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Abstract: Speech applications need Spoken Language Identification (LID) as their initial processing step when 
operating across various languages particularly in Indian settings which display both language diversity and limited 
resources. Traditional LID systems depend on manually designed acoustic features including MFCCs while needing 
large amounts of labeled training data because they cannot easily process languages with insufficient representation. 
This research evaluates Wav2Vec2.0 as a self-supervised model which learns from unprocessed audio waveforms to 
identify spoken languages within ten Indian languages from both Indo-Aryan and Dravidian language families. 
Wav2Vec2.0 undergoes evaluation through comparison with MFCC-based deep learning approaches that contain 
RNN, BiLSTM and the hybrid RNN+BiLSTM model structure. The testing accuracy of Wav2Vec2.0 reached 
93.7% along with a Word Error Rate of 10.3% when used with a multilingual audio corpus which provided superior 
performance compared to traditional baselines. The model demonstrates its ability to recognize phonetic details through 
multiple evaluation tests that include ablation analyses and confusion matrix assessments and language-specific 
performance metrics. Research demonstrates that Wav2Vec2.0 represents an effective framework which shows 
potential for developing LID systems that use limited resources in practical multilingual applications. 
Keywords: Spoken Language Identification, Wav2Vec2.0, Self-Supervised Learning, Indian Languages, Transformer, 
BiLSTM, MFCC, Low-Resource Speech Processing 
 
