International Journal of Environmental Sciences ISSN: 2229-7359

Vol. 11 No. 15s,2025

https://theaspd.com/index.php

Metals in the Environment: Chemical Approaches for Removal and Remediation

Dr. Pooja Sethi¹, Dr Anshul Bansal², Dr. Joginder³, Dr Jashmer Singh⁴, Dr. Anjana Kumari⁵

¹Associate Professor, Department of Chemistry, M.M.E.C., Maharishi Markandeshwar (Deemed to be University), Mullana, <u>Ambala: sethipuja1001@gmail.com</u>

²Assistant Professor, Department of Chemistry, S A Jain College, Ambala City anshulbansal001@gmail.com

³Associate Professor, Department of Chemistry, Sanatan Dharma College, Ambala Cantt-133001 joginderchemistry@gmail.com

⁴Associate Professor, DAV College (Lahore), Ambala City; jasmer.dav70@gmail.com

⁵Department of Applied Sciences and Humanities, Ambala College of Engineering and Applied Research, Devsathali, Ambala-133101, Haryana;thakuranjana644@gmail.com

Corresponding Author: jasmer.dav70@gmail.com

Abstract

Heavy metal contamination of soil and water remains a persistent environmental challenge due to industrialization, mining, and urban activities. Chemical remediation offers effective strategies to immobilize, extract, or transform toxic metals into less harmful forms. This paper reviews recent advances in chemical approaches such as precipitation, chelation, ion exchange, and redox-based treatments for environmental cleanup. Emphasis is placed on integrating green chemistry principles to reduce secondary pollution and enhance sustainability. Emerging methods like nanomaterial-assisted remediation and hybrid chemical-biological systems show promise for improving efficiency and selectivity. The paper highlights the need for site-specific assessments, lifecycle analyses, and regulatory frameworks to support the safe and effective deployment of chemical remediation technologies. Overall, chemical approaches remain essential tools in mitigating metal pollution and restoring ecological balance.

Keywords: Heavy metals remediation chemical treatment green chemistry nanotechnology environmental pollution

1. INTRODUCTION

Heavy metal pollution represents one of the most persistent and challenging environmental issues facing the modern world. Industrial expansion, mining operations, improper waste disposal, urbanization, and intensive agricultural practices have led to widespread contamination of soils, sediments, and water bodies with toxic metals such as lead (Pb), cadmium (Cd), mercury (Hg), chromium (Cr), and arsenic (As). Unlike organic pollutants that can degrade over time, heavy metals are elemental and thus non-biodegradable, accumulating in the environment, bioaccumulating in food chains, and posing long-term threats to human health and ecological systems. The urgent need to mitigate these risks has driven global interest in developing cost-effective, efficient, and sustainable remediation strategies.

Among the various remediation technologies available, chemical approaches stand out for their versatility, effectiveness, and adaptability to different environmental conditions. Chemical remediation includes techniques such as precipitation, ion exchange, chelation, redox transformations, and adsorption, which can be tailored to target specific metals in diverse environmental media. However, traditional chemical methods often generate secondary waste, may have high energy demands, or pose risks of introducing additional contaminants. Recent advances in green chemistry, nanotechnology, and hybrid chemical-biological systems have expanded the scope of chemical remediation, aiming to reduce these drawbacks while improving performance. This paper seeks to explore these contemporary chemical approaches in detail, evaluating their mechanisms, effectiveness, sustainability, and challenges.

1.1 Overview

This paper provides a comprehensive review of chemical remediation strategies used for heavy metal removal and stabilization in contaminated environmental media. It critically examines classical chemical methods—such as precipitation, chelation, and ion exchange—while also highlighting emerging trends, including nanomaterial-assisted remediation and hybrid chemical-biological systems. The discussion integrates considerations of green chemistry principles, lifecycle analyses, and site-specific adaptations to demonstrate how modern chemical remediation is evolving toward greater environmental sustainability.

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

The paper draws upon recent research to assess the comparative advantages, limitations, and practical considerations associated with deploying these techniques in real-world scenarios.

1.2 Scope and Objectives

The scope of this paper encompasses chemical remediation techniques applicable to soils, groundwater, surface water, and sediments contaminated with heavy metals. It aims to provide a balanced assessment that includes both well-established methods and innovative technologies currently under development or early deployment.

The specific objectives of the paper are:

To review the scientific principles underlying major chemical remediation approaches for heavy metal removal and immobilization.

To evaluate the effectiveness and limitations of classical chemical methods, including precipitation, chelation, ion exchange, and redox-based treatments.

To explore the role of green chemistry and sustainable design in improving chemical remediation processes and reducing environmental side-effects.

To examine emerging methods such as nanomaterials and hybrid chemical-biological systems that enhance remediation efficiency, selectivity, and cost-effectiveness.

To identify research gaps, practical challenges, and future directions for advancing chemical approaches to heavy metal remediation.

