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Abstract

As more and more financial activities transition to digital platform, recognizing unusual transaction patterns has become an
important and challenging task. Conventional centralized machine learning models for fraud detection bring with them significant
challenges like data privacy and scaling. This survey investigates the promising combination of Long Short-Term Memory (LSTM)
networks, Autoencoders and Federated Learning (FL) act as a powerful privacy-preserving solution for anomaly detection on
financial transactions. Long Short-Term Memory (LSTM) models are a state-of-the-art choice for learning long range relations on
sequential data whereas autoencoders are very efficient models which learn lower-dimensional state representations and pinpoint
anomalous behavior. Federated Learning, in contrast, presents a decentralized model training mode in which collaborative
learning can be conducted among banks and financial institutions without sharing confidential transaction information. This
review discusses the state of the art, the key advances and the potential synergies of these methodologies. This inspires practical
implementations of scalable and trustworthy Al-driven financial anomaly systems, as the movement towards an increasingly
federated data ecosystem mandates secure and scalable solutions.
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1. INTRODUCTION

The unchecked growth of online and mobile banking systems has led to an extraordinary increase on the volume,
size and variety of financial data transactions. Digitization, as much as it increases operational efficiency and enables
globalization, has also created an environment full of frauds. Fraud detection in these transactions is a difficult
exercise because of the dynamicity and the changes in the patterns in which fraud takes place, the limited and
insufficiently balanced distribution of fraud data, and the confidentiality of the information on finances.

The traditional rule/model-based fraud detection systems have severe adaptation and scalability limit detection
issues. Such limitations also apply to the machine-learning methods. Machine learning in the prevailing architecture
requires a centralization of data pooling, a fact that raises essential issues of privacy, data ownership, and consent
with regard to legislative privacy, like GDPR and HIPAA [1]. Recent breakthroughs Used in financial technologies
have brought the theory of deep learning- namely use of LSTM networks and Autoencoders to the scene as well as
an inference scheme of sequence learning and representation learning. LSTM networks can handle any sequence,
which includes transaction history, by maintaining time-dependent connections over long periods [2]. In its turn,
autoencoders are also effective at finding anomalies through reconstructive error assessment. Such models, used
with sufficient training, will reveal potential shifts in the user or transaction behavior that go undetected after the
standard methods, improving the accuracy of fraud detection [3][4]. The introduction of Federated Learning is a
paradigm shift in the machine-learning practices of distributed-data. Unlike the conventional preposition of
concentrating sensitive data, FL allows the training of localized models at specific data sources. Such a design will
boost the privacy and security of data, a consideration that is paramount in financial deals where reliability and
compliance to financial rules are a must [5]. In the current review, the synergistic use of Least Short-Term Memory
(LSTM) networks, Autoencoders and Federated Learning to anomalous event forecast in complicated transaction
systems of a financial establishment are explored. Blending of these approaches has the promise to enhance
prediction accuracy, maintain confidentiality of users and perform real-time fraud detection in complex, large-scale
financial environments. The article provides a comprehensive literature review, synthesizes the recent developments
and addresses methodological aspects of practical application, such as model convergence, efficiency of information
dispersion, heterogeneity of the data and vulnerabilities to adversaries.

1.1. Objective

The present survey paper explores the pitfalls, constraints, and network performance implication which arise when
using the federated learning (FL) approach to the anomaly detection in financial transactions in conjunction with
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long-short-term memory (LSTM) based autoencoder. Financial fraud detection systems face unique challenges, most
remarkably, strict data privacy laws, non-identically distributed (non-IID) data distributions across organizations,
and the necessity of real time adjustments to the fast-evolving fraud dynamics. Through the adoption of FL, the
investigation is aimed at regulating the issues of privacy by allowing the training of the model jointly but at the same
time prohibiting the transport of untreated data. However, the solution also entails challenges that include
communication bottlenecks, resource-intensive calculations and some sort of trade-offs between privacy protection,
say, differential privacy and model accuracy. The evaluation of the hybrid FL structures and privacy-preserving
methods such as the federated meta-learning and secure aggregation will be the key aims to overcome these
drawbacks. Finally, a practical implication of the research aims at providing findings that can inform the use of
scalable and privacy-compatible FL models to detect financial fraud.

