NN, Pham DT, Nguyen DT, Trinh TT. Bilayer tablets with sustained-release metformin and immediate-release sitagliptin: preparation and in vitro/in vivo evaluation. Journal of Pharmaceutical Investigation. 2021 Sep;51(5):579-86.
- 108. Niranjan AK, Singh A. Formulation, Development and Evaluation of Bilayer Floating Tablets of Antihypertensive Drug Bosentan. Journal of Drug Delivery and Therapeutics. 2021 Dec 6;11(6):167-72.
- 109. Fong BM, Cornett GV, inventors. Cicletanine in combination with oral antidiabetic and/or blood lipid-lowering agents as a combination therapy for diabetes and metabolic syndrome. United States patent application US 12/837,222. 2011 Mar 24.
- 110. Cahn A, Cefalu WT. Clinical considerations for use of initial combination therapy in type 2 diabetes. Diabetes Care. 2016 Aug 1;39(Supplement_2):S137-45.
- 111. Vos RC, van Avendonk MJ, Jansen H, Goudswaard AN, Van den Donk M, Gorter K, Kerssen A, Rutten GE. Insulin monotherapy compared with the addition of oral glucose-lowering agents to insulin for people with type 2 diabetes already on insulin therapy and inadequate glycaemic control. Cochrane Database of Systematic Reviews. 2016(9).
- 112. Padhi S, Nayak AK, Behera A. Type II diabetes mellitus: a review on recent drug based therapeutics. Biomedicine & Pharmacotherapy. 2020 Nov 1;131:110708.
- 113. Thakur S, Singh B, Mishra V, Yadav N, Giri N, Sharma P, Saini A, Garg LK. Bilayer Tablet Based Chronotherapeutics in the Management of Nocturnal.

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

- 114. Singh B, Saini G, Vyas M, Verma S, Thakur S. Optimized chronomodulated dual release bilayer tablets of fexofenadine and montelukast: quality by design, development, and in vitro evaluation. Future Journal of Pharmaceutical Sciences. 2019 Dec;5:1-20.
- 115. Rajagopal K, Thatavarthy SH, Chirumella AB, Venkatesan S. New timed-release tablets of montelukast sodium for the treatment of nocturnal bronchial asthma. ACTA Pharmaceutica Sciencia.;61(4).
- 116. Hashem FM, Nasr M, Fathy G, Ismail A. Formulation and in vitro and in vivo evaluation of lipid- based terbutaline sulphate bi-layer tablets for once-daily administration. AAPS PharmSciTech. 2016 Jun;17:727-34.
- 117. Gaikwad SS, Patil ML. Bilayer Tablet-Approach for the Treatment of Sexually Transmitted Diseases with Fixed Dose Combination. Frontiers in Anti-Infective Agents: Volume 5. 2021 Sep 14;5:197.
- 118. Gaikwad SS, Chafle SA, Morris PS, Avari JG. Development and evaluation of bilayer tablets of combination of antibiotics for the treatment of sexually transmitted disease. Brazilian Journal of Pharmaceutical Sciences. 2016 Sep;52(03):555-66.
- 119. Abidin IZ, Rezoagli E, Simonassi-Paiva B, Fehrenbach GW, Masterson K, Pogue R, Cao Z, Rowan N, Murphy EJ, Major I. A bilayer vaginal tablet for the localized delivery of disulfiram and 5- fluorouracil to the cervix. Pharmaceutics. 2020 Dec 6;12(12):1185.
- 120. Sun L, Yagoda S, Du Y, von Moltke L. Effect of hepatic and renal impairment on the pharmacokinetics of olanzapine and samidorphan given in combination as a bilayer tablet. Drug Design, Development and Therapy. 2019 Aug 22:2941-55.
- 121. Rehan ST, Siddiqui AH, Khan Z, Imran L, Syed AA, Tahir MJ, Jassani Z, Singh M, Asghar MS, Ahmed A. Samidorphan/olanzapine combination therapy for schizophrenia: Efficacy, tolerance and adverse outcomes of regimen, evidence-based review of clinical trials. Annals of Medicine and Surgery. 2022 Jul 1;79:104115.