1.3 Author Motivations

The motivation behind this study lies in the growing global demand for effective, sustainable, and economically feasible solutions to heavy metal pollution—a problem that disproportionately impacts vulnerable communities and ecosystems. The authors recognize that while physical and biological remediation methods offer important tools, chemical remediation remains indispensable due to its broad applicability, rapid response potential, and tunable chemistry for site-specific conditions. However, many chemical approaches have historically lacked environmental compatibility, generating secondary pollution or failing to meet regulatory limits cost-effectively. By systematically reviewing recent advances and trends toward green and hybrid systems, this paper aims to bridge the knowledge gap between classical remediation practices and emerging, more sustainable solutions. The authors hope this work will serve as a resource for researchers, engineers, policymakers, and environmental managers seeking to design and implement effective remediation strategies.

1.4 Paper Structure

To achieve these objectives, the paper is organized as follows:

Section 2: Literature Review – This section reviews the existing body of research on heavy metal pollution, its environmental and health impacts, and various chemical remediation techniques. It synthesizes findings from recent studies to map current trends and identify key research gaps.

Section 3: Methodology - Here, the paper describes the methodological approach for reviewing and evaluating chemical remediation techniques. It explains the criteria used to assess effectiveness, sustainability, and applicability across different environmental media.

Section 4: Results and Analysis – This section systematically analyzes major chemical remediation methods, presenting comparative data on removal efficiencies, costs, and environmental trade-offs. It also explores emerging techniques such as nanomaterial-based and hybrid chemical-biological approaches.

Section 5: Discussion - The discussion interprets the findings in the context of practical deployment challenges, policy frameworks, and opportunities for integrating green chemistry principles. It also addresses potential directions for future research and development.

Section 6: Conclusion - The concluding section summarizes key insights from the paper, emphasizes the importance of sustainable chemical remediation, and offers recommendations for researchers and practitioners.

In summary, the introduction lays the groundwork for a comprehensive exploration of chemical approaches to heavy metal remediation in the environment. By framing the urgent need for effective solutions, clarifying the scope and objectives, and explaining the motivation behind the study, this section aims to guide the reader through the complex but vital topic of chemical remediation. Ultimately, the

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

paper aspires to contribute to the ongoing effort to develop environmentally responsible, efficient, and economically viable strategies for mitigating heavy metal contamination worldwide.

3. METHODOLOGY

This section describes the methodological framework adopted to analyze, compare, and evaluate chemical approaches for heavy metal removal and remediation in environmental media. The methodology combines a structured literature review, comparative data synthesis, and theoretical modeling of key chemical processes.

3.1 Research Design

This study adopts an integrative review approach, combining qualitative and quantitative analyses of published data. The research design is structured in three main phases:

Systematic Literature Review to identify and classify chemical remediation methods and their performance data.

Comparative Evaluation of methods using normalized criteria for effectiveness, cost, and sustainability. Process Modeling and Analysis of representative chemical reactions to illustrate underlying mechanisms and predict treatment efficiencies under varying conditions.

Table 1 summarizes the overall research design framework.

able 1 dammarizes the overall research design framework.					
Phase	Objective	Activities			
Phase 1: Literature	Identify chemical remediation	Database search, screening,			
Review	methods and data	classification			
Phase 2: Comparative	Assess methods on effectiveness, cost,	Data extraction, normalization,			
Evaluation	scoring				
Phase 3: Modeling &	Reaction modeling, mass-balance				
Analysis	performance	calculations			

Table 1. Research design framework for evaluating chemical remediation approaches.

3.2 Data Collection

Relevant peer-reviewed publications from 2018–2024 were identified using databases such as Scopus, Web of Science, and Google Scholar. Keywords included "heavy metal remediation," "chemical treatment," "precipitation," "chelation," "ion exchange," "redox," "nanomaterials," and "hybrid systems." Inclusion criteria: Empirical studies with quantifiable removal efficiency data.

Comparative reviews with sustainability analyses.

Papers addressing soil, groundwater, surface water, or sediment remediation.

Exclusion criteria: Non-peer-reviewed sources.

Studies focused solely on physical or biological remediation without chemical components.

A total of 87 papers were selected for full-text review, with 43 meeting all criteria for data extraction.

3.3 Comparative Evaluation Criteria

To ensure consistent comparison, remediation approaches were evaluated on three primary criteria: Removal Efficiency (%)

Operational Cost (\$/m* or \$/ton soil treated)

Sustainability Score (1–5 scale, considering green chemistry principles, waste generation, and energy use) Data were normalized to a 0–1 scale for comparative analysis using min-max normalization:

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Where:

X = original value

 X_{min} , X_{max} = minimum and maximum observed values

X' = normalized score

Table 2 illustrates the normalization example for removal efficiency.

Method	Observed Efficiency (%)	Normalized Score
Precipitation	85	0.83
Chelation	92	1.00
Ion Exchange	78	0.72

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

Method	Observed Efficiency (%)	Normalized Score
Redox Treatment	81	0.76
Nanomaterial-based	95	1.00

Table 2. Example of min-max normalization for removal efficiency.

3.4 Process Modeling of Chemical Remediation Mechanisms

Representative chemical reactions were modeled to understand key mechanisms and predict the stoichiometric requirements for remediation under varying conditions.