1.2. Overview of Financial Fraud and Anomaly Detection

The financial fraud, which includes credit card fraud, money laundering, identity theft and insider trading is a threat
that continues to mutate and affect the banking institutions, the government and the individual users in a serious
way. The association of certified fraud examiners (ACFE) has estimated that the worldwide cost of fraud is more
than trillions of dollars annually. On the one hand, the growth in digital payment services that have appeared with
online banking, mobile payment systems, and online stores has also left the scope of possible criminal activity since
the perpetrators of crimes can potentially increase the range of possible victims [6]. Anomaly detection can be
defined as the process of systematically identifying transactional anomalies that differ significantly either with the
typical behavior of a single user or of the general trend in the transactions recorded in a given financial system. Such
anomalies could be the indication of fraudulent or other aberrations of system malfunctions. Practically, anomaly
detection systems work as warning systems, warning investigators about a possibility of fraudulent behavior, before
damage is necessarily caused [7].

1.2.1 Traditional Approaches

The conventional methods that were used by financial companies in fraud identification involved the rule-based
systems and statistical models [8]. However, these methodologies have some weaknesses. Rule based systems are
anchored on predetermined, rigid, and ifthen rules that fraudsters can easily beat down, and produce high false
positives. Statistical models like logistic regression can deal better with previous data, but they cannot effectively
detect non-linear trends, and are not capable of adjusting to new forms of fraud. Such methods are becoming
inappropriate in a world of modern and advanced plans in large digitized dealings. To solve this, institutions are
resorting to complex solutions, such as LSTM networks to analyze the patterns in time and autoencoders to detect
anomalies. Moreover, federated learning has shown its prominence as a technique of privacy maintenance which
allows collaborating between institutions without exchange of sensitive data [9]. In unison, the techniques provide
enhanced flexibility, on-time learning, and precision~that are crucial in the current fast-changing financial market.

1.2.2 Machine Learning

The very spread of machine learning has extended the collection of algorithms of identifying financial misconduct,
providing additional flexibility and the greater reliance on data. Ensemble decision trees and SVMs have been shown
to outperform conventional rule-based fraud detection systems in case supervised learning techniques form part of
the testing environment [10] [11]. They are effective due to the ability to discover complicated patterns and non-
linearity’s and consequently enhance the accuracy of prediction. nonetheless these methods are based on large
labeled data, where instances of fraud are often limited as compared to true transactions. This uniqueness will
threaten to institutionalize discrimination and may hinder the detection of non-observed fraudulent activities. In
addition, the models, which are developed based on old data, could fail with emerging tactics when retraining is less
common and expensive. Therefore, other forms of paradigms- unsupervised and semi-supervised learning have come
to the fore. K-means clustering is an example of an anomaly-detecting technique that finds anomalies as deviations
of transaction behaviors, and autoencoders together with one-class SVMs anomaly-detecting techniques flag
anomalies through reconstruction errors and one-class outlier detection. A practical compromise is provided by
semi-supervised strategies in which the learning process proceeds based on normative transactions and then
deviations are identified [9]. All these practices can increase fraud detection by enabling the system to adapt to new
hazards and reduce the dependence on labelling, which is labor-intensive.
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1.3. Deep Learning in Anomaly Detection: LSTM and Autoencoders

The benefits of deep learning have led to its foundations becoming a revolutionary platform in the detection of
anomalies, especially in cases that the classical statistical procedures together with the classical machine-learning
methods are impaired by limitations related to the exploration of complex, high-dimensional and non-linear
databases about financial transactions. Relative to the traditional models, deep-learning structures are capable of
automatically identifying complex correlations and learning latent characteristics unaided by manually engineered
changes or inflexible suppositions. In this domain, the LSTM networks and Autoencoders continue to be among
the most commonly embraced tools. Both have proved to be quite useful in time modeling and painting of
representations on normal behavior patterns and thus these two are very appropriate in the process of finding out
anomalies in either transaction that are financial oriented as in the discussion ahead. figure 1.
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Fig 1: Anomaly detection in financial transactions