- 122. Turgeon J, Gröning R, Sathyan G, Thipphawong J, Richarz U. The pharmacokinetics of a long-acting OROS hydromorphone formulation. Expert Opinion on Drug Delivery. 2010 Jan 1;7(1):137-44.
- 123. Kohlrausch A, inventor; Boehringer Ingelheim International GmbH, assignee. Bilayer tablet of telmisartan and simvastatin. United States patent application US 11/236,911. 2006 Apr 13.
- 124. Patra C, Kumar A, Pandit H, Singh S, Devi M. Design and evaluation of sustained release bilayer tablets of propranolol hydrochloride. Acta Pharmaceutica. 2007 Dec 1;57(4):479-89.
- 125. Ouali A, Azad AK. inventors; Pharmascience Inc, assignee. Stabilized pharmaceutical composition of nonsteroidal anti-inflammatory agent and a prostaglandin. WO. 2000;56339:2007.
- 126. Aryal S, Škalko-Basnet N. Stability of amlodipine besylate and atenolol in multi-component tablets of monolayer and bi-layer types. Acta pharmaceutica. 2008 Sep 1;58(3):299-308.
- 127. Klinzing G, Zavaliangos A. Understanding the effect of environmental history on bilayer tablet interfacial shear strength. Pharmaceutical research. 2013 May;30:1300-10.
- 128. Patel MP, Patel RR, Patel JK. Chitosan mediated targeted drug delivery system: a review. Journal of pharmacy & pharmaceutical sciences. 2010 Nov 16;13(4):536-57.
- 129. Rathod RT, Misra D. FDC of montelukast with levocetirizine: focus on bilayer technology. Journal of the Indian Medical Association. 2009 Aug 1;107(8):562-4.
- 130. Saif AA, Alburyhi MM, Noman MA, Almaktari AM. Formulation and evaluation of trimetazidine hydrochloride and clopidogrel bisulphate multi-unit solid dosage forms. Journal of Chemical Pharm Research. 2014;6(2):421-6.
- 131. Jamunadhevi V, Sahoo PK, Kailasam P. Formulation and in vitro evaluation of bi-layer tablet of cyclobenzaprine hydrochloride ER and diclofenac potassium IR-A novel fixed dose combination. Int J Res Pharm Sci. 2011;2(2):170-8.
- 132. Guideline IH. Stability testing of new drug substances and products. Q1A (R2), current step. 2003 Feb;4(1-24).
- 133. Payghan SA, Disuza JI. Formulation, evaluation and development of bilayer tablet. Int. J. Pharmaceut. Res. Dev.. 2011;3:80-7.
- 134. Pattanayak DP, Dinda SC. Bilayer tablet formulation of metformin hydrochloride and glimepiride: A novel approach to improve therapeutic efficacy. Int. J. Drug Discov. Herb. Res. 2011 Jan;1:1-4.
- 135. Patwekar SL, Baramade MK. Controlled release approach to novel multiparticulate drug delivery system. Int J Pharm Pharm Sci. 2012;4(3):757-63.
- 136. Mohindeen S, Jyothi B, Pavani S, Satyanarayana T, Kumar SP, Krishna NS. Formulation and evaluation of bilayered tablets of metformin hydrochloride and atorvastatin calcium. Int J Pharm Sci Rev Res. 2011 Oct;10(2):130-4.
- 137. Kumar GV, Babu KA, Ramasanay C. Formulation and evaluation of bilayered tablets of cefixime trihydrate and dicloxacillin sodium. Int J PharmTech Res. 2011;3(2):613-8.

ISSN: 2229-7359 Vol. 11 No. 8S, 2025

- 138. Jadhav RT, Patil PH, Patil PR. Formulation and evaluation of bilayered tablet of Piracetam and Vinpocetine. J Chem Pharm Res. 2011;3(3):423-31.
