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Abstract 
Malaria transmission depends heavily on climate conditions such as temperature and rainfall, which influence mosquito 
development and parasite growth. In this study, we build a stochastic model to better understand how these 
environmental factors affect the spread of malaria over time. The model includes temperature- and moisture-sensitive 
biological parameters and uses daily climate data from Rwanda. Using numerical simulations based on the Milstein 
scheme, we explore how mosquito population dynamics and malaria in- fections respond to seasonal changes. Results 
show that transmission slows down during dry periods, with lower survival and slower mosquito cycles. In some cases, 
transmission can fade out completely. Mathemati- cally, we verify that the model satisfies H örmander’s condition, 
supporting the existence of a smooth density and ensuring the system’s well -posedness. Spatial maps further highlight 
how local climate affects malaria risk across regions. This model offers a flexible framework for climate-informed malaria 
control planning, especially in the face of environmental variability and climate change. 
 
Keywords: S t o c h a s t i c  modeling, Hormander condition, mosquito lifecycle, mosquito dynamics. 
 
1. Introduction 
Malaria is an infectious disease caused by parasites of the Plasmodium genus and transmitted to humans 
through the bite of infected female Anopheles mosquitoes. Among over 50 species capable of transmitting 
the disease, only five Plasmodium species are known to infect humans: P. falciparum, P. vivax, P. malariae, 
P. ovale, and P. knowlesi [1]. In sub-Saharan Africa, most malaria-related deaths are attributed to P. 
falciparum, primarily transmitted by Anopheles gambiae and Anopheles arabiensis [2]. 
According to the World Health Organization, an estimated 263 million malaria cases occurred in 2023, 
with an incidence of 60.4 cases per 1,000 people at risk up from 58.6 the previous year. The African region 
continues to bear the highest burden, accounting for 94% of global cases and 95% of malaria-related deaths 
[3]. Over the years, control efforts have largely relied on insecticide-treated nets (ITNs) and indoor residual 
spraying (IRS) [4]. However, these strategies face growing challenges such as insecticide resistance. 
In parallel, climate change is increasingly recognized as a key driver of malaria dynamics. Changes in 
temperature, rainfall, and humidity influence both mosquito development and the extrinsic incubation 
period of the parasite, thereby shaping the spatial and temporal patterns of transmission [4]. Understanding 
how environmental variability affects malaria risk is essential for anticipating outbreaks and designing 
effective interventions. 
Mathematical modelling has long played a critical role in malaria research. Ross first established the 
relationship between mosquito density and disease prevalence through deterministic models [5], later expanded 
by Macdonald, who introduced key metrics like the basic reproduction numberR0 [6]. These early models 
provided a foundation for evaluating control strategies and remain influential in public health planning 
[7, 8, 9]. While these models offer analytical tractability and insight into equilibrium behavior, they often 
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assume homogeneity across populations and environments, and may not capture local variations or random 
fluctuations that occur in real settings. 
Stochastic modelling was developed to overcome some of these limitations by introducing random per- 
turbations into transmission parameters. These models allow for more realistic simulations, especially 
in low-transmission settings or areas affected by climate variability [10]. In Yunnan, China, a stochastic 
model demonstrated how environmental noise in mosquito populations and transmission rates can 
significantly im- pact malaria persistence and control [11]. Other researchers have included stochastic delays 
to represent parasite incubation periods in both mosquito and human hosts [12], while some frameworks 
integrate L´evy noise to account for more abrupt environmental disturbances [13]. 
However, despite these advances, many stochastic models still treat space and climate as fixed or sec- ondary 
features. Most frameworks either assume parameter homogeneity across regions or consider noise 
independently of geographic variability. This limits their applicability in regions like sub-Saharan Africa, 
where malaria transmission is highly sensitive to spatial heterogeneity in elevation, rainfall, temperature, 
and human settlement. For instance, malaria risk is typically lower in highland areas due to cooler 
temperatures that slow mosquito development and parasite maturation, while lowland regions with 
prolonged rainy seasons can sustain year-round transmission. 
To address this gap, this study proposes a stochastic malaria transmission model that incorporates climate- 
driven biological parameters and allows spatial variation using real climatic data. The model integrates 
temperature and rainfall dependent functions to regulate mosquito recruitment, development, and 
survival, thereby capturing seasonal and geographic variations in transmission risk. Mathematically, the 
model satisfies H örmander’s condition—a property that ensures smooth density for the system and 
supports well posedness in noisy, multidimensional settings. 
Numerical simulations are conducted using the Milstein scheme and climate data from Rwanda. The model 
is used to explore long-term transmission dynamics under stochastic fluctuations, to evaluate extinction 
and persistence conditions, and to generate spatial maps of key parameters such as recruitment rate and 
survival probabilities. 
 