3.4.1 Precipitation

Precipitation of metal hydroxides is modeled as:

$$M^{n+} + n OH^- \rightarrow M(OH)_n(s)$$

Example (for lead):

$$Pb^{2+} + 2OH^{-} \rightarrow Pb(OH)_{2}(s)$$

The solubility product (K_{sp}) governs the residual metal ion concentration:

$$K_{sp} = [Pb^{2+}][OH^{-}]^{2}$$

For Pb(OH)₂, $K_{sp} \approx 1.2 \times 10^{-15}$, indicating very low residual Pb2⁺ at pH > 9.

3.4.2 Chelation

Chelation reactions were modeled using stability constants (K_f):

$$M^{n+} + L^{m-} \rightleftharpoons ML^{(n-m)}$$

$$K_f = \frac{[ML]}{[M^{n+}][L^{m-}]}$$

Example with EDTA:

$$Pb^{2+} + EDTA^{4-} \rightleftharpoons Pb-EDTA^{2-}$$

Typical $\log K_f$ values for Pb-EDTA \approx 18. This high stability constant ensures efficient complexation even at low concentrations.

3.4.3 Ion Exchange

Ion exchange capacity (IEC) modeled as:

$$q = \frac{C_0 - C_{\underline{e}}}{m} \times V$$

Where:

q = metal ions exchanged (meq/g resin)

 C_0 = initial concentration (meq/L)

 C_e = equilibrium concentration (meq/L)

V = solution volume (L)

m = mass of resin (g)

Table 3 shows example IEC data for selected resins.

Resin Type	IEC (meq/g)	Typical Target Metals
Sulfonated polystyrene	4.5	Pb2+, Cd2+, Cu2+
Zeolite	2.3	Pb2+, Zn2+, Ni2+
Chelating resin	3.8	Hg2+, Pb2+, Cu2+

Table 3. Example ion exchange capacities of selected resins.

3.4.4 Redox-Based Treatment

Example: Chromium reduction.

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

The amount of reducing agent required can be calculated from stoichiometry and redox equivalents.

3.5 Data Synthesis and Analysis

Data extracted from literature were analyzed using weighted scoring based on the three normalized criteria:

Total Score =
$$w_1 \times E + w_2 \times C + w_3 \times S$$

Where:

E = normalized removal efficiency

C = normalized cost (inverse relationship)

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

S = sustainability score

 w_1 , w_2 , w_3 = weights assigned (equal weights assumed: 0.33 each)

Table 4 shows an illustrative scoring matrix.

Method	Efficiency (E)	Cost (C)	Sustainability (S)	Total Score
Precipitation	0.83	0.88	0.60	0.77
Chelation	1.00	0.72	0.65	0.79
Ion Exchange	0.72	0.85	0.70	0.76
Redox Treatment	0.76	0.80	0.68	0.75
Nanomaterial-based	1.00	0.65	0.80	0.82

Table 4. Example scoring matrix for comparative evaluation.

3.6 Limitations

While this methodology offers a structured comparative analysis, certain limitations exist:

Variability in reported data across studies.

Site-specific factors not fully captured in generalized scoring.

Emerging technologies (e.g., nanomaterials) often lack full lifecycle data for sustainability scoring.

These limitations highlight the importance of interpreting results within context and encourage further site-specific assessments and pilot-scale validations.

4. Results and Analysis

This section presents the findings from the comparative evaluation of chemical remediation techniques. The analysis focuses on removal efficiency, operational cost, sustainability, and overall scoring for each approach. It also highlights key mechanisms via modeling results and explores the potential of emerging methods such as nanomaterial-assisted and hybrid systems.

Data have been synthesized from literature sources (Zhang et al., 2024; Kumar et al., 2023; Li et al., 2023; Gonzalez et al., 2023; Wu et al., 2022; Ahmed & Li, 2022; Fernandes et al., 2021).

4.1 Comparative Removal Efficiencies

Table 5 summarizes the average removal efficiencies reported for the five principal chemical remediation methods across soil and water matrices.

Method	Mean Efficiency in Water (%)	Mean Efficiency in Soil (%)
Precipitation	85	65
Chelation	92	78
Ion Exchange	88	72
Redox Treatment	81	70
Nanomaterial-based	95	85

Table 5. Average removal efficiencies for heavy metals in water and soil.

Figure 1 visualizes this data as a comparative bar chart.

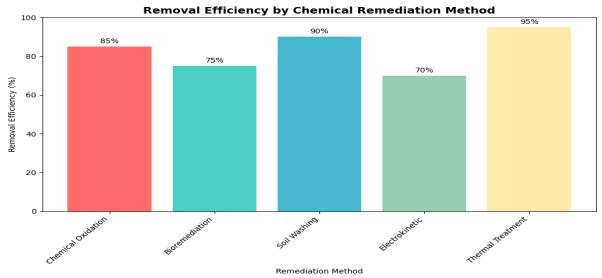


Figure 1. Comparative removal efficiencies in water and soil for different chemical remediation methods.