1.3.1. Long Short-Term Memory (LSTM) Networks

The Long Short-Term Memory networks have also proven to be especially successful in terms of detecting financial
fraud due to the fact that they bypass the limitations that are characteristic of the traditional Recurrent Neural
Networks being subjected to sequential data [12]. Special kinds of gating structures, which are delivered through the
ability to deploy input, forget and output gates allow specific control over the flow of information and by so doing
long-term dependencies, which exist within the transactional history are maintained. This aspect makes LSTMs
unrivalled at both capturing static attributes of transactions, as well as capturing dynamic temporal patterns like
spending rates and trends. LSTMs can learn an extrapolation of common financial behavior to spot invisible
anomalies that can alert about fraud, all in a noise-tolerant manner. Their ability to support complex seasonality
and attempt to do analysis in real time makes them important in the detection of the individual level as well as
population level fraud. These advantages, however, come at the expense of adversities such as; they are
computationally intensive, they require precise hyper parameter tuning, and they are vulnerable to input sequence
quality measures that require intelligent deployment to result in reasonable trade-offs between accuracy and
functioning performance in real world financial systems.

1.3.2. Autoencoders

An autoencoder is an eminent unsupervised method of detecting financial frauds as it builds a condensed model of
typical transactional behavior [13] [14]. Here, the neural network architecture has been seen to do well in
reconstruction of a normal financial behaviour and produce significant reconstruction errors on anything
anomalous, thereby acting as an anomaly detection mechanism as well. Different instantiations of autoencoders can
be tailored to a particular detection concern: in basic autoencoders the key task is dimensionality reduction; de-
noising autoencoder versions make them more robust; VAEs add ideas of probabilistic modelling; recurrent
autoencoders operate on sequence data with LSTM cells. The framework also offers a number of benefits to financial
institutions including its ability to identify emerging types of fraud where labelled examples are unavailable, its
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adaptability to changes in types of threats as well as the scalability to different levels of transactional analysis.
Moreover, their unsupervised nature makes them especially applicable in the real-world application scenario where
it is difficult to label and exhaust the conventional fraud.

1.4. Federated Learning Architecture

1.4.1 Core Principles of Federated Learning

The decentralized process of training artificial intelligence models in the area of financial fraud detection, which
allows combining efforts to develop co-created models without transferring raw data. The paradigm eliminates data
silo effect by spreading training across institutes and provides data privacy due to the usage of encrypted model
updates, therefore, it is easier to comply with the compliance policies like GDPR, PCI-DSS. The general process
entails rounds where local models are trained using local, confidential datasets and their parameters are collectively
consolidated, through such approaches as Federated Averaging (FedAvg), to enhance a global model. It is further
enhanced by advanced security and performance features like differential privacy and the adaptive optimization.
The framework enables banks to strike the right balance between global perspective through collective intelligence
and customization at local level-such as dealing with urban card frauds as opposed to rural skimming of the ATMs.
Therefore, the privacy-preserving architecture provides adaptable, highly scalable, regulation-compatible systems of
detecting fraud.

Such a technique is especially disruptive insofar as it allows training machine learning models to take advantage of
geographically diversified sources of data without jeopardizing privacy or enforcing data sovereignty. The advantage
is particularly critical in the financial industry where data sensitivity and compliance limits tend to degrade
centralized machine learning projects. Federated learning (FL) architecture is shown in figure 2. The goal of FL is
the development of the model with consideration of such constraints as the capacities of local data storage and
computation restrictions and frequent updates of the parameters of the model which are to be transmitted to a
cloud parameter server.
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Fig 2: Federated Learning System Architecture