- 139. Rajendran NN, Natarajan R, Subhashini R, Patel H. Formulation and evaluation of sustained release bilayer tablets of metformin HCl and pioglitazone HCl. Int J Curr Pharm Res. 2011;3(3):118-22.
- 140. Parmar CK, Pednekar PP. Development and evaluation of bilayer tablets of cefuroxime axetil and potassium clavulanate. Int J Pharm Res Dev. 2011;3(7):16-23.
- 141. Atram SC, Udavant YK, Salunke RJ, Neb GB, Shahi SR, Gulecha BS, Padalkar AN. Formulation of bilayer tablet containing metoprolol succinate and amlodipine besylate as a model drug for antihypertensive therapy. J. Pharm. Res. 2009 Aug;2(8):1335-47.
- 142. Jayaprakash S, Halith SM, Pillai KK, Balasubramaniyam P, Firthouse PM, Boopathi M. Formulation and evaluation of bilayer tablets of amlodipine besilate and metprolol succinate. Der Pharmacia Lettre. 2011;3(4):143-54.
- 143. Narendra C, Srinath MS, Babu G. Optimization of bilayer floating tablet containing metoprolol tartrate as a model drug for gastric retention. AApS pharmSciTech. 2006 Jun;7:E23-9.
- 144. Remya PN, Damodharan N, Kumar CV. Formulation and evaluation of bilayered tablets of ibuprofen and methocarbamol. Int J PharmTech Res. 2010 Apr;2(2):1250-55.
- 145. Gohel MC, Parikh RK, Nagori SA, Jethwa BA. Fabrication and evaluation of bi-layer tablet containing conventional paracetamol and modified release diclofenac sodium. Indian journal of pharmaceutical sciences. 2010 Mar;72(2):191.
- 146. Naeem M, Mahmood A, Khan S, Shahiq Z. Development and evaluation of controlled-release bilayer tablets containing microencapsulated tramadol and acetaminophen. Tropical Journal of Pharmaceutical Research. 2010;9(4).
- 147. Hiremath D, Goudanavar P, Azharuddin M, Udupi RH, Sarfaraz M. Design and characterization of bilayer controlled release matrix tablets of losartan potassium. Int J Pharm Res. 2010;2(4):34-9.
- 148. Patrick GL. An introduction to medicinal chemistry. Oxford university press; 2023.
- 149. Sharma SK, Mohan S, Jaimini M, Chauhan BS, Chatterjee A. Formulation and in-vitro evaluation of Bilayer tablets containing Pioglitazone HCl and Gliclazide for type II diabetes. International Journal of PharmTech Research. 2014;6(2):607-22.
- 150. Reddy KR, Srinivas N. Formulation and evaluation of bilayered tablets of losartan potassium. Innovations in Pharmaceuticals and Pharmacotherapy. 2014;2(1):312-20.
- 151. Nekkanti V, Venkatesan N, V Betageri G. Proliposomes for oral delivery: progress and challenges. Current pharmaceutical biotechnology. 2015 Apr 1;16(4):303-12.
- 152. Shirsand SB, Swamy PV, Keshavshetti GG. Design and evaluation of atenolol bilayer buccal tablets. RJPS. 2011 Apr;1(1):1.
- 153. Kulkarni A, Bhatia M. Development and evaluation of regioselective bilayer floating tablets of Atenolol and Lovastatin for biphasic release profile.
- 154. Dhumal RS, Rajmane ST, Dhumal ST, Pawar AP. Design and evaluation of bilayer floating tablets of cefuroxime axetil for bimodal release.
- 155. Khaled SA, Burley JC, Alexander MR, Roberts CJ. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. International journal of pharmaceutics. 2014 Jan 30;461(1-2):105-11.
- 156. Özdemir N, Ordu S, Özkan Y. Studies of floating dosage forms of furosemide: in vitro and in vivo evaluations of bilayer tablet formulations. Drug development and industrial pharmacy. 2000 Jan 1;26(8):857-66.