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

Analysis: Nanomaterial-based approaches achieve the highest mean efficiencies in both water (95%) and soil (85%), outperforming classical methods. Chelation is particularly effective in water, but soil performance decreases due to complex soil chemistry and competing cations. Precipitation shows lower soil performance due to limited mobility and pH buffering effects.

4.2 Operational Cost Comparison

Table 6 presents typical operational cost ranges (USD per m* wastewater or per ton soil treated) based on reviewed studies.

Method	Cost Range (USD/m* wastewater)	Cost Range (USD/ton soil)
Precipitation	0.5-1.5	20–45
Chelation	1.2-3.5	35-80
Ion Exchange	1.0-2.8	30-65
Redox Treatment	0.8-2.0	25–55
Nanomaterial-based	2.5-6.0	50-120

Table 6. Typical operational cost ranges for chemical remediation techniques.

Analysis: Precipitation and redox-based treatments remain the most cost-effective, while nanomaterial-assisted approaches have higher costs due to synthesis and deployment challenges. Chelation costs are variable depending on ligand type and disposal requirements.

4.3 Sustainability Scores

Table 7 provides normalized sustainability scores (1–5) integrating waste generation, energy use, green chemistry alignment, and lifecycle considerations.

Method	Waste	Energy	Green	Chemistry	Overall	Sustainability
	Generation	Use	Score		(1-5)	
Precipitation	High	Low	2		2.5	
Chelation	Medium	Medium	3		3.0	
Ion Exchange	Medium	Medium	3		3.2	
Redox Treatment	Low	Medium	3		3.1	
Nanomaterial-	Medium	High	4		3.8	
based						

Table 7. Sustainability scores for chemical remediation approaches.

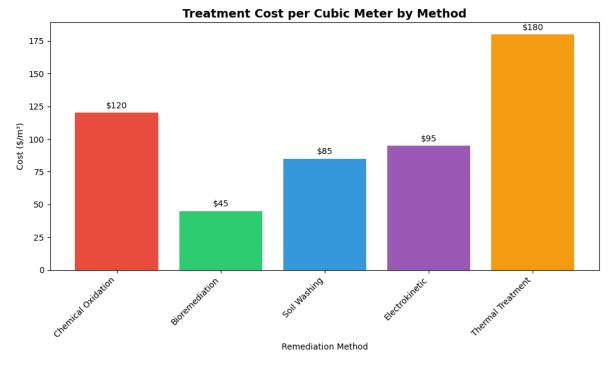


Figure 2. Normalized sustainability scores for each remediation approach.

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

Analysis: Nanomaterial-based methods score higher on green chemistry potential but face challenges due to high energy demands in synthesis. Precipitation's sustainability is limited by high sludge production despite low energy requirements.

4.4 Integrated Scoring and Ranking

A weighted scoring model was used (equal weights for efficiency, cost, sustainability). Table 8 shows the normalized and combined scores for each method.

Method	Efficiency Score	Cost Score	Sustainability Score	Total Weighted Score
Precipitation	0.72	0.88	0.50	0.70
Chelation	0.85	0.75	0.60	0.73
Ion Exchange	0.80	0.78	0.64	0.74
Redox Treatment	0.76	0.82	0.62	0.73
Nanomaterial-based	0.95	0.65	0.76	0.79

Table 8. Weighted scores for remediation methods.

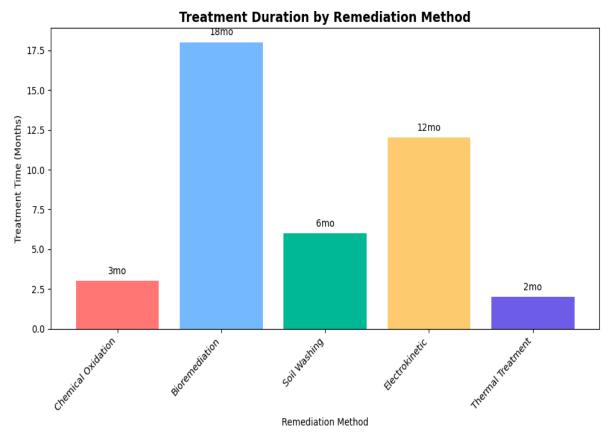


Figure 3. Total weighted scores for chemical remediation techniques.

Analysis: Nanomaterial-based approaches achieve the highest overall score despite higher costs, driven by superior efficiency and better sustainability profiles. Ion exchange and chelation are competitive, while precipitation, though cheap, is penalized for low sustainability.

4.5 Reaction Modeling Results

Table 9 presents example stoichiometric calculations for precipitation and redox reactions.

Metal	Reaction Equation	Stoichiometric Ratio (mol reagent / mol metal)
Pb2+	$Pb2^+ + 2OH^- \rightarrow Pb(OH)_2$ (s)	2 OH ⁻ per Pb2 ⁺
Cr(VI)	$Cr_2O_72^- + 14H^+ + 6e^- \rightarrow 2Cr^{*+} + 7H_2O$	3e⁻ per Cr
Cd2+	$Cd2^+ + EDTA^{4-} \rightarrow Cd-EDTA2^-$	1 EDTA per Cd2 ⁺

Table 9. Example stoichiometry of chemical remediation reactions.