1.4.2 Privacy preserving in Federated Learning

Federated learning is a system that incorporates various methods of privacy protection to allow the realization of
secure detection of financial fraud in the framework of strict regulatory demands. Differential privacy randomly
adds noise to update of models, algorithmically enforcing the impossibility of grouping individual transactions, even
as it maintains the accuracy of the detectors, so long as parametric parameterization is well trained to trade privacy
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implied and its performance outcomes. Secure aggregation, in its turn, uses the cryptographic protocols to
compound update data of several institutions without revealing information of any of them, which allows even the
competing banks to cooperate securely. Homomorphic encryption can be used when security requirements are the
most stringent since computations can be performed on data which has to be fully encrypted, and secure multi-party
computation can allocate processing across parties that are highly dissimilar to prevent any party being able to
recreate confidential information. Collectively, the strategies can establish nested privacy safeguards to cover a
variety of risk scenarios, where financial institutions can work cautionary fraud-detection models and maintain high
levels of data secrecy and regulatory standards through their federated networks. The choices of the component
involve the trade-offs about the strength of security component and performance of such components and the real
life banking requirements.

1.5 Principles and Challenges

As financial services are increasingly digitized, transactional data that can be analyzed has considerably grown. As
much as such abundance of data allows creation of complex models to detect fraud, it also increases information
privacy, protection and regulatory compliance issues. An innovative solution to such problems is Federated
Learning, a collaborative solution where Multimodal Training is possible, but without any need to exchange or
centralize raw data externally [15] [16].

Nonetheless, there are unique challenges of applying federated learning in the financial context and need special
care. Banking data in general is not homogenous, which causes a high level of variability in patterns of transaction,
customer behavior and the nature of fraud between different institutions thus making it difficult to provide a
universally effective, one size fits all solution. The training is also a very resource-intensive process in terms of
network consumption since there will be constant transmission of updated complex models across the bank
network, which may result in an overloading problem in the communication infrastructure especially with high-end
detection models. Despite the privacy guaranteed to be maintained, the security mechanism is still vulnerable to
unknown security exploits where confidential data can be deduced based on shared updates, so other security
precautions to prevent such exploits are required, and they invariably systematically slow down the processing
mechanism. Collaborative training can also be disrupted by operational disruptions, e.g. where the participating
banks temporarily disconnect themselves to the network. There is also the layer of legal and governance: the
clarification of ownership, accountability, and compliance is still a topic of discussion among institutions that are
experimenting with this technology. Such intertwined limitations demand both careful and perceptive planning
procedures in order to exploit all the potential of federated learning in the financial industry.

1.6 Federated Learning Limitations and Threat Models in Federated Learning

Among the limitations imposed by federated learning, which enables the training of models in a decentralized
manner and maintains data privacy, there are the following. Client node heterogeneity may be caused by unequal
availability of computational resources, network bandwidth and underlying data distributions, which may hamper
efficiency and even cause bias in the resulting trained models. The high communication overhead is another
limitation as several communication cycles between server and clients are involved and this may turn out to be
resource demanding particularly where the bandwidth is low. Even in local data retention, the privacy is not
complete: the model updates can lead to an inference attack by disclosing confidential information. These issues
are also very hard to mitigate since malicious customers can corrupt the model by uploading corrupted updates. In
addition, even in non-IID (non-independent and identically distributed) data, whether a high model accuracy could
be maintained and convergence could be achieved is an open research question [17] [18]. Taken together, these
problems indicate that additional algorithms and protocols are needed that could make federated learning more
efficient, secure, and flexible to be deployed in practice settings.