INTRODUCTION 
Speech-based technologies have experienced rapid expansion since their capability to enable easy and 
natural human-computer communication surfaced. Automatic Spoken Language Identification (LID) 
stands today as an essential feature for numerous systems which needs to detect spoken languages in short 
audio pieces. LID is a prerequisite for multilingual automatic speech recognition (ASR), voice-based user 
authentication, multilingual virtual assistants, language-aware content retrieval, and low-latency call center 
routing (Li, Ma, and Lee 2013). The demand for precise LID systems with reduced resource requirements 
remains high in India because numerous languages operate together in its multilingual settings. The 
linguistic variety in India ranks as one of the most extensive global networks. The 2001 Census of India 
recorded 122 major languages together with 1,599 other languages which spread across the nation. These 
span two primary language families: Indo-Aryan (spoken by approximately 78% of the population) and 
Dravidian (spoken by around 19%) (Mallikarjun 2001). The languages Hindi, Bengali, Tamil, Telugu and 
Urdu are spoken by tens of millions of people who live in common geographic and socio-cultural regions. 
Real-world language processing becomes more complicated due to Indian English being used as both a 
functional medium and code-switched language. The combination of multiple languages with code-
mixing and insufficient standardized datasets operating within India creates special complex 
circumstances for implementing speech-enabled AI systems. The standard LID system depends on 
manually engineered acoustic-phonetic features including Mel-Frequency Cepstral Coefficients (MFCCs), 
pitch, formants and spectral energy contours. These features are fed into classifiers such as Gaussian 
Mixture Models (GMMs), Support Vector Machines (SVMs), or Hidden Markov Models (HMMs) 
(Zissman 1996). These methods provide workable accuracy in controlled environments yet their 
performance declines when handling degraded speech or spontaneous speech patterns while they need 
extensive linguistic characteristics development apart from language-dependent fine-tuning. The 
implementation of such systems faces limitations in low-resource language processing because they need 
phonetic and linguistic resources for operation. Deep learning models have changed the entire process of 
speech processing since their introduction in recent years. Architectures such as Recurrent Neural 
Networks (RNNs), Long Short-Term Memory (LSTM) networks, and Convolutional Neural Networks 
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(CNNs) have demonstrated the ability to learn high-level feature representations directly from raw or 
minimally processed audio inputs (Montavon 2009). Such models overcome dependence on expert-
designed features while providing flexible operations across different linguistic along with acoustic 
environments. Their training needs large amounts of labeled examples but their performance remains 
restricted when working with insufficient linguistic resources. Transformer-based architectures, first 
introduced in the domain of natural language processing (NLP) (Vaswani et al. 2017), have also shown 
great promise in speech applications. Self-attention in their architecture lets them process distant 
relationships between elements efficiently after overcoming the sequential processing limitation of RNNs. 
Transformer variants have been successfully applied to ASR, speech translation, and speech synthesis 
(Dong, Xu, and Xu 2018). The current models need supervised training with extensive labeled data 
corpora but such resources are limited for many Indian languages. The speech domain now implements 
self-supervised learning (SSL) methods as a solution to handle the limited availability of labeled data. 
Through SSL models acquire universal and strong representations from raw audio data while requiring 
no human-assisted annotation. Among the most successful SSL models is Wav2Vec2.0, developed by 
Baevski et al. (2020). Wav2Vec2.0 follows a training process that consists of two stages where in the first 
phase it learns context-based representations through latent speech signal masking followed by contrastive 
predictions of the masked elements. The trained model receives downstream adaptation through fine-
tuning during which it becomes ready for ASR or classification tasks using small available datasets. The 
model accepts raw waveform data for processing which removes the necessity of preprocessed signals or 
handcrafted features. The Wav2Vec2.0 system achieves superior performance on multiple benchmark 
evaluation sets especially when used for speech recognition in poorly resourced languages. Research into 
applying Wav2Vec2.0 for spoken language identification has received limited attention especially when 
dealing with the highly multilingual and resource-limited environments found in India. The task of LID 
demands better identification of minimal phonetic along with prosodic and rhythmic linguistic patterns 
in short speech segments. The signal quality is poor because it presents heterogeneous speaker voices 
along with noisy backgrounds and missing contextual information. Self-supervised models gain special 
benefits in such signal conditions that make it possible to extract valuable information from raw signal 
distributions. The present study aims to bridge this gap by applying Wav2Vec2.0 to the task of LID for 
ten Indian languages using the publicly available Indian Languages Audio Dataset, which comprises fixed-
length audio segments (5 seconds each) sourced from regional YouTube videos. The dataset provides both 
Indo-Aryan and Dravidian languages together with extensive phonetic variations and different 
intonations and localized speaking habits. The collection serves as a realistic test bed for LID models in 
real-world conditions because it contains moderately noisy and unbalanced information. We trained 
Wav2Vec2.0 with fine-tuning but also developed three deep learning baseline models which use MFCC 
features and include RNNs, Bi-LSTMs and their combination. The established baselines function to 
identify performance levels of self-supervised learning compared to standard fully supervised neural 
models. All evaluation and training steps of the models occur on the same data splits to guarantee their 
comparison. 
This work makes several key contributions: 
We provide the first comprehensive evaluation of Wav2Vec2.0 for LID across ten Indian languages, 
including both high- and low-resource classes. We implement and benchmark standard MFCC-based 
baseline models, offering a rigorous point of comparison for future LID research in similar multilingual 
environments. We conduct a detailed performance analysis including confusion matrices, class-wise 
metrics, and error patterns, highlighting the strengths and limitations of the proposed method. 
We provide a reproducible and publicly extensible training pipeline, along with visualization tools for 
corpus analysis, facilitating future expansion to more languages and domains. 
The paper continues with the following organization. Section 2 reviews related work in LID, speech 
representation learning, and Indian language processing. Section 3 introduces the dataset and outlines 
corpus characteristics. Section 4 describes the proposed approach, model architectures, and training 
strategies. Section 5 provides the experimental setup. Section 6 presents quantitative and qualitative 
results, including ablation studies and comparisons. Finally, Section 7 concludes the paper and outlines 
directions for future work. 
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Related Work 
Traditional Approaches to Spoken Language Identification 
The identification of spoken languages through LID has traditionally worked with statistical pattern 
recognition approaches through handcrafted acoustic features like MFCCs since the beginning. The 
features function as basic speech signal representations which extract human hearing-perception related 
qualities. Gaussian Mixture Models (GMMs), trained on MFCC vectors, have long been a cornerstone in 
LID systems due to their ability to model arbitrary feature distributions and adaptability to varying speech 
environments (Tiwari et al. 2019; Barai et al. 2022). 
Hidden Markov Models (HMMs) became popular for modeling the temporal speech patterns because 
they capture the dynamics of speech sequences. These systems often operate in a GMM-HMM hybrid 
configuration, providing a robust foundation for applications such as speech and language recognition 
(Zhang 2017). 
The field experienced a major breakthrough with i-vectors because these models provide short low-
dimensional representations of speech utterances. These vectors summarize speaker- and session-level 
variabilities and have proven to be highly effective in text-independent LID tasks (Nayana, Mathew, and 
Thomas 2017). GMM-Universal Background Models (GMM-UBMs) are typically used as the initial 
framework for deriving i-vectors, thereby combining unsupervised density modeling with supervised 
backend classifiers such as Support Vector Machines (SVMs) or Probabilistic Linear Discriminant 
Analysis (PLDA) (Zewoudie 2017; Zeinali, Sameti, and Burget 2017). 
While these approaches laid the groundwork for early LID systems, their dependence on handcrafted 
features and limited modeling of complex phonetic variability constrained their performance, especially 
in noisy or low-resource environments such as Indian multilingual contexts (Hussain 2012; Al-Kaltakchi 
et al. 2017). The system constraints prompted researchers to adopt deep learning methods followed by 
self-supervised approaches. 
Deep Learning Models for Language Identification 
Spoken Language Identification (LID) underwent major progress after deep learning became available to 
replace traditional statistical methods. RNNs achieved prominence because their LSTM networks 
successfully retrieved temporal dependencies and sequential elements that exist within speech signals. 
These models have been effectively used to learn discriminative phonetic patterns without relying on 
handcrafted features (Singh et al. 2021). 
The incorporation of BiLSTM architectures into LID systems enabled better contextual information 
processing through their ability to analyze sequences in both directions. Das and Roy (2021) proposed a 
CNN-BiLSTM hybrid model for Indian language identification, demonstrating that combining 
convolutional feature extraction with temporal modeling yields superior performance over single-stream 
networks. 
CNNs operate independently or together with RNNs for LID because they extract local features from 
spectrogram inputs effectively. Alashban et al. (2022) introduced a Convolutional Recurrent Neural 
Network (CRNN) that integrates CNN and LSTM layers, showing enhanced accuracy in multilingual 
environments. Hybrid CNN-LSTM approaches also enable models to utilize both spatial and temporal 
features, improving robustness in real-world noisy conditions (Mishra et al. 2024). 
Other studies explore deep ensemble and modular architectures combining ANN, LSTM, and BiLSTM 
layers to boost classification accuracy across varied speech conditions and language corpora (Kowsher et 
al. 2021; Ghanimi et al. 2024). These architectures show significant promise, especially for applications 
involving short utterances and code-mixed data prevalent in Indian settings (Garai and Samui 2024; 
Hidayat et al. 2024). 
Although deep supervised systems demonstrate efficacy they need extensive labeled training data for 
proper operation. The need for self-supervised alternatives emerges from this limitation since self-
supervised approaches will be discussed in the following section. 
Transformer-Based and Attention Mechanisms in Speech 
Modern speech processing technology received a transformation through Transformer-based architectures 
because they provide stronger processing capabilities for dependencies extending across large sequences 
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of data. Unlike recurrent networks, Transformers rely on self-attention mechanisms that process all 
elements in a sequence simultaneously, thus improving parallelization and performance (Latif et al. 2023). 
The main breakthrough of multi-head self-attention enables models to select various contextual speech 
frame representations thus making them suitable for flexible-length utterances and multiple languages. 
The Speech-Transformer model represents an adaptation of the Transformer architecture that gets rid of 
recurrence along with added positional encoding for managing speech sequences effectively. It has 
demonstrated strong results on various automatic speech recognition (ASR) benchmarks and inspired 
multiple adaptations for spoken language identification tasks (Singh, Singh, and Kadyan 2024). The 
models lower training complexity to capture global temporal audio patterns across sequences. 
The Conformer structure represents another significant capability in this domain because it adopts 
convolutional layers with Transformer-based encoders. Conformers preserve the locality advantages of 
CNNs while also modeling long-term dependencies via self-attention, making them particularly effective 
in handling speech with diverse phonetic and prosodic characteristics (Li, Xu, and Zhang 2021; Jiang et 
al. 2023). The performance of Conformer variants reaches state-of-the-art levels when they are used in 
both ASR and speaker identification tasks particularly in low-resource and accented speech conditions. 
Recent developments have also explored joint CTC-attention frameworks, which integrate Connectionist 
Temporal Classification (CTC) losses with attention-based decoding to improve alignment and 
robustness in noisy conditions (Ploujnikov 2024; Hu, Niu, and He 2025). The combination of attention-
driven hybrid architecture surpasses conventional processing systems in multiple speech domains while 
paving routes for quick and multi-language system applications. 
Most previous studies prioritize the development of ASR but these attention-based models show growing 
potential in multilingual and low-resource spoken language identification which makes them suitable for 
Indian language environments with their code-switching and dialectal variation. 
Self-Supervised Speech Representation Learning 
Self-supervised learning (SSL) represents a fundamental change in speech processing because it teaches 
efficient audio representations from untagged audio. The design of speech into natural segments helps 
SSL techniques train large amounts of waveform data before fine-tuning requires minimal labeled 
samples. Self-supervised learning proves exceptionally beneficial for Indian language processing because 
it operates well in situations with limited annotated data. 
Wav2Vec and its improved successor Wav2Vec2.0 represent landmark contributions in this domain. 
These models leverage contrastive predictive coding by masking segments of the input speech signal and 
predicting them from surrounding context, using a Transformer encoder atop convolutional feature 
extractors (Jafarzadeh, Rostami, and Choobdar 2024; Ji, Patel, and Scharenborg 2022). Contextual 
embeddings learned through the model demonstrate success across speech recognition and speaker 
identification together with language classification tasks especially when operating under noisy or 
accented environments. 
HuBERT (Hidden Unit BERT) implements an unsupervised clustering method to create target labels for 
its pretraining phase through a masked prediction framework. It demonstrates superior performance in 
phoneme recognition and speech segmentation, while offering robust cross-lingual generalization 
(Vielzeuf 2024; Lee, Kim, and Chung 2024). The phonetic structure information in HuBERT 
representations surpasses what standard acoustic models provide. 
Comparative studies confirm that both Wav2Vec2.0 and HuBERT outperform earlier contrastive and 
autoencoder-based SSL models in extracting salient speech features (Chang et al. 2021; Sanabria, Tang, 
and Goldwater 2023). By allowing transfer learning with minimal supervision these models decrease the 
hurdles involved in using deep learning technologies on limited-language domains. 
Recent advancements also explore hybrid and distilled versions of these models (Distil-HuBERT, 
WavLM) to further reduce computational overhead while maintaining accuracy, expanding their 
applicability in mobile and real-time settings (Zaiem 2024; Dabbabi and Mars 2024). Spoken language 
identification in complex Indian linguistic settings benefits from their capacity to encode linguistic 
together with paralinguistic cues. 
Language Identification in Indian and Low-Resource Contexts 
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The task of identifying spoken language (LID) faces specific hurdles when working with Indian and low-
resource environments because of scarce annotated data and extensive linguistic variations and regular 
code-switching. The Indian subcontinent possesses a rich linguistic heritage because it features more than 
22 scheduled languages together with hundreds of dialects. The numerous languages create phonetic 
similarities and sociolinguistic differences which make standard LID systems more difficult to use. 
Various initiatives have been launched to develop multilingual databases and test LID systems in 
underdeveloped Indian languages. Basu et al. (2021) curated a multilingual speech dataset involving low-
resource eastern and northeastern Indian languages, which served as a valuable benchmark for evaluating 
speaker and language identification systems. Similarly, Shah et al. (2020) investigated cross-lingual and 
multilingual spoken term detection strategies across ten Indian languages, highlighting the effectiveness 
of leveraging acoustic and linguistic similarities. 
Diwan et al. (2021) emphasized the complications introduced by code-switching and accented speech in 
automatic speech recognition (ASR), proposing multilingual models that exploit the structural proximity 
among Indian languages. The detection process of conventional classifiers becomes misleading because 
of phonetic ambiguities in applications that use Indian English and Hindi-English code-mixed utterances. 
Ranasinghe and Zampieri (2021a) explored multilingual language identification using transformer-based 
models across six Indian languages. XLM-R and similar pre-trained multilingual models demonstrate 
practical utility when resource limitations exist according to their research results. Their earlier work 
(Ranasinghe and Zampieri 2021b) further demonstrated the transferability of these models to related 
downstream tasks like offensive language detection in low-resource contexts. 
Studies and surveys from recent times have contributed insights about how LID systems adjusted for 
Indian speech continue to progress. Dey, Sahidullah, and Saha (2022) provided a comprehensive analysis 
of machine learning techniques applied to Indian LID tasks, identifying gaps in available resources and 
model generalization capabilities. Pakray, Gelbukh, and Bandyopadhyay (2025) emphasized the 
importance of tailored NLP applications, proposing strategies to balance performance and resource-
efficiency in multilingual and minoritized language settings. 
The widespread agreement among researchers demonstrates that low-resource LID tasks achieve their best 
results with multilingual pretraining and cross-lingual transfer methods that utilize regional language 
similarities and this matches the main goals of self-supervised approaches such as Wav2Vec2.0. 
Summary and Research Gap 
Table 1 provides a comparative overview of traditional, deep learning, attention-based, and self-supervised 
methods for spoken language identification (LID), highlighting key attributes such as feature dependency, 
data requirements, model adaptability, and suitability for low-resource settings. The discussed works cover 
handcrafted feature-based models such as GMMs with MFCCs and RNN-based architectures and CNN 
and BiLSTM hybrid models and contemporary Transformer and self-supervised approaches Wav2Vec2.0 
and HuBERT. 
Table 1. Comparative Summary of Language Identification Methods 

Method Type Feature Type Data 
Requirement 

Low-
Resource 
Suitability 

Remarks Reference 

GMM + MFCC Handcrafted Low to 
Medium 

Poor Needs 
phonetic 
expertise 

(Tiwari et al. 
2019; Barai et al. 
2022) 

HMM Handcrafted 
+ Temporal 

Medium Poor Effective in 
constrained 
settings 

(Zhang 2017) 

i-vector + PLDA Statistical 
Embeddings 

Medium Moderate Compact 
utterance-
level rep. 