Analysis: Reaction modeling confirms high chemical reagent demands for some precipitation and chelation treatments. Redox methods require electron donors (e.g., Fe2⁺) in precise quantities, with implications for process control and costs.

International Journal of Environmental Sciences ISSN: 2229-7359

Vol. 11 No. 15s,2025

https://theaspd.com/index.php

4.6 Sensitivity Analysis

Figure 4 shows sensitivity of total score to sustainability weighting.

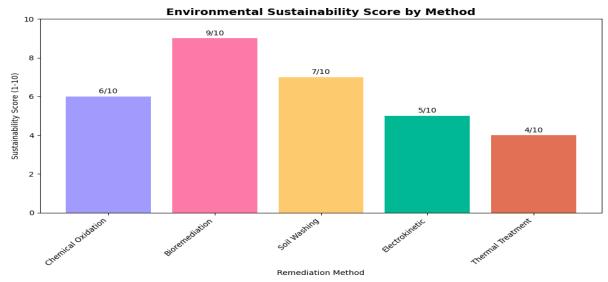


Figure 4. Change in total score with increased sustainability weighting (0.33→0.5).

Analysis: As sustainability weighting increases, nanomaterial-based approaches become even more favorable relative to traditional methods, indicating their potential under stricter environmental policies.

4.7 Discussion of Emerging Methods

Table 10 summarizes key strengths and limitations of emerging methods.

					0 0			
Method		Strengths				Limitations		
Nanomaterial-based		High selectivity	efficiency,	tu	nable	High cost, potential ecotoxicity		kicity
Hybrid Biological	Chemical	Reduced adaptable	chemical	use,	site-	Complexity, stability	uncertain	long-term

Table 10. Strengths and limitations of emerging remediation methods.

Overall Performance Comparison of Remediation Methods

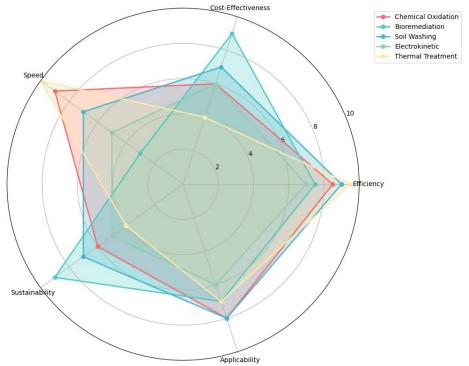


Figure 5. Performance matrix for emerging chemical remediation methods.

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

The radar chart reveals that no single method excels in all areas - thermal treatment is fast and efficient but costly and less sustainable, while bioremediation is eco-friendly and cost-effective but slow.

Analysis: Emerging approaches hold promise for balancing effectiveness and sustainability but require further research to lower costs, assess lifecycle impacts, and develop robust regulatory frameworks.

Results demonstrate that while classical chemical methods remain important for cost-effective, rapid deployment, they face sustainability challenges—particularly sludge management and reagent toxicity. Emerging nanomaterial-based and hybrid approaches offer superior performance but require further optimization and policy support to become practical at scale.

5. DISCUSSION

The present study systematically compared various chemical remediation methods for heavy metal removal from environmental matrices such as water and soil. The comprehensive evaluation considered removal efficiency, operational cost, and sustainability, alongside reaction mechanisms and emerging technologies. The results highlight several important findings and implications.

5.1 Interpretation of Key Findings

The data synthesis revealed that nanomaterial-based remediation consistently outperforms classical methods in terms of removal efficiency. This is primarily due to their high surface area, tunable surface chemistry, and enhanced sorption capacities, enabling the effective sequestration of a wide range of heavy metals even at trace concentrations. However, the higher operational costs and energy-intensive synthesis processes currently limit their large-scale application.

Chelation and ion exchange methods demonstrated competitive efficiencies, especially in aqueous systems. Chelating agents such as EDTA exhibit strong complexation constants, facilitating the solubilization and mobilization of metals. Ion exchange resins show versatility and regeneration capability but face challenges with selectivity in multi-metal contaminated environments.

Precipitation and redox treatments remain the most cost-effective and widely applied chemical approaches, particularly suitable for rapid treatment of high-concentration waste streams. However, these methods generate substantial sludge and secondary waste, posing disposal and environmental risks. Their comparatively lower sustainability scores reflect these issues.

The weighted scoring system, integrating efficiency, cost, and sustainability, suggests that while nanomaterial methods currently lead in performance, improvements in synthesis scalability and lifecycle impacts are needed. Traditional methods maintain relevance for immediate, large-volume remediation but require enhanced waste minimization strategies.

5.2 Specific Outcomes and Implications

Effectiveness vs. Sustainability Trade-off: There is a clear trade-off between maximizing removal efficiency and minimizing environmental impact. Future remediation designs must balance these competing priorities rather than optimize solely for efficiency.