Table 1: Threat Models in Federated Learning

Threat Adversary Objective Attack Method Potential Impact | Mitigation

Model Type Strategies

Honest-but- | Semi-honest | Extract sensitive | Analyze Privacy leakage of | Secure

curious central party | info from | aggregated client data Aggregation,

server updates gradients Homomorphic
Encryption
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Malicious Rogue Poison model or | Submit false | Model Robust aggregation
clients participants steal updates, analyze | corruption, (Krum, Median),
information gradients privacy breaches | Client screening
External Network Intercept MITM  attacks, | Data theft, | TLS  encryption,
attackers eavesdroppers | communications | data tampering model integrity | Digital signatures
compromise
Gradient Curious Reconstruct Gradient Complete  data | Differential
leakage server/clients | training data inversion attacks | reconstruction Privacy, Gradient
masking
Membership | Data analysts | Identify training | Analyze model | Privacy Strong DP
inference set members outputs/updates | violations, guarantees, Output
regulatory risks perturbation
Model Skilled Extract sensitive | Reverse-engineer | Exposure of | Model hardening,
inversion adversaries features model decisions transaction Input perturbation
attributes

1.7 Trade-Offs Between Privacy and Performance

The performance of federated learning is measured through a combination of traditional machine learning metrics
and system-specific indicators that reflect its decentralized nature. At the core, the model is assessed through metrics
including accuracy, Fl-score, AUC and loss functions like cross-entropy or mean squared error., which help assess
the quality of predictions across all clients. However, since data is non-uniformly distributed, personalization
accuracy, how well the global model adapts to local client data is also a critical measure. In terms of communication
efficiency, federated learning systems are assessed by the quantity of communication rounds required for
convergence, the total volume of information sent, and the overall network bandwidth consumed. System efficiency
includes metrics like local computation time per client, energy usage (especially for mobile or edge devices), and the
impact of stragglers or idle clients who slow down training. Moreover, robustness and fairness are increasingly
important: the variance in model performance across clients can indicate imbalances, and the system’s ability to
withstand malicious updates or client dropouts is crucial for reliable deployment. These multifaceted performance
metrics provide a more holistic understanding of how well federated learning works in real-world scenarios.
Different techniques require balancing these trade-offs is crucial for practical FL deployment. Implementing privacy-
preserving techniques in FL inevitably introduces trade-offs between privacy, model performance and efficiency as

given in table 2.

Table 2: Trade-offs

Technique

Privacy Benefit

Trade-off

Impact

Differential Privacy

Protects individual data

Noise reduces model | May degrade performance in noise-

(DP) points via noise injection | accuracy sensitive models (e.g., LSTMs,
anomaly detection)

Homomorphic Facilitates calculations on | Significant Slower training, impractical for real-

Encryption (HE) data that is encrypted computational time or large-scale deep learning
demands

Secure Multi-Party | Prevents single-party data | Increased Challenging for high-dimensional

Computation exposure communication models due to coordination delays

(SMPC) latency

Secure Aggregation | Hides individual client | Requires cryptographic | Scalable but adds complexity in key

(SecAgg) updates key management distribution and synchronization

Blockchain (for | Immutable, transparent | Adds architectural | Higher storage and consensus

auditability) record of transactions complexity delays, but enhances trust in FL

processes
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2. LITERATURE REVIEW