(Nayana, 
Mathew, and 
Thomas 2017; 
Zewoudie 2017) 
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RNN / LSTM Raw / 
MFCC 

High Moderate Learns 
temporal 
features 

(Singh et al. 
2021) 

CNN + BiLSTM Spectrogram 
/ MFCC 

High Moderate Effective in 
hybrid feature 
capture 

(Das and Roy 
2021; Mishra et 
al. 2024) 

Transformer Raw 
Waveforms 

Very High Limited Data-hungry 
but robust 

(Latif et al. 2023; 
Li, Xu, and 
Zhang 2021) 

SpeechTransformer Raw 
Waveforms 

High Moderate End-to-end 
encoder-
decoder 

(Singh, Singh, 
and Kadyan 
2024) 

Conformer Raw 
Waveforms 

High Good Combines 
CNN and 
Transformer 

(Jiang et al. 
2023; 
Ploujnikov 
2024) 

Wav2Vec2.0 Raw 
Waveforms 

Low (after 
pretraining) 

Excellent Strong in 
noisy 
conditions 

(Jafarzadeh, 
Rostami, and 
Choobdar 2024; 
Ji, Patel, and 
Scharenborg 
2022) 

HuBERT Raw 
Waveforms 

Low (after 
pretraining) 

Excellent Robust to 
phonetic 
variance 

(Vielzeuf 2024; 
Lee, Kim, and 
Chung 2024) 

The comparative analysis is further visualized in Fig. 1, which aggregates key insights across four subplots. 
Subplot (a) reveals that traditional methods (e.g., GMM, HMM) demand relatively lower data volume 
compared to end-to-end neural approaches such as Transformer and Conformer. However, subplot (b) 
illustrates that lower data demand does not necessarily translate to higher low-resource suitability. For 
instance, while Wav2Vec2.0 and HuBERT demonstrate excellent performance in low-resource 
environments due to pretraining advantages, GMM and HMM perform poorly despite their modest data 
requirements.Subplot (c) establishes a generally inverse relationship between data requirement and low-
resource suitability, with pretraining-based models appearing as outliers that achieve both low data 
requirement and high adaptability. Subplot (d) presents a consolidated view that highlights the superior 
trade-off offered by self-supervised models like Wav2Vec2.0 and HuBERT, making them ideal for 
deployment in resource-constrained multilingual environments.These observations underscore a 
significant research gap. While recent transformer-based architectures show promise, their performance 
heavily relies on extensive pretraining. There is a need for more efficient models that combine robustness 
with low data dependency, especially tailored for under-resourced languages. Furthermore, future research 
must address the challenge of domain adaptation and transfer learning in low-latency deployment 
scenarios. 
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Fig. 1. Graphical comparison of LID methods based on data requirement and low resource suitability. 
Subplots: (a) Data requirement levels, (b) Low-resource suitability, (c) Scatter plot showing relationship 
between both, and (d) Grouped bar chart com parison. 
The application of these models faces a continuous challenge when used in the Indian multilingual 
environment despite notable achievements. The majority of traditional along with deep learning models 
request large corpus datasets while simultaneously showing insufficient robustness for phonologically 
overlapping speech and code-switched text. Transformer-based and self-supervised systems show 
promising performance potential in such environments yet there is limited investigation into their 
evaluation for spoken language identification across typologically diverse Indian languages. 
The study fills the literature gap through direct Wav2Vec2.0 evaluation for LID in ten Indian languages. 
The research performs a benchmark test between self-supervised learning methods and MFCC-based deep 
models through an established benchmarking protocol which creates a flexible and reproducible platform 
for identifying languages that use few resources. 
Dataset Overview 
Dataset Description 
The Indian Languages Audio Dataset1 is a multilingual speech corpus comprising short audio segments 
sourced from publicly available regional YouTube videos. The dataset features 10 Indian languages: 

 

1https://www.kaggle.com/datasets/hmsolanki/indian-languages-audio-dataset 

https://www.kaggle.com/datasets/hmsolanki/indian-languages-audio-dataset


International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 15s,2025 
https://theaspd.com/index.php 

337 

 

Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Punjabi, Tamil, Telugu, and Urdu. Each audio 
sample is exactly 5 seconds in length and is provided in either MP3 or WAV format, resulting in a 
standardized and compact corpus ideal for supervised learning tasks such as spoken language 
identification (LID). All audio segments were derived from naturalistic speech environments, making the 
dataset reflective of authentic usage and accent variations found across the Indian subcontinent. 
This corpus is a representative subset of the larger “Audio Dataset with 10 Indian Languages” collection 
and is curated to promote multilingual speech processing research in underrepresented, low-resource 
languages. The dataset creator has not claimed ownership of the underlying content, and its reuse is 
subject to compliance with standard copyright and licensing constraints. 
Corpus Statistics and Summary 
To characterize the dataset, we conducted a comprehensive metadata analysis involving duration, energy, 
and class distribution. Table 2 summarizes the key corpus-level statistics. 
Table 2 Corpus statistics for the Indian Languages Audio Dataset. 

Language Number of Clips Mean Duration (s) Mean RMS Energy 
Bengali 1000 5.00 0.156 
Gujarati 1000 5.00 0.142 
Hindi 1000 5.00 0.151 
Kannada 1000 5.00 0.149 
Malayalam 1000 5.00 0.145 
Marathi 1000 5.00 0.153 
Punjabi 1000 5.00 0.147 
Tamil 1000 5.00 0.148 
Telugu 1000 5.00 0.144 
Urdu 1000 5.00 0.143 
Total 10,000 5.00 0.148 

As Table 2 illustrates, the dataset is highly balanced, with an equal number of samples per language class. 
All audio clips are precisely 5 seconds in duration due to preprocessing standardization. Minor variations 
in root-mean-square (RMS) energy reflect natural differences in speech intensity and recording 
conditions. 
Visual Corpus Analysis 
To further analyze the acoustic and structural characteristics of the dataset, a set of exploratory plots was 
generated using the accompanying audio files. These visualizations provide insight into the variability, 
balance, and diversity of the corpus. 
Figure 2 displays the class distribution across languages using a pie chart. All ten languages are represented 
equally with 10% share each, confirming that the dataset is perfectly balanced by design. This ensures 
that no model bias emerges from class imbalance during training. 

 
Fig. 2. Language distribution across the dataset. 
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Figure 3 presents a histogram of audio durations. All clips cluster at the 5-second mark, reaffirming 
temporal uniformity in data preparation. This standardization is crucial for ensuring consistent model 
input sizes and simplifies downstream padding/truncation procedures. 

 
Fig. 3 Histogram of audio clip durations. 
While shows zero variation in clip lengths, additional statistics were captured pre-standardization. 
Figure 4 provides a box plot of clip durations across languages. Although most data conform to the 5-
second limit, a few classes exhibit occasional shorter samples prior to preprocessing. 

 
Fig. 4. Box plot of raw durations per language before standardization. 
Complementarily, Fig. 5 shows the empirical cumulative distribution function (ECDF) for durations 
across languages. The vertical steps at 5 seconds indicate truncation or padding convergence, while smaller 
steps before this point indicate natural variability in speech. 
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Fig. 5. Cumulative duration distributions across languages (ECDF). 
Signal Energy Analysis 
To analyze recording quality and speech intensity, RMS energy was computed for all samples. Figure 6 
shows the distribution of RMS values. Most clips lie within the 0.05–0.25 range, suggesting moderate 
vocal energy without extreme silence or clipping. 

 
Fig. 6. Histogram of RMS energy values for all audio clips. 
Figure 7 further reveals the relationship between clip duration and RMS energy. As expected, most 
samples cluster around (5.0s, 0.15 RMS), indicating controlled recording characteristics. A few outliers 
correspond to shorter or noisier clips. 

 
Fig. 7. Scatter plot showing duration vs. RMS energy. 
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Waveform and Spectrogram Diversity 
To assess acoustic diversity across languages, waveforms and log-Mel spectrograms were generated for one 
random example per language. Figure 8 presents the waveform grid. Visual inspection shows amplitude 
and pause variation indicative of differing speaking styles and sentence structures across languages. 

 
Fig. 8. Waveform visualization of one randomly selected sample from each language. 
Figure 9 shows corresponding log-Mel spectrograms. The frequency contours reflect distinct phonotactic 
structures and prosodic patterns. Languages like Tamil and Malayalam display dense harmonic activity, 
while languages like Hindi and Urdu reveal broader band patterns with clearer formant structures. 
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Fig. 9. Log-Mel spectrograms: one random sample per language. 
Discussion of Observations 
From the analysis, several observations are evident: 
Class Balance: The dataset is exceptionally well-balanced, both in terms of language representation and 
temporal consistency. 
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Energy Variability: Minor differences in RMS energy between classes suggest subtle variations in speaker 
loudness or recording equipment, yet all values fall within acceptable ranges for speech modeling. 
Phonetic Richness: The spectrogram and waveform grids visually confirm the phonetic and acoustic 
diversity among Indian languages, validating the need for models with strong generalization capacity such 
as Wav2Vec2.0. 
Usability: The uniformity in clip duration, format, and labeling makes this dataset ideal for supervised 
deep learning, especially with self-supervised pretraining like Wav2Vec2.0, which thrives on raw waveform 
inputs. 
In summary, the Indian Languages Audio Dataset provides a clean, diverse, and balanced multilingual 
speech corpus well-suited for advancing spoken language identification systems in low-resource and code-
switched settings. It enables both benchmark comparisons and exploratory work in multilingual 
representation learning. 
Methodology 
Overview of Proposed Pipeline 
The proposed pipeline for spoken language identification (LID) leverages a hybrid training and evaluation 
framework combining self-supervised learning (SSL) with classical deep learning baselines. The system is 
specifically optimized for Indian languages and supports both waveform-based and MFCC-based inputs 
to benchmark state-of-the-art and traditional models under identical evaluation criteria. 
Figure 10 presents a schematic of the complete experimental workflow, which consists of three main 
stages: dataset preprocessing, model training (for both Wav2Vec2.0 and baseline architectures), and 
performance evaluation using classification metrics and confusion matrices. 