2. Methods 

 
Figure 1: Compartmental diagram of the vector-host interaction. 

 
2.1. The Base Vector-Host Model 
We consider a classical host-vector malaria transmission model, where the human population is divided 
into three compartments. 
• SH(t): susceptible humans, 
• IH(t): infected humans, 
• RH(t): recovered humans. 
 
The mosquito (vector) population is divided into two compartments: 
• SM(t): susceptible mosquitoes, 
• IM(t): infected mosquitoes. 
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The total human population is NH = SH + IH + RH, and the total mosquito population is NM =
SM + IM. 
The disease spreads from infected mosquitoes to susceptible humans and vice versa. Recovered humans 
may lose immunity and return to the susceptible class. 
The deterministic dynamics of the system are described by the following differential equations: 

 
dSH

dt
= ΛH −

βHSHIM

NH
− μHSH + ωRH 

dIH

dt
=

βHSHIM

NH
− (γ + μH)IH 

dRH

dt
= γIH − (μH + ω)RH 

dSM

dt
= ΛM −

βMSMIH

NH
− μMSM 

dIM

dt
=

βMSMIH

NH
− μMIM 

 
Table 1: Parameters of the deterministic model and their descriptions 

 
Parameter Description 

𝛬𝐻 Birth rate of humans 
𝛬𝑀 Birth rate of mosquitoes 
𝜇𝐻 

 
Natural death rate of humans 

𝜇𝑀 
 

Natural death rate of mosquitoes 

𝛽𝐻 Transmission rate from infected mosquitoes to 
human 

𝛽𝑀 Transmission rate from infected humans to 
mosquito 

𝜌 Recovery rate of infected humans 
𝛾 Rate of loss of immunity of humans 

 
2.2. The Stochastic Model and Numerical Scheme 
To account for environmental variability in malaria transmission, we extend the deterministic model 
to a stochastic system by introducing white-noise perturbations into some key rates. These perturbations 
reflect random fluctuations, such as climatic variations or unpredictable changes in mosquito–human 
contact patterns. 
 
The definitions of all model parameters are summarized in Table 2. 
The resulting stochastic system is formulated using I t ô  stochastic differential equations (SDEs) as follows: 

𝑑𝑆𝑀 = [𝛬𝑀 − 𝛽𝑀𝐻𝑆𝑀𝐼𝐻 − 𝜇𝑀𝑆𝑀] 𝑑𝑡 + 𝜎𝑆𝑀𝑆𝑀  𝑑𝑊1 (1) 
𝑑𝐼𝑀 = [𝛽𝑀𝐻𝑆𝑀𝐼𝐻 − 𝜇𝑀𝐼𝑀] 𝑑𝑡 + 𝜎𝐼𝑀𝐼𝑀  𝑑𝑊2 (2) 

𝑑𝑆𝐻 = [𝛬𝐻 − 𝛽𝐻𝑀𝑆𝐻𝐼𝑀 − 𝜇𝐻𝑆𝐻 + 𝛾𝑅𝐻] 𝑑𝑡 + 𝜎𝑆𝐻𝑆𝐻  𝑑𝑊3 (3) 
𝑑𝐼𝐻 = [𝛽𝐻𝑀𝑆𝐻𝐼𝑀 − (𝜇𝐻 + 𝜌)𝐼𝐻] 𝑑𝑡 + 𝜎𝐼𝐻𝐼𝐻  𝑑𝑊4 (4) 

𝑑𝑅𝐻 = [𝜌𝐼𝐻 − (𝜇𝐻 + 𝛾)𝑅𝐻] 𝑑𝑡 + 𝜎𝑅𝐻𝑅𝐻  𝑑𝑊5 (5) 
 
 

Symbol Description 
 

𝛽𝑀𝐻 
 

Transmission rates from infected humans to mosquitoes. 
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𝜎𝑆𝑀, 𝜎𝐼𝑀 Diffusion coefficients for stochasticity in SM and 𝐼𝑀 
. 