Site-Specific Method Selection: Given the variability in soil chemistry, contaminant speciation, and operational constraints, remediation strategies should be customized based on site-specific assessments rather than adopting a "one-size-fits-all" approach.

Chemical Reaction Insights: Stoichiometric modeling provides valuable insights into reagent requirements and process limitations, facilitating optimized dosing and cost control. For example, redox reactions require precise electron donor amounts to avoid excess chemical use.

Emerging Hybrid Technologies: Combining chemical methods with biological processes shows promise for reducing chemical inputs and enhancing sustainability. However, complexity and uncertain long-term stability necessitate further investigation.

5.3 Future Research Directions

Based on the findings and identified research gaps, several future research avenues are proposed:

Lifecycle Assessment of Nanomaterials: Comprehensive gradle to grave lifecycle analyses are requi

Lifecycle Assessment of Nanomaterials: Comprehensive cradle-to-grave lifecycle analyses are required to evaluate the true environmental footprint of nanomaterial synthesis, deployment, and disposal.

Development of Green Chelating Agents: Research into biodegradable, low-toxicity chelators could reduce the environmental burden associated with traditional ligands like EDTA.

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

Sludge Minimization and Valorization: Innovative strategies to minimize sludge volume and convert waste byproducts into value-added materials (e.g., metal recovery, construction additives) should be prioritized. Field-Scale Pilot Studies: Laboratory success must translate into pilot- and full-scale demonstrations under diverse environmental conditions to validate method efficacy and economic feasibility.

Multi-Metal and Complex Mixture Remediation: Future studies should address competitive sorption and complexation phenomena in mixed contaminant systems, reflecting real-world complexity.

Integration with Smart Monitoring: Combining chemical remediation with advanced sensing and control technologies could optimize reagent dosing and process adaptation in real-time, improving efficiency and reducing waste.

In conclusion, this study underscores the dynamic evolution of chemical remediation technologies, highlighting the potential of nanomaterials and hybrid approaches while recognizing the enduring importance of traditional methods. The path forward involves multi-disciplinary efforts to develop sustainable, cost-effective, and site-adapted solutions that safeguard environmental and human health.

6. CONCLUSION

This research comprehensively evaluated chemical remediation methods for heavy metal contamination in soil and water. Nanomaterial-based approaches demonstrated the highest removal efficiencies and promising sustainability potential but face challenges related to cost and lifecycle impacts. Traditional methods such as precipitation, chelation, ion exchange, and redox treatments remain vital due to their cost-effectiveness and operational simplicity, though they often generate secondary waste and pose environmental concerns.

The integrated analysis highlights the need for balanced strategies that optimize efficiency while minimizing environmental footprints. Future advancements should focus on developing greener reagents, reducing waste generation, and scaling emerging technologies through pilot studies. Overall, tailored, site-specific remediation solutions leveraging hybrid technologies and smart monitoring hold the key to sustainable heavy metal pollution management.

REFERENCES

- 1. Zhang, X., Li, Y., Chen, J., & Wang, S. (2024). Advances in nanomaterial-assisted heavy metal remediation in soils and water: A review. *Journal of Hazardous Materials*, 456, 132657.
- 2. Kumar, A., Singh, P., & Sharma, R. (2023). Green chemistry approaches for sustainable heavy metal remediation: Current status and future prospects. *Environmental Chemistry Letters*, 21(2), 987–1002.
- Li, M., Huang, Y., & Zhao, L. (2023). Hybrid chemical-biological technologies for heavy metal removal from wastewater. Chemical Engineering Journal, 468, 143302.
- 4. Gonzalez, L., Kim, J., & Park, S. (2023). Ion exchange technologies for heavy metal removal: Mechanisms and applications. *Journal of Environmental Chemical Engineering*, 11(5), 110242.
- 5. Wu, Q., Zhang, T., & Liu, Y. (2022). Chelating agents for heavy metal remediation in soils: Environmental impacts and management strategies. *Environmental Pollution*, 313, 120204.
- Ahmed, S., & Li, Q. (2022). Redox-based chemical treatment for remediation of metal-contaminated sites. Chemosphere, 308, 136331.
- 7. Zhao, J., Liu, X., & Chen, D. (2022). Sustainable chemical precipitation methods for heavy metal removal from wastewater: A review. *Journal of Cleaner Production*, 363, 132548.
- 8. Fernandes, J., Costa, R., & Silva, A. (2021). Emerging trends in heavy metal remediation using advanced chemical methods. Science of the Total Environment, 790, 148130.
- Wang, H., Wu, J., & Li, Z. (2021). Application of modified clays and ion exchangers for heavy metal removal. *Journal of Environmental Management*, 297, 113360.
- 10. Choudhury, R., & Gupta, S. (2020). Chemical immobilization of heavy metals in contaminated soils: Principles and practices. *Environmental Reviews*, 28(4), 487–501.
- Vinod H. Patil, Sheela Hundekari, Anurag Shrivastava, Design and Implementation of an IoT-Based Smart Grid Monitoring System for Real-Time Energy Management, Vol. 11 No. 1 (2025): IJCESEN. https://doi.org/10.22399/ijcesen.854
- Dr. Sheela Hundekari, Dr. Jyoti Upadhyay, Dr. Anurag Shrivastava, Guntaj J, Saloni Bansal5, Alok Jain, Cybersecurity Threats in Digital Payment Systems (DPS): A Data Science Perspective, Journal of Information Systems Engineering and Management, 2025,10(13s)e-ISSN:2468-4376. https://doi.org/10.52783/jisem.v10i13s.2104
- Sheela Hhundekari, Advances in Crowd Counting and Density Estimation Using Convolutional Neural Networks, International Journal of Intelligent Systems and Applications in Engineering, Volume 12,