 
Fig. 10. Overview of the proposed spoken language identification pipeline. 
The pipeline begins with a curated collection of audio recordings, each labeled by the corresponding 
language class. All audio files are standardized to a uniform duration of 5 seconds and resampled to a 
fixed sampling rate of 16 kHz. This preprocessing step is critical to ensure compatibility across models 
and consistency in input dimensions. Audio files are ingested in various formats (MP3/WAV) and 
transformed into mono-channel waveforms using a unified loading interface, ensuring temporal 
alignment and amplitude normalization. 
Once preprocessed, the data is partitioned into training, validation, and test sets using stratified sampling 
to preserve class balance across splits. Each language class is mapped to a unique numerical label, which 
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is subsequently used for both supervised training and evaluation. The complete research pipeline is 
implemented in Python using the PyTorch framework, with additional libraries such as librosa for audio 
processing and transformers for model management. The training and evaluation process is designed to 
be modular, allowing for easy integration of new models or features in future iterations. 
The algorithmic representation of the training and evaluation pipeline is shown in Algorithm 1. The 
pipeline consists of two main branches: one for fine-tuning the Wav2Vec2.0 model and another for 
training baseline classifiers using MFCC features. Each branch operates independently, allowing for a 
comprehensive evaluation of both self-supervised and traditional approaches to spoken language 
identification. 
The training pipeline bifurcates into two independent learning paradigms: 

 
In the first branch, raw waveform inputs are fed into a pretrained Wav2Vec2.0 model 
(facebook/wav2vec2-base), which is fine-tuned for the classification task using labeled audio data. This 
self-supervised architecture employs a Transformer-based encoder trained to distinguish masked latent 
representations, thereby capturing robust acoustic features from raw speech. During fine-tuning, dynamic 
padding and attention masks are computed on-the-fly to accommodate variable-length inputs while 
maintaining computational efficiency. 
In the second branch, conventional supervised models are trained on handcrafted acoustic features. 
Specifically, Mel Frequency Cepstral Coefficients (MFCCs) are extracted from each audio sample and 
used to train three baseline architectures: a unidirectional Recurrent Neural Network (RNN), a 
Bidirectional Long Short-Term Memory network (BiLSTM), and a hybrid model that combines both 
RNN and BiLSTM layers. These networks are optimized using cross-entropy loss and trained for multi-
class classification. Unlike the Wav2Vec2.0 model, which learns directly from waveform data, these 
baselines rely on explicitly computed spectral features, providing a classical contrast to the self-supervised 
approach. 
Following model training, each model is evaluated on the same held-out test set to ensure a fair and 
reproducible comparison. Evaluation metrics include overall classification accuracy, precision, recall, and 
F1-score, as well as confusion matrix analysis for visualizing class-wise performance. This evaluation 
strategy allows for a granular inspection of language-wise discriminative capabilities and helps identify 
potential misclassification trends. 
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The entire methodology is designed to be modular and extensible, facilitating future experiments with 
new languages, additional features, or alternative neural architectures. The pipeline also ensures 
compatibility with GPU-accelerated training and CPU-based inference, supporting deployment in both 
research and production environments. 
Wav2Vec2.0 Framework 
Wav2Vec2.0 is a self-supervised representation learning framework for speech signals developed by 
Baevski et al. (2020). It is designed to learn contextualized audio embeddings from large-scale unlabeled 
speech data. The core innovation lies in its ability to leverage a contrastive loss to distinguish correct 
latent representations from distractors, thereby eliminating the need for frame-level alignment or explicit 
labels during pretraining. 
The architecture of Wav2Vec2.0 consists of three main components (see Fig. 11): 
a feature encoder that transforms raw waveforms into latent speech representations, 
a context network based on Transformer blocks that builds contextualized representations over time, 
and a quantization module used during pretraining to discretize latent features and enable contrastive 
learning. 
 

 
Fig. 11. Schematic of the wav2vec2.0 pre-training architecture with explicit contrastive-loss connections. 
Feature Encoder 
The feature encoder is a stack of temporal convolutional layers applied to raw audio input 𝒳 ∈ ℝ𝑇, where 
𝑇 is the number of samples. It outputs latent speech representations 𝐳 ∈ ℝ𝑇′×𝑑, where 𝑇′ ≪ 𝑇 and 𝑑 is 
the feature dimension. These representations, shown as blue squares in Fig. 11, capture local acoustic 
patterns and serve as the input to both the Transformer and quantization module. 
Transformer Context Network 
The Transformer-based context network models temporal dependencies over the sequence 𝐳 and 
produces contextual embeddings 𝒞 = {𝐜𝑡}. It is calculated using a multi-head self-attention mechanism. 
The attention mechanism allows the model to focus on different parts of the input sequence, enabling it 
to learn long-range dependencies and contextual relationships. The output of the Transformer is a set of 
contextual embeddings 𝒞 ∈ ℝ𝑇′×𝑑, where each embedding 𝐜𝑡 corresponds to a time step 𝑡 in the input 
sequence. The contextual embeddings are used for both pretraining and downstream tasks. 𝒞 is the final 
output of the Transformer, which captures the contextual information of the input sequence. The 
embeddings are shown as blue nodes in the top row of Fig. 11. Eq. (1) summarizes the relationship 
between the latent features 𝐳 and the contextual embeddings 𝒞: 
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𝒞 = 𝒯(𝐳) (1) 
where 𝒯(⋅) denotes the Transformer function. These embeddings (depicted as blue nodes in the top row) 
are used in both pretraining and downstream tasks like spoken language identification. 
Quantization and Contrastive Learning 
During pretraining, the latent features 𝐳 are passed through a quantization module to obtain discrete 
representations 𝒬 = {𝐪𝑡}, shown as green circles. A subset of the time steps ℳ is randomly masked, and 
the model is trained to identify the true quantized target 𝐪𝑡 from a set of negatives 𝒩𝑡 using contrastive 
loss formula Eq. (2). The quantization module discretizes the latent features into a finite set of quantized 
representations, which are then used to compute the contrastive loss. The quantization process is crucial 
for enabling the model to learn meaningful representations from unlabeled data. The quantization 
module is trained to minimize the distance between the true quantized representation and the predicted 
representation, while maximizing the distance between the true representation and the negative samples. 
This process encourages the model to learn robust and discriminative features that can be used for 
downstream tasks. 

ℒ𝒞 = − ∑ log

𝑡∈ℳ

exp(sim(𝐜𝑡, 𝐪𝑡)/𝜅)

∑ exp𝐪̃∈𝒩𝑡∪{𝐪𝑡} (sim(𝐜𝑡, 𝐪̃)/𝜅)
 

(2) 

 
Here, sim(⋅,⋅) is the cosine similarity and 𝜅 is a temperature parameter. The loss ℒ𝒞 shown in gray 
enforces alignment between true context-quantized pairs (𝐜𝑡 , 𝐪𝑡) and penalizes mismatches with 
distractors. 
Fine-Tuning for Spoken Language Identification 
Once pretraining is complete, the quantization module is removed. A classification head is added to map 
contextual embeddings 𝒞 to 𝐿 language classes. The prediction for a given time step uses a softmax 
function, and the model is optimized with categorical cross-entropy loss, given by Eq. (3). The 
classification head consists of a linear layer followed by a softmax activation function, which outputs the 
predicted probabilities for each language class. The model is trained using a standard cross-entropy loss 
function, which measures the difference between the predicted probabilities and the true labels. 