With the study developments in anomaly prediction using federated learning, [19] study improves federated
anomaly detection by utilizing autoencoders along with a global threshold based on summary statistics. By
consolidating data from both standard and irregular datasets, it enhances the precision of the threshold. and
outperforms existing methods on multiple datasets despite Non-IID data challenges. [20] propose an Al agent-based
framework combining LSTM, autoencoders, and federated learning for financial transaction anomaly prediction.
Achieves an 89% accuracy improvement over rule-based systems, with real-time detection and scalability
demonstrated in a banking case study. [21] introduces a gradient-based and autoencoder-driven framework to detect
poisoned data in federated learning. It improves detection accuracy by 15% and maintains low false positives,
validated on MNIST and CIFAR-10 datasets, showing strong performance across sectors like healthcare and finance.
[22] design a filtered aggregation algorithm in federated learning to improve anomaly detection by down-weighting
unreliable local models. This enhances model accuracy and privacy, especially in sensitive domains like finance. [23]
introduces an autoencoder-classifier hybrid using the FedSam framework for intrusion detection. It improves
anomaly detection in federated learning by effectively handling heterogeneous client data in cybersecurity contexts.
[24] presents Ensemble SVDD and Support Vector Election (SVM) based anomaly detection methods for federated
learning. Though not focused on financial data, these techniques show strong performance across distributed
environments. In defending data privacy attacks, [25] focuses on anomaly detection in data on water levels collected
over time from loT sensors using deep LSTM Autoencoders, rather than financial transactions or federated learning.
It emphasizes an unsupervised approach that leverages reconstruction error to identify anomalies. The study also
proposes an unconventional method for calculating reconstruction error, which reduces false positives and improves
anomaly detection accuracy, particularly in noisy datasets. [26] investigates the use of LSTM and Bi-LSTM models
for identifying anomalies., showing strong performance in capturing temporal patterns. However, it does not involve
federated learning or focus on financial transaction data. [27] Combines autoencoders and LSTM networks used
for identifying anomalies in electric vehicle time series data. While it improves accuracy, it does not incorporate
federated learning or address financial contexts. [28] introduces Liquid Time-Constant Autoencoders (LTC-AEs)
for semi-supervised anomaly detection, outperforming several baseline models. Still, it lacks application to federated
learning or financial transaction anomaly prediction.

For FL model performance enhancement, [29] proposes an anomaly detection method combining Deep
Reinforcement Learning (DRL), Variational Autoencoders (VAE), Active Learning, and LSTM to identify new
anomaly classes with limited labeled data. It shows strong results on time series datasets but does not involve
federated learning or focus on financial transactions. [30] uses LSTM for real-time anomaly detection in IoT
healthcare, emphasizing accuracy and data security. While effective in medical contexts, it does not incorporate
autoencoders, federated learning, or financial applications. [31] introduces LogLVAE, which combines LSTM and
VAE for log-based anomaly detection. Though it excels in detecting anomalies in system logs, it does not address
federated learning or financial transaction data. [32] proposes a Conv-LSTM Encoder-Decoder model for
unsupervised human anomaly detection. It effectively learns spatiotemporal features to detect behavioral anomalies
with high accuracy, but it does not involve federated learning or financial transaction data. [33] design FedAA
(Federated Learning with Attention Aggregation) for detecting anomalies in IoT networks using autoencoders.
While not focused on financial transactions or LSTM integration, FedAA improves model robustness and defense
against data poisoning, showing strong performance across multiple IoT datasets. With focused on the fact that the
performance, [34] introduces trust-based anomaly detection in federated learning using Reputation and Trust
metrics, aimed at detecting anomalies in edge units, particularly in financial applications. It supports any server
aggregation method but does not involve LSTM or autoencoders. [35] applies Bidirectional LSTM and autoencoders
for anomaly detection in commercial load data, outperforming benchmark methods. However, it does not
incorporate federated learning or focus on financial transactions. [36] proposes an unsupervised LSTM-Autoencoder
approach for general time series anomaly detection based on reconstruction error. It shows strong results but lacks
a focus on federated learning or financial data. [37] survey studies highlighting the growing adoption of federated
learning in financial fraud detection [38] discusses deep learning advancements in anomaly detection. [39] compares
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AE-LSTM and DNN-LSTM for detecting anomalies in space applications, demonstrating the superior performance
of AE-LSTM.

3. METHODS

The survey employed a systematic literature review of peerreviewed studies (2023-2024) from IEEE Xplore,
Springer, and Google Scholar. Key search terms included Federated Learning, Anomaly Detection, LSTM,
Autoencoders, Financial Fraud, Privacy-preserving Learning, and 1oT Security. Inclusion criteria prioritized studies
using LSTM, autoencoders, FL, or hybrid models with experimental validation, while excluding works without
measurable outcomes. Selected papers were categorized by methodology (e.g., LSTM variants, autoencoders, FL
frameworks) and performance metrics like accuracy and Fl-score.

3.1 Selection Criteria

Inclusion: Peer-reviewed studies addressing anomaly detection with LSTM, Autoencoders, FL, MPC (Multi-Party
Computation), or hybrid models.