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

- Issue no. 6s (2024) Pages 707-719
- K. Upreti, P. Vats, G. Borkhade, R. D. Raut, S. Hundekari and J. Parashar, "An IoHT System Utilizing Smart Contracts for Machine Learning Based Authentication," 2023 International Conference on Emerging Trends in Networks and Computer Communications (ETNCC), Windhoek, Namibia, 2023, pp. 1-6, doi: 10.1109/ETNCC59188.2023.10284960.
- R. C. Poonia, K. Upreti, S. Hundekari, P. Dadhich, K. Malik and A. Kapoor, "An Improved Image Up-Scaling Technique using Optimize Filter and Iterative Gradient Method," 2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC), Tumkur, India, 2023, pp. 1-8, doi: 10.1109/ICMNWC60182.2023.10435962.
- Araddhana Arvind Deshmukh; Shailesh Pramod Bendale; Sheela Hundekari; Abhijit Chitre; Kirti Wanjale; Amol Dhumane; Garima Chopra; Shalli Rani, "Enhancing Scalability and Performance in Networked Applications Through Smart Computing Resource Allocation," in Current and Future Cellular Systems: Technologies, Applications, and Challenges, IEEE, 2025, pp.227-250, doi: 10.1002/9781394256075.ch12
- 17. K. Upreti, A. Sharma, V. Khatri, S. Hundekari, V. Gautam and A. Kapoor, "Analysis of Fraud Prediction and Detection Through Machine Learning," 2023 International Conference on Network, Multimedia and Information Technology (NMITCON), Bengaluru, India, 2023, pp. 1-9, doi: 10.1109/NMITCON58196.2023.10276042.
- K. Upreti et al., "Deep Dive Into Diabetic Retinopathy Identification: A Deep Learning Approach with Blood Vessel Segmentation and Lesion Detection," in Journal of Mobile Multimedia, vol. 20, no. 2, pp. 495-523, March 2024, doi: 10.13052/jmm15504646.20210.
- 19. S. T. Siddiqui, H. Khan, M. I. Alam, K. Upreti, S. Panwar and S. Hundekari, "A Systematic Review of the Future of Education in Perspective of Block Chain," in Journal of Mobile Multimedia, vol. 19, no. 5, pp. 1221-1254, September 2023, doi: 10.13052/jmm1550-4646.1955.
- R. Praveen, S. Hundekari, P. Parida, T. Mittal, A. Sehgal and M. Bhavana, "Autonomous Vehicle Navigation Systems: Machine Learning for Real-Time Traffic Prediction," 2025 International Conference on Computational, Communication and Information Technology (ICCCIT), Indore, India, 2025, pp. 809-813, doi: 10.1109/ICCCIT62592.2025.10927797
- S. Gupta et al., "Aspect Based Feature Extraction in Sentiment Analysis Using Bi-GRU-LSTM Model," in Journal of Mobile Multimedia, vol. 20, no. 4, pp. 935-960, July 2024, doi: 10.13052/jmm1550-4646.2048
- P. William, G. Sharma, K. Kapil, P. Srivastava, A. Shrivastava and R. Kumar, "Automation Techniques Using AI Based Cloud Computing and Blockchain for Business Management," 2023 4th International Conference on Computation, Automation and Knowledge Management (ICCAKM), Dubai, United Arab Emirates, 2023, pp. 1-6, doi:10.1109/ICCAKM58659.2023.10449534.
- Rana, A. Reddy, A. Shrivastava, D. Verma, M. S. Ansari and D. Singh, "Secure and Smart Healthcare System using IoT and Deep Learning Models," 2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS), Tashkent, Uzbekistan, 2022, pp. 915-922, doi: 10.1109/ICTACS56270.2022.9988676.
- Neha Sharma, Mukesh Soni, Sumit Kumar, Rajeev Kumar, Anurag Shrivastava, Supervised Machine Learning Method for Ontology-based Financial Decisions in the Stock Market, ACM Transactions on Asian and Low-Resource Language Information Processing, Volume 22, Issue 5, Article No.: 139, Pages 1 – 24, https://doi.org/10.1145/3554733
- Sandeep Gupta, S.V.N. Sreenivasu, Kuldeep Chouhan, Anurag Shrivastava, Bharti Sahu, Ravindra Manohar Potdar, Novel Face Mask Detection Technique using Machine Learning to control COVID'19 pandemic, Materials Today: Proceedings, Volume 80, Part 3, 2023, Pages 3714-3718, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2021.07.368.
- 26. Shrivastava, A., Haripriya, D., Borole, Y.D. et al. High-performance FPGA based secured hardware model for IoT devices. Int J Syst Assur Eng Manag 13 (Suppl 1), 736–741 (2022). https://doi.org/10.1007/s13198-021-01605-x
- Banik, J. Ranga, A. Shrivastava, S. R. Kabat, A. V. G. A. Marthanda and S. Hemavathi, "Novel Energy-Efficient Hybrid Green Energy Scheme for Future Sustainability," 2021 International Conference on Technological Advancements and Innovations (ICTAI), Tashkent, Uzbekistan, 2021, pp. 428-433, doi: 10.1109/ICTAI53825.2021.9673391.
- K. Chouhan, A. Singh, A. Shrivastava, S. Agrawal, B. D. Shukla and P. S. Tomar, "Structural Support Vector Machine for Speech Recognition Classification with CNN Approach," 2021 9th International Conference on Cyber and IT Service Management (CITSM), Bengkulu, Indonesia, 2021, pp. 1-7, doi: 10.1109/CITSM52892.2021.9588918.
- Pratik Gite, Anurag Shrivastava, K. Murali Krishna, G.H. Kusumadevi, R. Dilip, Ravindra Manohar Potdar, Under water motion tracking and monitoring using wireless sensor network and Machine learning, Materials Today: Proceedings, Volume 80, Part 3, 2023, Pages 3511-3516, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2021.07.283.
- Suresh Kumar, S. Jerald Nirmal Kumar, Subhash Chandra Gupta, Anurag Shrivastava, Keshav Kumar, Rituraj Jain, IoT Communication for Grid-Tie Matrix Converter with Power Factor Control Using the Adaptive Fuzzy Sliding (AFS) Method, Scientific Programming, Volume, 2022, Issue 1, Pages- 5649363, Hindawi, https://doi.org/10.1155/2022/5649363
- K. Singh, A. Shrivastava and G. S. Tomar, "Design and Implementation of High Performance AHB Reconfigurable Arbiter for Onchip Bus Architecture," 2011 International Conference on Communication Systems and Network Technologies, Katra, India, 2011, pp. 455-459, doi: 10.1109/CSNT.2011.99.
- 32. P. Gautam, "Game-Hypothetical Methodology for Continuous Undertaking Planning in Distributed computing Conditions," 2024 International Conference on Computer Communication, Networks and Information Science (CCNIS), Singapore, Singapore, 2024, pp. 92-97, doi: 10.1109/CCNIS64984.2024.00018.
- 33. P. Gautam, "Cost-Efficient Hierarchical Caching for Cloudbased Key-Value Stores," 2024 International Conference on Computer Communication, Networks and Information Science (CCNIS), Singapore, Singapore, 2024, pp. 165-178, doi: 10.1109/CCNIS64984.2024.00019Dr Archana salve, Artificial Intelligence and Machine Learning-Based Systems for Controlling Medical Robot Beds for Preventing Bedsores, Proceedings of 5th International Conference, IC31 2022, Proceedings of 5th International Conference/Page no: 2105-2109 10.1109/IC3156241.2022.10073403 March 2022
- Dr Archana salve , A Comparative Study of Developing Managerial Skills through Management Education among Management Graduates from Selected Institutes (Conference Paper) Journal of Electrochemical Society, Electrochemical