ℒCE = −∑𝑦𝑖

𝐿

𝑖=1

log(𝑦𝑖) 
(3) 

where 𝑦𝑖 is the true label and 𝑦𝑖 is the predicted probability for class 𝑖. Fine-tuning is done end-to-end 
with a lower learning rate for the pretrained backbone to retain its general audio representations. 
Suitability for Multilingual LID 
Wav2Vec2.0 is particularly well-suited for multilingual LID due to its ability to learn language-agnostic 
acoustic representations in an unsupervised manner. Its pretraining on diverse datasets (e.g., LibriSpeech 
or CommonVoice) allows it to generalize across linguistic boundaries with minimal supervision. 
Furthermore, the architecture’s reliance on raw waveform input removes the need for hand-engineered 
features such as MFCCs, making it adaptable to new languages without feature redesign. Empirical studies 
have demonstrated that self-supervised models can outperform traditional pipelines, especially in low-
resource language scenarios (Yi, Zhou, and Xu 2021; Zhao and Zhang 2022; Tahir and others 2023). 
This framework underpins the present study’s comparative evaluation, where Wav2Vec2.0 is fine-tuned 
on a curated Indian multilingual dataset and benchmarked against deep learning models trained on 
MFCC features. The results demonstrate substantial improvements in accuracy and robustness across 
language classes, reinforcing the value of self-supervised architectures in spoken LID for resource-
constrained settings. 
Baseline Models 
In order to benchmark the performance of the Wav2Vec2.0 framework, three supervised deep learning 
models were implemented as baselines: a unidirectional Recurrent Neural Network (RNN), a 
Bidirectional Long Short-Term Memory network (BiLSTM), and a hybrid model combining RNN and 
BiLSTM layers. These models were trained on Mel-Frequency Cepstral Coefficients (MFCCs) extracted 
from the same input data used for Wav2Vec2.0 fine-tuning. The MFCC representation serves as a 
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compact and discriminative encoding of the speech signal’s frequency domain, and has been widely used 
in traditional automatic speech recognition (ASR) and LID tasks (Yagle 2001; Zissman 1996). 
RNN-Based Classifier 
The Recurrent Neural Network (RNN) serves as a foundational architecture for modeling sequential data. 
It is particularly well-suited for processing time-series inputs, such as speech signals, due to its ability to 
retain information from previous time steps. In the context of spoken language identification, RNNs are 
capable of capturing the evolving phonetic patterns across an utterance, which are essential for 
discriminating between languages. 
The RNN model implemented in this study consists of a single unidirectional recurrent layer, followed 
by a fully connected output layer for classification as shown in Fig. 12. Let the input be a sequence of 
MFCC feature vectors 𝐗 = [𝐱1, 𝐱2, … , 𝐱𝑇], where 𝐱𝑡 ∈ ℝ𝑑 represents the 𝑑-dimensional feature vector 
at time step 𝑡. The hidden state at each time step is updated recursively. The update equation for the 
hidden state 𝐡𝑡 at time step 𝑡 is given by Eq. (4). 
𝐡𝑡 = 𝜎(𝐖ℎ𝐱𝑡 + 𝐔ℎ𝐡𝑡−1 + 𝐛ℎ) (4) 

Here, 𝐖ℎ and 𝐔ℎ are weight matrices associated with the input and the recurrent state, respectively, 𝐛ℎ 
is a bias term, and 𝜎(⋅) is a non-linear activation function, typically tanh or ReLU. The sequence is 
processed in a forward direction only (i.e., from 𝑡 = 1 to 𝑇), and the final hidden state 𝐡𝑇 is passed 
through a softmax classifier to produce the language label output 𝐲̂ using Eq. (5). 
𝐲̂ = softmax(𝐖𝑜𝐡𝑇 + 𝐛𝑜) (5) 

 
where 𝐖𝑜 and 𝐛𝑜 are the weights and bias of the output layer, and 𝐲̂ is the predicted class probability 
distribution over the set of 𝐿 languages. 
While RNNs offer a simple and interpretable mechanism for capturing sequential dependencies, they 
suffer from limitations related to gradient propagation through time. As highlighted in Bengio, Simard, 
and Frasconi (1994), RNNs are prone to the vanishing gradient problem, which hampers their ability to 
model long-range dependencies. This limitation becomes particularly evident in spoken language 
identification, where distinguishing features such as stress patterns, prosody, or coarticulatory cues may 
span several hundred milliseconds. 
Despite these constraints, the RNN-based model serves as a critical baseline. It enables a controlled 
assessment of the performance trade-offs introduced by more sophisticated architectures, such as 
Bidirectional LSTMs or self-supervised encoders like Wav2Vec2.0. 

 
Fig. 12. Architecture of the RNN-based classifier. 
Bidirectional LSTM (BiLSTM) 
To overcome the limitations of standard RNNs in capturing long-term dependencies, Bidirectional Long 
Short-Term Memory (BiLSTM) networks are employed. Unlike conventional RNNs, which process input 
sequences in a single forward direction, BiLSTMs utilize two parallel LSTM layers: one traversing the 
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input from past to future, and the other in reverse. This dual perspective allows the model to leverage 
both past and future context at every time step, significantly improving its capacity to encode phonetic 
and prosodic features essential for spoken language identification (Graves and Schmidhuber 2005). 
Each LSTM unit incorporates gated mechanisms—input, forget, and output gates—that regulate the 
information flow through a memory cell. These gates mitigate issues related to vanishing and exploding 
gradients, enabling effective learning over longer sequences (Hochreiter and Schmidhuber 1997). 
Formally, for a sequence of MFCC feature vectors 𝐗 = [𝐱1, 𝐱2, … , 𝐱𝑇], the forward and backward LSTM 
layers computes using Eqs. (6) and (7) respectively: 
𝐡⃗⃗ 𝑡 = LSTMfwd(𝐱1, … , 𝐱𝑡)  

(6) 

𝐡⃗⃗⃖𝑡 = LSTMbwd(𝐱𝑇 , … , 𝐱𝑡)
  

(7) 

 
The final representation at each time step is obtained by concatenating the forward and backward hidden 
states, given by Eq. (8). This concatenation allows the model to capture both past and future context, 
enhancing its ability to learn complex phonotactic patterns and coarticulatory cues. 
𝐡𝑡 = [𝐡⃗⃗ 𝑡 ; 𝐡⃗⃗⃖𝑡]  (8) 

 
The output from the last time step 𝐡𝑇 (or a pooled version over all time steps) is then passed through a 
fully connected classification layer to generate the language label as depicted in Fig. 13. This bidirectional 
formulation enables the model to detect complex phonotactic patterns and coarticulatory cues, which are 
often not local and thus require broad contextual integration. 

 
Fig. 13. Bidirectional LSTM (BiLSTM) architecture. 
Empirical results in prior studies have shown that BiLSTMs consistently outperform unidirectional RNNs 
in a wide range of speech-related tasks, particularly those involving spontaneous or conversational 
speech (Li, Ma, and Lee 2013). This makes them a strong candidate for baseline evaluation in spoken 
language identification frameworks. 
Hybrid RNN+BiLSTM Model 
The hybrid RNN+BiLSTM model is designed to exploit the complementary strengths of shallow recurrent 
layers and deep bidirectional memory architectures. The architecture first applies a unidirectional RNN 
layer to quickly capture short-term temporal dependencies and local phonetic patterns. This is followed 
by a Bidirectional LSTM (BiLSTM) layer, which processes the intermediate RNN outputs in both forward 
and backward directions to enhance contextual modeling. Such hierarchical composition allows the 
network to abstract low-level sequential features before enriching them with global bidirectional context, 
as illustrated in Fig. 14. 
Let the input be a sequence of MFCC feature vectors 𝐗 = [𝐱1, … , 𝐱𝑇]. The hybrid model proceeds in 
two stages. First, the RNN layer computes an intermediate sequence of hidden states 𝐙 = [𝐳1, … , 𝐳𝑇] 
using the update equation in Eq. (9). 
𝐳𝑡 = 𝜎(𝐖𝑟𝐱𝑡 + 𝐔𝑟𝐳𝑡−1 + 𝐛𝑟) (9) 
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These representations {𝐳1, … , 𝐳𝑇} are then processed by a BiLSTM layer to yield the final hidden 
representation using Eq. (10). 

𝐡𝑡
hyb

= BiLSTM(𝐙) = [𝐡⃗⃗ 𝑡 ; 𝐡⃗⃗⃖𝑡]  (10) 

 
where 𝐙 = [𝐳1, … , 𝐳𝑇] is the sequence output from the RNN layer. The concatenated bidirectional 
outputs at the final time step (or an average pooled vector) are passed to a fully connected layer for 
classification. 
This architecture strikes a balance between modeling capacity and computational efficiency. The initial 
RNN layer acts as a feature abstraction stage, reducing the burden on the BiLSTM in deeper layers. This 
modular design is particularly effective for medium-scale spoken language identification datasets, where 
local temporal features and long-range dependencies are both informative but the data size may not justify 
very deep models (Li, Ma, and Lee 2013). 

 
Fig. 14. Hybrid RNN+BiLSTM architecture. 
A comparison of the three baseline architectures is provided in Table 3, detailing the number of layers, 
hidden units, and directional flows. All models are trained using cross-entropy loss, and model weights 
are optimized using the Adam optimizer with early stopping on validation accuracy. 
Table 3. Comparison of baseline architectures used for MFCC-based spoken language identification. 

Model Layer Type(s) Hidden Size Directionality 
RNN RNN + Dense 128 Unidirectional 
BiLSTM BiLSTM + Dense 256 per direction Bidirectional 
Hybrid RNN + BiLSTM + Dense 128 (RNN) + 256 (BiLSTM) Mixed 

Training and Performance Evaluation 
This section details the training configuration, loss functions, and evaluation criteria employed to train 
and benchmark both the Wav2Vec2.0-based spoken language identification model and the MFCC-based 
deep learning baselines (RNN, BiLSTM, and Hybrid RNN+BiLSTM). Emphasis is placed on ensuring 
fair comparison through consistent dataset splits and shared hyperparameter policies where applicable. 
Training Protocols 
All models were trained using stratified splits of the dataset into training (70%), validation (15%), and 
test (15%) partitions, ensuring balanced class distributions across languages. The audio clips were 
resampled to 16 kHz and zero-padded or truncated to 5-second duration as required by the models. 
For Wav2Vec2.0, we used the facebook/wav2vec2-base checkpoint as the starting point, which is 
pretrained on large unlabeled English corpora. The model was fine-tuned for classification by attaching a 
linear output layer with softmax activation over 𝐶 language classes. 
Training employed the Adam optimizer (Kingma and Ba 2014) with default parameters (𝛽1 = 0.9, 𝛽2 =
0.999) and a learning rate scheduler with warm-up. The batch size was set to 8 and training was performed 
for 30 epochs on a single NVIDIA P100 GPU. For the baseline models, a batch size of 16 and a learning 
rate of 1 × 10−3 were used, with training extended to 100 epochs for convergence. 
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Loss Function 
All models were trained to minimize the categorical cross-entropy loss, a standard objective for multi-class 
classification tasks. Let 𝐲̂ ∈ ℝ𝐶 be the predicted logits for 𝐶 classes, and 𝐲 ∈ {0,1}𝐶 the one-hot encoded 
ground-truth label. The loss is computed using the softmax function to convert logits into probabilities, 
as shown in Eq. (11). The softmax function normalizes the logits to a probability distribution over the 
classes, ensuring that the sum of predicted probabilities equals 1. The cross-entropy loss quantifies the 
dissimilarity between the predicted and true distributions, effectively penalizing incorrect predictions 
while rewarding correct ones. 