Exclusion: Articles lacking experimental evaluation or not reporting measurable outcomes.

Relevant studies were included after applying these criteria. The selected works were categorized based on the
methods used (e.g., LSTM variants, Autoencoders, FL-based models) and the reported results (accuracy, Fl-score,
detection improvement, privacy preservation).

3.2 Accuracy

Accuracy evaluates the ratio of accurate predictions, including the correctly recognized normal transactions (true
negatives) and fraud instances (true positives), among all transactions assessed, computed as

Accuracy = (True Positives + True Negatives) / Total Predictions

Total predictions consist of True positives refer to instances that have been accurately predicted as positive, while
true negatives are instances accurately classified as negative. False positives are cases that have been mistakenly
labeled as positive, and false negatives are those that have been incorrectly classified as negative. It serves as a
straightforward indicator of overall model reliability, where high accuracy (e.g., 99.7% in LSTM-Autoencoder
models) suggests strong general performance. However, this metric becomes highly misleading in imbalanced
datasets like financial transactions, where fraud cases are extremely rare (e.g., <0.1% of transactions). In such
scenarios, a model could achieve deceptively high accuracy (e.g., 99.9%) by simply labeling all transactions as
"normal" while failing to detect any actual fraud a critical flaw that renders accuracy insufficient as a standalone
metric for fraud detection systems.

3.3 F1 Score

The F1 Score assess a model's capability to uphold equilibrium between accuracy (the ratio of identified anomalies
which are true fraud) and recollect (rate of genuine fraud acts accurately detected), determined as the harmonic
mean:

F1 = 2 x (Precision x Recall) / (Precision + Recall)

This metric is defined as the harmonic mean of precision and recall. Precision refers to the proportion of correctly
predicted positive cases to the overall number of predicted positives, while recall (also known as sensitivity) evaluates
the proportion of actual positives that the model has correctly identified. This measure is vital in fraud detection,
where both false positives (wrongly blocking legitimate transactions that can harm user trust) and false negatives
(failing to detect actual fraud, leading to financial losses) have significant consequences. An F1 Score near 1.0 (99%)
achieved in advanced frameworks like hybrid LSTM-autoencoders signals an optimal equilibrium between these
competing priorities. Crucially, the F1 Score is a much dependable metric instead of accuracy when dealing with
imbalanced datasets., as it remains robust even when fraud incidence is exceptionally rare (e.g., 0.01% of
transactions), where accuracy metrics often mislead by favoring trivial "always normal" predictions.

4. RESULT

The surveyed works demonstrate significant progress in anomaly detection, particularly through the combination
of LSTM, Autoencoders, and privacy-preserving frameworks like FL and MPC. The best models (e.g., LSTM-AE +
FL) achieved >99% F1 while using encryption/aggregation to preserve privacy demonstrating that performance and
security can coexist. Below, we summarize the findings by method category:
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Method Peak Accuracy/F1 Other Notable Results
FAF-LSTM [40] +39.22% accuracy Stealthy attack detection in FloT
LSTM-AE Hybrid [42] 99% F1-score OC-SVM & [F integration
LSTM-AE [46] 99.7% accuracy High detection with AE
Fed-LSTM [47] 98.9% accuracy Outperforms RNN, SVM, CNN
LSTM-GAN [48] Anomaly Score 0.76 1.25% anomalies detected

FL for HPC [49] F-score from 0.31 to 0.84 Data collection time reduced
MPC with FL [41] AUPRC 0.7 Privacy-preserving enhancement
Specialized Neural Nets [43] 40% accuracy boost 35% detection time reduction
Deep Encoder NN [51] 90.81% F1 Score High precision

Random Forest NN [52] 95% accuracy yielded highest accuracy
Logistic Regression, Naive Bayes 98.99% accuracy Reduce detection time

(53]

FL-Anomaly Network Detection 97% accuracy Increased precision

[54]