𝑊1, 𝑊2 Independent Wiener processes. 

𝛽𝐻𝑀 Transmission rate from infected mosquitoes to humans. 

𝜌 Recovery rate of infected humans. 

𝛾 Rate of loss of immunity from the recovered population. 

 
𝜎𝑆𝐻, 𝜎𝐼𝐻, 𝜎𝑅𝐻 

Diffusion coefficients for stochasticity in 𝑆𝐻, 𝐼𝐻, 𝑎𝑛𝑑 𝑅𝐻 . 

𝑊3, 𝑊4, 𝑊5 
 

Independent Wiener processes. 

Table 2: Definitions of parameters and variables for the stochastic model. 
 
To numerically approximate the solutions of this system, we apply the Milstein scheme, which provides 
improved accuracy over the Euler-Maruyama method when the diffusion term is non-linear. 
For a general scalar SDE of the form: 

𝑑𝑋𝑡 =  𝑓 (𝑋𝑡) 𝑑𝑡 +  𝑔(𝑋𝑡) 𝑑𝑊𝑡, 
 
The Milstein approximation is given by: 

𝑋𝑛+1 = 𝑋𝑛 + 𝑓(𝑋𝑛)𝛥𝑡 + 𝑔(𝑋𝑛)𝛥𝐵𝑛 +
1

2
𝑔(𝑋𝑛)𝑔′(𝑋𝑛)[(𝛥𝐵𝑛)2 − 𝛥𝑡] 

Where:  
 

• ∆Bn is a Brownian increment over time step ∆t, 

• g′(Xn) is the derivative of the diffusion function g with respect to X. 
 
This scheme is applied component-wise to the stochastic malaria system, with initial conditions and 
parameter values specified in the simulation section. 
 
2.3. Positivity of the system 
Proposition 2.1. The stochastic system given by 

𝑑𝑆𝑀 = [𝛬𝑀 − 𝛽𝑀𝐻𝑆𝑀𝐼𝐻 − 𝜇𝑀𝑆𝑀] 𝑑𝑡 + 𝜎𝑆𝑀𝑆𝑀  𝑑𝑊1, 
𝑑𝐼𝑀 = [𝛽𝑀𝐻𝑆𝑀𝐼𝐻 − 𝜇𝑀𝐼𝑀] 𝑑𝑡 + 𝜎𝐼𝑀𝐼𝑀  𝑑𝑊2, 

𝑑𝑆𝐻 = [𝛬𝐻 − 𝛽𝐻𝑀𝑆𝐻𝐼𝑀 − 𝜇𝐻𝑆𝐻 + 𝛾𝑅𝐻] 𝑑𝑡 + 𝜎𝑆𝐻𝑆𝐻  𝑑𝑊3 
𝑑𝐼𝐻 = [𝛽𝐻𝑀𝑆𝐻𝐼𝑀 − (𝜇𝐻 + 𝜌)𝐼𝐻] 𝑑𝑡 + 𝜎𝐼𝐻𝐼𝐻  𝑑𝑊4 

𝑑𝑅𝐻 = [𝜌𝐼𝐻 − (𝜇𝐻 + 𝛾)𝑅𝐻] 𝑑𝑡 + 𝜎𝑅𝐻𝑅𝐻  𝑑𝑊5 
 
remains strictly positive for all time, provided the initial conditions satisfy SM (0), IM (0), SH (0), IH (0), RH 
(0) > 
0. 
See Appendix Appendix A for the detailed proofs. 
 
2.4. Stability Analysis 
Theorem 2.2. The equilibrium points of the stochastic epidemic model are locally asymptotically stable if 
all eigenvalues of the Jacobian matrix have negative real parts. Furthermore, global stability can be 
established using a suitable Lyapunov function. 
See Appendix Appendix A for the detailed proofs. 
 
2.5. Reproduction number R0 
The basic reproduction number, denoted by R0, is defined as the expected number of secondary infections 
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produced by a single infected individual in a fully susceptible population. It serves as a threshold parameter: 
the disease tends to die out if R0 < 1 and can spread if R0 > 1[14]. 
 