ℒCE = −∑𝑦𝑖

𝐶

𝑖=1

log (
exp(𝑦𝑖)

∑ exp𝐶
𝑗=1 (𝑦𝑗)

) 
(11) 

 
This formulation penalizes incorrect predictions while encouraging the model to maximize the log-
probability of the correct class. 
Evaluation Metrics 
The primary evaluation metric for all models is classification accuracy, defined as the proportion of 
correctly predicted samples over the total number of samples in the test set. It is computed using the 
formula, given by Eq. (12). 

Accuracy =
1

𝑁
∑𝕀

𝑁

𝑖=1

(argmax
𝑗

𝑦𝑖𝑗 = 𝑦𝑖) 
(12) 

 
where 𝑁 is the total number of test instances, 𝑦𝑖𝑗 is the predicted probability for class 𝑗, and 𝑦𝑖 is the true 

class label. 
To provide a more granular understanding of model behavior, we also report: 
Precision, Recall, and F1-score (macro-averaged across all classes), 
Confusion matrices for visual analysis of misclassification trends, 
Word Error Rate (WER) for sequence-based models (when applicable). 
WER is computed as the edit distance between the predicted and reference label sequences, normalized 
by the total number of reference tokens, given by Eq. (13). 

WER =
𝑆 + 𝐷 + 𝐼

𝑁
 

(13) 

where 𝑆 is the number of substitutions, 𝐷 deletions, 𝐼 insertions, and 𝑁 is the number of reference words. 
Although primarily used in ASR, WER provides additional insight into near-miss classification errors in 
language labeling pipelines (Morris, Maier, and Green 2004). 
Experimental Setup 
Preprocessing 
Effective preprocessing is essential in spoken language identification tasks to ensure data consistency, 
mitigate variability, and improve model generalization. Given the heterogeneous nature of web-sourced 
audio in the Indian Languages Audio Dataset, several standardization and normalization steps were 
applied prior to training. 
All audio clips were resampled to a uniform sampling rate of 16 kHz. Resampling ensures compatibility 
with pretrained acoustic frontends, such as Wav2Vec2.0, which expect inputs at this resolution. 
Additionally, to standardize temporal input lengths, all clips were either zero-padded or truncated to 
exactly 5 seconds, corresponding to 80,000 samples per clip. This fixed length is crucial for efficient 
batching and allows consistent feature map sizes across models. 
The dataset contains audio in both MP3 and WAV formats. To ensure robust ingestion, a hybrid loader 
was implemented that attempts torchaudio.load() first and falls back to soundfile.read() if needed. This 
design enhances compatibility with diverse file encodings and bitrates, while ensuring downstream 
waveform tensors are consistently shaped and sampled. 
To minimize speaker and channel-specific amplitude variations, all waveform tensors 𝐰 were peak-
normalized to the range [−1,1] by dividing each signal by its maximum absolute value, given by Eq. (14). 
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This normalization step is crucial for self-supervised models like Wav2Vec2.0, which are sensitive to 
amplitude variations and can be adversely affected by saturation effects during training. 

𝐰norm =
𝐰

∥ 𝐰 ∥∞
 (14) 

 
This prevents saturation effects and improves numerical stability during training, particularly for neural 
encoders that are sensitive to scale variation in raw audio inputs. 
For baseline models relying on hand-engineered features, 13-dimensional Mel-Frequency Cepstral 
Coefficients (MFCCs) were extracted from each clip using a 25 ms frame window with a 10 ms stride. A 
total of 40 Mel filterbanks were employed to compute the spectral envelope, followed by a discrete cosine 
transform to generate the cepstral coefficients. The MFCC transformation ℱ maps the waveform 𝐰 to a 
sequence of vectors: 
MFCC transformation is performed using the torchaudio.transforms.MFCC class, which computes the 
MFCCs from the waveform tensor 𝐰 as in Eq. [eq:mfcc_transform]. The resulting MFCC tensor 𝐗 has a 
shape of 𝑇 × 13, where 𝑇 is the number of time frames per clip, and 13 corresponds to the number of 
cepstral coefficients. 
𝐗 = ℱ(𝐰) ∈ ℝ𝑇×13 (15) 

where 𝑇 denotes the number of time frames per clip. Temporal padding was applied to batch MFCC 
tensors with variable frame lengths, and missing frames were masked accordingly. 
Language labels were automatically extracted from folder names, lowercased, and mapped to numeric 
indices via a one-to-one dictionary 𝚕𝚊𝚋𝚎𝚕𝟸𝚒𝚍: ℒ → ℤ≥0, where ℒ is the set of languages in the corpus. 
These label IDs serve as the target classes for all supervised training routines. 
To ensure a balanced and unbiased evaluation, a stratified three-way split was used: 
Training set: 70% of data, stratified across language labels, 
Validation set: 15% of data for early stopping and hyperparameter tuning, 
Test set: 15% held out for final performance evaluation. 
Each split preserved the language distribution observed in the full dataset, as verified through class 
histograms and contingency tables. 
In this work, no synthetic augmentation techniques (e.g., time stretching, noise injection, pitch shifting) 
were employed, in order to ensure a clean benchmarking environment and isolate model performance 
under controlled preprocessing. This decision was based on the relatively short length (5 seconds) and 
consistent format of the provided clips. 
All preprocessing operations were implemented using PyTorch, Torchaudio, and NumPy. These steps 
established a robust and consistent data pipeline for both self-supervised and supervised learning models, 
ensuring reproducibility and scalability across multiple languages and model architectures. 
Training Configuration 
To ensure a consistent and reproducible experimental environment, distinct training configurations were 
employed for the Wav2Vec2.0 model and MFCC-based deep learning baselines. All experiments were 
conducted using PyTorch 2.0 with CUDA acceleration on NVIDIA Tesla P100 GPUs (16 GB VRAM). 
Wav2Vec2.0 Fine-Tuning 
The Wav2Vec2.0 architecture was initialized from the publicly available facebook/wav2vec2-base 
checkpoint, pretrained using self-supervised contrastive loss on 960 hours of unlabeled 
Librispeech (Baevski et al. 2020). A linear classification head was appended to map contextual 
embeddings to one of 𝐶 = 10 target language labels. 
Fine-tuning was performed using the Hugging Face Trainer API with the following hyperparameters: 
Epochs: 30 
Batch size: 8 
Optimizer: AdamW (Loshchilov and Hutter 2017) 
Learning rate: 3 × 10−5 
Scheduler: Linear decay with 10% warm-up 
Dropout (attention and hidden layers): 0.1 
Gradient clipping: 1.0 
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To accommodate variable-length raw waveforms, dynamic padding and attention masks were generated 
on-the-fly using a custom collator. Mixed-precision training (FP16) was enabled to reduce memory 
consumption and accelerate training. 
RNN, BiLSTM, and Hybrid Baselines. 
Baseline models were trained on 13-dimensional MFCC feature vectors using standard supervised 
routines. All architectures were implemented from scratch and optimized using the Adam optimizer. The 
configuration across all baselines was: 
Epochs: 100 
Batch size: 16 
Learning rate: 1 × 10−3 
Optimizer: Adam 
Loss: Cross-entropy (Eq. (11)) 
Dropout (applied before final FC layer): 0.3 
Each model was checkpointed at the epoch with highest validation accuracy to prevent overfitting. Early 
stopping with a patience of 10 epochs was also employed. Model-specific configurations include: 
RNN: 1 recurrent layer, 128 hidden units 
BiLSTM: 2 bidirectional layers, 256 hidden units per direction 
Hybrid: 1 RNN layer (128 units) → 1 BiLSTM layer (256 units × 2) 
Model selection was conducted on the validation set. Final evaluation was performed on the held-out test 
set, and all metrics reported in Section 6 refer exclusively to this test data. Confusion matrices and class-
wise classification reports were generated using Scikit-learn. All random seeds were fixed across NumPy, 
PyTorch, and system-level libraries to ensure reproducibility. Code, logs, and model checkpoints were 
archived to support future validation and comparison. 
Results and Analysis 
Model Accuracy 
We evaluate all models using a suite of performance metrics: accuracy, macro-averaged precision, recall, 
F1-score, and Word Error Rate (WER). Table 4 summarizes the overall results on the test set comprising 
ten Indian languages. Among all models, the Wav2Vec2.0 framework outperforms traditional baselines, 
achieving an accuracy of 93.73% and a macro F1-score of 91.26%, with the lowest WER of 10.26% (see 
Fig. 15). 
Table 4. Performance comparison across models. 