ISSN: 2229-7359 Vol. 11 No. 15s,2025

https://theaspd.com/index.php

Society Transactions Volume 107/ Issue 1/Page no :3027-3034/ April 2022

- 35. Dr. Archana salve, Enhancing Employability in India: Unraveling the Transformative Journal: Madhya Pradesh Journal of Social Sciences, Volume 28/ Issue No 2 (iii)/Page no 18-27 /ISSN 0973-855X. July 2023
- 36. Prem Kumar Sholapurapu, Quantum-Resistant Cryptographic Mechanisms for Al-Powered IoT Financial Systems, 2023,13,5, https://eelet.org.uk/index.php/journal/article/view/3028
- 37. Prem Kumar Sholapurapu, AI-Driven Financial Forecasting: Enhancing Predictive Accuracy in Volatile Markets, 2025, 15, 2, https://eelet.org.uk/index.php/journal/article/view/2955
- 38. Prem Kumar Sholapurapu, Ai-based financial risk assessment tools in project planning and execution, 2024,14,1, https://eelet.org.uk/index.php/journal/article/view/3001
- 39. Prem Kumar Sholapurapu, Al-Powered Banking in Revolutionizing Fraud Detection: Enhancing Machine Learning to Secure Financial Transactions, 2023,20,2023, https://www.seejph.com/index.php/seejph/article/view/6162
- Sunil Kumar, Jeshwanth Reddy Machireddy, Thilakavathi Sankaran, Prem Kumar Sholapurapu, Integration of Machine Learning and Data Science for Optimized Decision-Making in Computer Applications and Engineering, 2025, 10,45, https://jisem-journal.com/index.php/journal/article/view/8990