For the deterministic malaria model described in subsection 2.1, the basic reproduction number R0 is 
given by: 

𝑅0 = √
𝛽ℎ𝛽𝑣𝑁𝑣

(𝛾 + 𝜇ℎ)𝜇𝑣𝑁ℎ
 

 
For the deterministic malaria model described in subsection 2.1, the disease-free equilibrium (DFE) 
is locally asymptotically stable if R0 < 1 and unstable if R0 > 1. 
 
2.6. Extinction of the disease 
Theorem 2.3. Consider the stochastic malaria model where the infected human population IH (t) 
evolves according to the equation 

𝑑𝐼𝐻(𝑡) = [𝛽𝐻𝑀𝑆𝐻(𝑡)𝐼𝑀(𝑡) − (𝜇𝐻 + 𝜌)𝐼𝐻(𝑡)] 𝑑𝑡 + 𝜎𝐼𝐻𝐼𝐻(𝑡) 𝑑𝑊𝑡 

Assume that there exists a constant δ > 0 such that: 
𝑆𝐻(𝑡)𝐼𝑀(𝑡)

𝐼𝐻(𝑡)
≤ 𝛿 for all 𝑡 ≥ 0, 

and that the noise intensity satisfies:  
1

2
𝜎𝐼𝐻

2 > (𝜇𝐻 + 𝜌) − 𝛽𝐻𝑀𝛿. 

 
Then the solution IH (t) tends to zero exponentially almost surely. More precisely, there exists λ > 0 

such that:  𝑙𝑖𝑚 𝑠𝑢𝑝𝑡→∞
1

𝑡
𝑙𝑛 𝐼𝐻 (𝑡) ≤ −𝜆,  almost surely. 

 
See Appendix Appendix A for the detailed proofs 
 
2.7. Stationary 
Theorem 2.4. Existence of Stationary Distribution Let the stochastic system be given by 

𝑑𝑋(𝑡) = 𝑏(𝑋) 𝑑𝑡 + 𝐺(𝑋) 𝑑𝑊(𝑡),  𝑋 ∈ 𝑅+
𝟝 , 

with 
 

𝑋 = (

𝑆𝑀

𝐼𝑀

𝑆𝐻

𝐼𝐻𝑅𝐻

) 

 

𝑏(𝑋) = (

𝛬𝑀 − 𝛽𝑀𝐻𝑆𝑀𝐼𝐻 − 𝜇𝑀𝑆𝑀

𝛽𝑀𝐻𝑆𝑀𝐼𝐻 − 𝜇𝑀𝐼𝑀

𝛬𝐻 − 𝛽𝐻𝑀𝑆𝐻𝐼𝑀 − 𝜇𝐻𝑆𝐻 + 𝛾𝑅𝐻

𝛽𝐻𝑀𝑆𝐻𝐼𝑀 − (𝜇𝐻 + 𝜌)𝐼𝐻𝜌𝐼𝐻 − (𝜇𝐻 + 𝛾)𝑅𝐻

) 

 
𝐺(𝑋) = diag(𝜎𝑆𝑀𝑆𝑀,  𝜎𝐼𝑀𝐼𝑀,  𝜎𝑆𝐻𝑆𝐻,  𝜎𝐼𝐻𝐼𝐻,  𝜎𝑅𝐻𝑅𝐻) 

 
Then the system admits at least one stationary distribution in 𝑅+

𝟝  . 
See Appendix Appendix A for the detailed proofs. 
 
2.8. Ergodicity 
Theorem 2.5. Ergodicity via H örmander’s Condition Let the stochastic system be given by 

𝑑𝑋 = 𝑏(𝑋) 𝑑𝑡 + 𝐺(𝑋) 𝑑𝑊,  𝑋 ∈ 𝑅+
𝟝 , 

where G(X) is diagonal with non-zero entries on 𝑅+
𝟝 ∖ {0},and 𝑏(𝑋) is smooth. Then the process admits 

a unique stationary distribution and is ergodic. 
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See Appendix Appendix A for the detailed proofs. 
 
2.9. Spatial and climatic considerations. 
Although the model is not spatially structured in its mathematical formulation, spatial variation is in- 
corporated indirectly through climate-sensitive parameters. Specifically, temperature and rainfall data from 
different geographic regions are used to adjust key biological and epidemiological rates, such as mosquito 
recruitment, biting frequency, and parasite development. This approach allows the model to reflect spatial 
heterogeneity in transmission potential without explicitly modelling spatial compartments or movement. 
By doing so, it becomes possible to generate spatial maps of transmission-relevant parameters and explore 
how local environmental conditions modulate malaria risk across regions. 
 