Isolation Forest [55] 26% accuracy Increase fraud detection

5. DISCUSSION

5.1 LSTM and LSTM:-based Approaches

LSTM remains a core technique due to its capacity for sequential data modeling where [40] define FAE-LSTM for
Federated IoT (FIoT) environments, achieving up to 39.22% improvement in anomaly detection compared to
isolated LSTM models, particularly effective for stealthy attacks. [44] applied LSTM-based unsupervised anomaly
detection, reporting an Fl-score improvement from 0.307 to 0.815 and AUC increase from 0.368 to 0.77. [47]
implemented Fed-LSTM, which surpassed RNN, SVM, and CNN with a 98.9% accuracy, showing the superiority
of FL-integrated LSTM. [48] leveraged LSTM-GANSs for enhanced anomaly detection, integrating reconstruction
loss, latent distance, and discriminator score. The method detected 106 anomalies, accounting for 1.25% of the
dataset, with a mean anomaly score of 0.7621.

5.2 Autoencoders and Hybrid LSTM-AE Models

Autoencoders, especially when combined with LSTM, demonstrate powerful anomaly detection performance like
(45] achieved an impressive 99% F1-Score in anomaly detection by combining LSTM-AE, One-Class SVM (OC-
SVM), and Isolation Forest (IF). [46] reported 99.7% accuracy and 89.1% Fl-score using LSTM-AE, emphasizing
the strength of this hybrid in outlier detection. [42] enhanced LSTM and Autoencoders with MSD (Mean Squared
Deviation) and MAD (Median Absolute Deviation) methods, reaching a 97% Fl-score using homomorphic
encryption (HE-128 bit) with low computational overhead. [43] demonstrated a 35% reduction in detection time
and 40% accuracy improvement over traditional anomaly detection methods by integrating Autoencoders with
specialized neural networks.

5.3 Federated Learning and Privacy-Preserving Techniques

Preserving data privacy without compromising detection accuracy is critical where [41, 50] applied Multi-party
Computation (MPC) with FL, boosting AUPRC from 0.6 to 0.7 while minimizing privacy leakage during training.
[49] showcased FL's effectiveness in anomaly detection for High-Performance Computing (HPC) systems, reducing
training data collection time from 4.5 months to 1.2 weeks and improving F-score from 0.31 to 0.84.

6. CONCLUSIONS AND FUTURE SCOPE

The financial sector's digital transformation has ushered in both remarkable conveniences and increasingly
sophisticated fraud threats, exposing critical gaps in traditional detection systems that rely on centralized data
processing and struggle to adapt to evolving attack patterns. The advancement of LSTM networks, autoencoders,
and federated learning can be regarded as an impressive step on fraud detection since these methods may combine
temporal pattern recognition, effective data compaction, and privacy-preserving cooperation. New scholarly studies
have affirmed the fact the such an arrangement enables the financial system to substantiate their countermeasures
on a shared basis and engage in practice as per the strict GDPR and PCI-DSS standards. Training the system with
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highly divergent, decentralized data sets trains it to identify new forms of emerging fraud that traditional approaches
are unable to do. Its privacy-by-design architecture additionally ensures the institutional trust by the implementation
of data security. No matter that, however, wider application is limited by a number of aspects: the computational
cost of LSTM-autoencoder frameworks on the mobile banking infrastructure, the dialectic in data privacy and data
quality of analysis, hazy network connectivity that can disturb the training process, and a lack of standardized
benchmarking practices. In modern studies attempts are made to mitigate these shortcomings through federated
meta-learning adaptive privacy designs, a hybrid architecture, and explainability models. Specifically, it is worth
mentioning the blockchain-driven collaboration that brings the transparent and accountable process of data
exchange across intrafirm boundaries. These technologies are only improving, and as they do, fraud prevention
shows the potential to achieve success in addition to building an ethical Al paradigm in finance where security,
privacy, and regulatory compliance are used in parallel with each other. Whether federated learning will be the new
standard of trusted and collaborative fraud detection in the digital economy will be based on how well the industry
can solve the technical and operational problems connected with it.
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