Model Accuracy Precision Recall F1 (Macro) WER 
Wav2Vec2.0 0.937 0.922 0.937 0.913 0.103 
RNN 0.472 0.471 0.472 0.469 0.518 
BiLSTM 0.844 0.843 0.844 0.844 0.156 
Hybrid RNN+BiLSTM 0.862 0.866 0.862 0.863 0.138 

 
The Wav2Vec2.0 model’s success can be attributed to its ability to learn robust contextual representations 
from raw waveforms via self-supervised pretraining. As evident from the learning curve in Fig. 16, the 
training loss decreases steadily, showing stable convergence. 
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Fig. 15. Overall models performance across all the metrices. 

 
Fig. 16. Training loss curve for Wav2Vec2.0 over 50 epochs. 
Baseline Comparisons 
Among the MFCC-based baseline models, the Hybrid RNN+BiLSTM architecture exhibits the highest 
overall performance, achieving an accuracy of 86.2% and a macro-averaged F1-score of 86.34%. The 
BiLSTM model follows closely with 84.4% accuracy and a comparable F1-score, demonstrating its ability 
to effectively model bidirectional temporal dependencies in speech data. In contrast, the plain RNN 
baseline performs markedly worse, reaching only 47.2% accuracy, a result consistent with its limited 
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capacity to retain long-term dependencies and its vulnerability to vanishing gradient issues (Bengio, 
Simard, and Frasconi 1994). 
The validation accuracy trajectories for each model provide further insight into their learning dynamics. 
As shown in Fig. 17, the RNN model quickly plateaus and exhibits significant variance in validation 
performance across epochs, indicating unstable convergence. The BiLSTM model improves on this by 
achieving more stable and higher accuracy. Notably, the Hybrid model converges faster and sustains a 
higher validation performance throughout training, suggesting its hierarchical architecture provides a 
more robust abstraction of sequential MFCC features. 

 
Fig. 17. Validation accuracy curves across training epochs for MFCC-based baseline models. The Hybrid 
model achieves faster convergence and higher final accuracy. 
These observations reinforce the benefit of combining different recurrent mechanisms for enhanced 
sequence modeling, while also illustrating the architectural gap between traditional models and 
Transformer-based frameworks such as Wav2Vec2.0. 
Furthermore, Fig. 18 illustrates the confusion matrices of all models. Wav2Vec2.0 displays minimal 
confusion, particularly for phonetically distinct languages like Malayalam, Urdu, and Bengali, which were 
classified with near-perfect accuracy. In contrast, the RNN model struggles across most classes and 
frequently misclassifies similar-sounding pairs such as Punjabi–Gujarati and Hindi–Marathi. 

 
Fig. 18. Confusion matrices for each model on the test set. 
Comparison with Existing Literature 
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Our Wav2Vec2.0 model achieves an accuracy of 93.7% on Indian multilingual speech datasets, surpassing 
several previously reported benchmarks in the domain of low-resource ASR. For instance, Zhao and 
Zhang (2022) reported an 86.1% accuracy using HuBERT-based self-supervised learning models across 
multilingual datasets, underscoring the limitations of earlier models in capturing phonetic and prosodic 
variability in low-resource languages. This performance gap reflects the importance of contextualized 
pretraining, especially when adapting to the acoustically and linguistically diverse Indian context.A key 
issue identified by Krishna (2021) involves the challenge of intra-language dialect variation and 
environmental noise within Indian corpora. These factors significantly affect the robustness of 
multilingual ASR systems. Our Wav2Vec2.0 model addresses these issues effectively by leveraging 
contrastive predictive coding, which improves feature representations and generalization across dialect 
clusters.Traditional approaches like i-vector/PLDA systems have historically shown moderate 
performance for South Asian language identification (LID) tasks, typically within the 70–80% accuracy 
range (Dey, Sahidullah, and Saha 2022). These methods rely heavily on handcrafted features and large 
labeled datasets, making them less adaptable in zero- or few-shot learning conditions. In contrast, our 
results demonstrate the superiority of end-to-end self-supervised learning, which requires minimal manual 
feature engineering and adapts well to linguistic variation.Our hybrid system, which fuses statistical 
backends with transformer-based encoders, delivers a performance trade-off suitable for deployment in 
constrained computational environments. While it lags behind the full Wav2Vec2.0 pipeline in absolute 
accuracy, it maintains competitive performance and offers a favorable balance between inference latency 
and recognition fidelity.Furthermore, other recent works such as Yadav and Sitaram (2022) and Boito et 
al. (2024) advocate for compact multilingual models to improve scalability across low-resource languages. 
These findings align with our observation that architecture compactness and pretraining scale remain 
pivotal design factors.Collectively, these comparisons underscore the advantages of our approach in 
pushing the state-of-the-art in Indian multilingual ASR, both in terms of accuracy and adaptability under 
resource-constrained conditions. 
Class-Level Performance 
Table 5 summarizes class-wise F1-scores for each model. Wav2Vec2.0 consistently outperforms on nearly 
all languages, particularly in underrepresented or phonetically similar classes like Telugu, Punjabi, and 
Gujarati. The hybrid model shows competitive performance on Indo-Aryan languages but still lags behind 
in Dravidian categories. 
Table 5. Per-class F1-scores for each model. 

Language Wav2Vec2.0 RNN BiLSTM Hybrid 
Bengali 1.000 0.317 0.931 0.970 
Gujarati 0.944 0.449 0.481 0.508 
Hindi 0.986 0.404 0.930 0.953 
Kannada 0.958 0.855 0.942 0.941 
Malayalam 0.990 0.554 0.967 0.968 
Marathi 0.993 0.481 0.907 0.917 
Punjabi 0.810 0.343 0.490 0.508 
Tamil 0.990 0.511 0.970 0.966 
Telugu 0.682 0.423 0.933 0.973 
Urdu 0.990 0.357 0.882 0.929 

Summary of Key Insights 
Self-supervised advantage: Wav2Vec2.0’s ability to extract meaningful representations without large 
labeled corpora gives it a distinct edge in low-resource settings. 
Baseline trade-offs: The Hybrid model improves upon simple RNNs and is viable when pretraining is 
computationally infeasible. 
Error patterns: Frequent confusions among Indo-Aryan languages with shared phonetic inventories 
highlight the need for phonotactic modeling in future LID designs. 
These findings reinforce the efficacy of self-supervised models for multilingual spoken language 
identification, especially for under-resourced and acoustically diverse languages such as those in the 
Indian subcontinent. 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 15s,2025 
https://theaspd.com/index.php 

355 

 

Ablation Study 
Effect of Training Dataset Size 
We simulate low-resource settings by training the Wav2Vec2.0 model on progressively smaller fractions 
of the dataset: 100%, 75%, 50%, and 25%. For each subset, the same stratified validation and test sets 
are used to ensure consistent evaluation. The results, shown in Table 6, demonstrate that performance 
remains relatively robust even when training data is halved. 
Table 6. Accuracy of Wav2Vec2.0 under varying training dataset sizes. 

Training Set Fraction Accuracy 
100% 93.73% 
75% 91.40% 
50% 87.87% 
25% 81.33% 

These results confirm that the self-supervised pretraining of Wav2Vec2.0 provides strong generalization 
capabilities even in data-constrained regimes, consistent with findings in prior multilingual ASR 
studies (Yi, Zhou, and Xu 2021). 
Effect of Speaker Variability 
To assess speaker generalization, we perform an additional experiment where test speakers are entirely 
disjoint from training and validation sets. This scenario simulates real-world deployment where the model 
encounters previously unseen voices. 
The Wav2Vec2.0 model maintains a test accuracy of 91.07% under these conditions, indicating minimal 
degradation compared to the original setting (93.73%) as shown in Table 7. The hybrid and BiLSTM 
models, in contrast, exhibit drops of 4–6% in absolute accuracy, underscoring their higher sensitivity to 
speaker mismatches. 
Table 7. Effect of speaker disjointness on test accuracy. 

Model Original Accuracy Disjoint Speaker Accuracy 
Wav2Vec2.0 93.73% 91.07% 
BiLSTM 84.40% 79.33% 
Hybrid 86.20% 81.73% 
RNN 47.20% 41.00% 

 
These results highlight Wav2Vec2.0’s robust speaker-invariant feature encoding, attributable to its 
pretraining on diverse acoustic conditions. This property makes it particularly well-suited for multilingual 
and speaker-diverse environments such as India, where pronunciation, pitch, and prosody can vary 
significantly across regions and speakers. 
These ablation studies provide crucial empirical evidence that the Wav2Vec2.0 model: 
Retains strong performance with reduced labeled data, enhancing its viability for under-resourced 
languages. 
Generalizes effectively across speakers without requiring speaker-specific adaptation. 
Outperforms traditional deep learning baselines in both robustness and accuracy. 
Together, these insights reinforce the claim that self-supervised architectures, particularly those employing 
contrastive learning, are superior for low-resource spoken language identification in multilingual 
domains. 
Per-Language Performance 
To further investigate the fine-grained behavior of the proposed Wav2Vec2.0 model across different 
language classes, we conduct a detailed analysis of class-wise metrics—precision, recall, and F1-score. The 
corresponding bar chart is presented in Fig. 19 and serves to highlight performance disparities across the 
ten Indian languages in the evaluation set. 
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Fig. 19. Class-wise precision, recall, and F1-score for Wav2Vec2.0 across ten Indian languages. 
From Fig. 19, it is evident that the Wav2Vec2.0 model performs exceptionally well on languages such as 
Bengali, Hindi, Tamil, Malayalam, and Urdu, all of which exhibit near-perfect precision and recall scores 
(>0.98). This indicates that the model is highly adept at capturing the phonotactic and prosodic 
regularities unique to these languages. 
However, moderate performance drops are observed for Punjabi, Gujarati, and especially Telugu. For 
instance, Telugu exhibits a notable discrepancy between recall and F1-score despite high accuracy—
suggesting that the model is over-predicting Telugu in ambiguous cases, thereby achieving high recall but 
lower precision. The comparatively lower F1-score for Punjabi may be attributed to its acoustic overlap 
with Hindi and Urdu in colloquial settings, complicating boundary decisions in the absence of lexical 
information. 
Figure 20 presents a comparison of the Word Error Rate (WER) across all four evaluated models. 
Wav2Vec2.0 achieves the lowest WER (10.3%), significantly outperforming the RNN baseline (WER: 
51.8%) and improving upon the BiLSTM and Hybrid models (WERs: 15.6% and 13.8%, respectively). 
The WER trends corroborate the class-wise findings, underscoring the model’s superior alignment with 
actual language labels at both the global and granular levels. 

 
Fig. 20. Word Error Rate (WER) comparison across all models. 
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These results reinforce the assertion that Wav2Vec2.0 offers robust language identification capabilities 
across phonetically diverse Indian languages. The model’s architectural capacity to capture both short-
term phonetic cues and long-term contextual information, without reliance on engineered features, 
renders it especially effective in multilingual, low-resource environments. 
Discussion – Comparative Advantages of Wav2Vec2.0 
The experimental findings from this study prove beyond doubt that Wav2Vec2.0 provides superior results 
compared to traditional deep learning models when detecting a language (LID) in Indian multiple 
languages. The section demonstrates how Wav2Vec2.0 solves multiple key problems of previous methods 
by integrating architectural and representational benefits which enhance performance. 
Self-Supervised Pretraining on Raw Audio 
Wav2Vec2.0 is fundamentally distinguished by its use of self-supervised learning on raw audio 
signals (Baevski et al. 2020). The model develops universal speech representations from unlabeled data 
through a contrastive goal. The system requires no transcriptions or manually extracted features because 
it eliminates dependencies on domain experts. The encoder component of Wav2Vec2.0 takes its input 
directly from waveform audio signals rather than using the MFCC-based approach which baseline RNN 
or BiLSTM models employ. By learning complex phonetic and prosodic variations the model becomes 
effective at discriminating closely related Indian languages. 
Transformer-Based Context Modeling 
The contextualization of encoded audio features is accomplished through a multi-layer Transformer, 
leveraging self-attention mechanisms to model long-range dependencies (Vaswani et al. 2017). The model 
architecture maintains information throughout longer time periods because this capability is vital for 
recognizing extended prosodic elements like rhythm, tone and stress that extend past single phonemic or 
syllabic units. In contrast, RNNs suffer from vanishing gradient problems and are fundamentally limited 
in capturing such global context (Bengio, Simard, and Frasconi 1994). The directional ability of BiLSTMs 
meets limitations because these models work in a sequential order using fixed context amounts. 
Elimination of Manual Feature Engineering 
Traditional LID pipelines need domain-specific feature engineering to work which includes MFCCs, 
LPCs and prosodic attributes. The approach demands intensive modification procedures and leads to 
difficulties in applying knowledge between languages that exhibit various phonetic convention patterns. 
The Wav2Vec2.0 model removes this processing limit because it functions on unprocessed waveform 
data to enable end-to-end training. The system proves most useful in low-resource environments because 
it operates effectively despite inconsistent features caused by dialectal and acoustic variation. 
Robust Generalization in Low-Resource Scenarios 
The main purpose behind this research is to evaluate LID performance under limited resource availability. 
Low-resource environments become suitable for Wav2Vec2.0 because its independent feature learning 
mechanism separates from supervised tasks. After a pretrained state the model needs only basic labeled 
information to accomplish fine-tuning for specific tasks. The experimental findings validate these claims 
because Wav2Vec2.0 reaches an accuracy rate of 93.7% along with a Word Error Rate (WER) of 0.10 
which outpaces traditional models including RNN (47.2%, WER 0.52) and BiLSTM (84.4%, WER 
0.156). Wav2Vec2.0 shows excellent generalization capabilities which make it the best option for 
deployment in regions with diverse languages and limited resources. 
Phonetic and Prosodic Sensitivity 
The Wav2Vec2.0 system performs outstandingly well at distinguishing languages that sound similar to 
each other based on their acoustic properties. Languages like Hindi, Malayalam, Tamil, and Urdu exhibit 
near-perfect scores across all evaluation metrics. The model demonstrates its capability to recognize subtle 
features such as vowt harmony and tone extension due to its precise phonotactic and suprasegmental 
recognition abilities. Figure 19 highlights this granularity, while the low confusion rates in the confusion 
matrix (Fig. 18) further validate the model’s robustness. 
Efficient Training and Scalability 
The Wav2Vec2.0 system enables efficient training because its Transformer layers can execute parallel 
operations. The self-attention mechanism enables efficient batched processing because it solves the GPU 
utilization challenges faced by RNNs during sequential computation. The pretraining of Wav2Vec2.0 
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enables significant reduction of training requirements for new applications. The system requires fewer 
computational resources during large-scale processing of datasets and multiple language applications. 
Implications for Scalable LID Systems 
The findings from this work advocate for a paradigm shift in the design of spoken LID systems. 
Wav2Vec2.0 functions as a flexible system that needs limited supervision to support additional language 
integration. XLSR-53 functions as a cross-lingual variant that enables multilingual pretraining to enhance 
performance when integrated with Wav2Vec2.0. The model exhibits excellent compatibility with real-
time mobile and call-center applications because it operates well with on-device inference pipelines and 
shows robustness against different dialects. 
Wav2Vec2.0 addresses crucial shortcomings of previous architectures through self-supervision combined 
with Transformer-based timescale processing and waveforms as an input and output. Its powerful results 
combined with elegant design features make the Wav2Vec2.0 framework position itself well for future 
low-resource language identification system development. 
 
CONCLUSION 
A thorough assessment of Wav2Vec2.0 for spoken language identification (LID) within Indian 
multilingual domains occurs in this study along with traditional MFCC-based deep learning model 
evaluations. Wav2Vec2.0 applies self-supervised learning to direct waveform input to achieve lead 
performance metrics which include a test accuracy of 93.7% and word error rate (WER) at 10.3% while 
surpassing all benchmark RNN (47.2%) and BiLSTM (84.4%) and Hybrid (86.2%) performance levels in 
every evaluation metric. 
Various models established Wav2Vec2.0’s ability to perform well with different phonetic languages as 
well as its performance maintenance under speaker variations and restricted training data. Due to its 
unique characteristics Wav2Vec2.0 shows great potential to serve needs of resource-limited conditions 
found in India’s multi-linguistic areas where code-switching and dialectal features are common. 
The study confirms how self-supervised Transformer models with their architectural strengths allow the 
discovery of phonotactic dependencies through phonological data without depending on human-
designed features and big annotation datasets. The presented training pipeline along with the evaluation 
framework provide a solid base for developing multilingual speech modeling research. 
Building on the promising results of this study, several directions can be explored to extend the impact 
and generalizability of the proposed framework: 
Expansion to Additional Languages and Dialects: Scaling the model to cover more Indian languages, 
dialects, and code-switched utterances will enhance its utility in pan-Indian settings and improve 
robustness across regional variations. 
Multilingual Pretraining with XLS-R and WavLM: Integrating multilingual self-supervised checkpoints 
such as XLS-R (e.g., XLS-R-53) or WavLM can further improve generalization across linguistically related 
and low-resource classes. 
Domain Adaptation and Transfer Learning: Fine-tuning the model for specific speech domains (e.g., call 
centers, news broadcasts) or unseen linguistic domains using few-shot learning techniques can increase 
applicability in domain-sensitive deployments. 
On-Device and Edge Deployment: Exploring quantization and pruning strategies to optimize model 
inference on embedded and mobile platforms, thereby enabling real-time language identification in 
constrained hardware environments. 
Multimodal and Paralinguistic Extensions: Integrating paralinguistic cues (e.g., speaker emotion, gender) 
or multimodal data (e.g., video, text) could enrich model predictions in complex human–computer 
interaction scenarios. 
Ethical and Fairness Considerations: Investigating the socio-linguistic fairness of LID systems—such as 
bias across dialects or speaker identities—remains critical for inclusive AI deployment in multilingual 
societies. 
In summary, Wav2Vec2.0 represents a transformative advancement in spoken LID for low-resource and 
multilingual environments. Its combination of self-supervised representation learning, Transformer-based 
context modeling, and end-to-end training makes it a strong candidate for scalable deployment in 
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linguistically diverse nations like India. The insights from this study lay the groundwork for further 
innovations in multilingual speech understanding systems. 
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