3. Results 
3.1. Simulation of the model and validation 
To validate the model’s theoretical properties and illustrate its biological realism, we conducted several 
numerical simulations under different stochastic and climatic conditions using the Milstein scheme. All 
scenarios confirmed the model’s ability to reproduce key transmission dynamics while maintaining 
bounded, biologically feasible trajectories. 
Figure 2 presents a representative simulation outcome incorporating stochastic noise and climate-driven 
variation in the mosquito birth rate ΘM . The trajectories capture the evolution of malaria indicators 
such as infection prevalence, incidence,Rapid Diagnostic Test (RDT) positivity, and Entomological 
Innoculation Rate (EIR) over time. Peaks and troughs reflect the influence of environmental 
variability, while the synchrony between indicators confirms model consistency. These results validate the 
robustness of the model and support its relevance for climate-sensitive intervention planning. 
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Figure 2: Representative stochastic simulation of the malaria model under environmental 
variability. The dynamics reflect the temporal evolution of key indicators: prevalence, 
incidence, RDT positivity, and EIR under varying mosquito birth rates θM . 
 
3.2. Spatial analysis 
The climate data used in this study come from ERA5, CHIRPS, and climate model projections from 
CMIP5 and CMIP6, covering the period from 1988 to 2035. Administrative boundary shapefiles used 
for spatial mapping were obtained from the National Institute of Statistics of Rwanda (NISR). 
 

 
 

Figure 3: Malaria cases among children under five for the rainy season (March to May) 
 

 
Figure 4: Malaria cases among children under five for the dry season (June to August) 

 
A spatial analysis of malaria cases among children under five during the rainy and dry seasons reveals a 
consistent and significant seasonal decline. 
Case concentrations are observed to be markedly higher during the rainy season (March to May), particularly 
in eastern and southeastern districts such as Bugesera, Kirehe, Ngoma, and Kayonza. This phenomenon is 
consistent with the findings of established entomological research, which demonstrates that the rainy 
season leads to increased availability of breeding sites, enhanced mosquito survival rates, and accelerated 
parasite development. These factors, when considered collectively, result in an increase in transmission 
intensity. 
In contrast, the dry season (June to August) demonstrates a noticeable decline in malaria cases in most 
districts. Despite the persistence of residual transmission in select localized regions, the overall intensity 
has been significantly reduced. This finding indicates that climatic conditions can directly influence the 
potential for seasonal transmission. 
These observations underscore the imperative for malaria control strategies to incorporate seasonality. 
While the analysis of malaria among children under five years shows a pronounced seasonal decline, it 
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is important to examine whether this pattern also applies to other high-risk groups. Pregnant women, for 
example, may face different exposure conditions or health system interactions. 
Compared to children, the spatial distribution of malaria among women during the same periods reveals 
both similarities and notable differences. The figures below present these maps, which allow us to assess 
whether the seasonal drop observed in pediatric cases is equally reflected in adult female populations.  
 

 
Figure 5: Rainy season (March–May) Malaria cases among pregnant women for the rainy season 

(March–May) 
 

 
Figure 6: Malaria cases among pregnant women for the dry season (June to August) 
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The spatial patterns of malaria cases among women display partial overlap with those observed in children 
under five, particularly during the rainy season (March to May), where high case concentrations appear in 
northeastern and central districts such as Nyagatare and Muhanga. This finding indicates that both groups 
are exposed to comparable environmental factors during periods of peak transmission. 
However, in contrast to the paediatric maps, where there is a clear decline in case burdens during the dry 
season (June to August), the reduction in malaria cases among women is less pronounced. It is noteworthy 
that several districts continue to report substantial case numbers even during the dry season, including 
Nyagatare and parts of the southeastern region. This persistence could be indicative of different behavioural 
patterns (e.g. mobility, exposure during agricultural work), gaps in targeted interventions like IPTp, or 
differences in immunity. 
 
3.2.1. Mosquito lifecycle parameters based on temperature and rainfall 
In addition to the spatial distribution of malaria cases, it is imperative to comprehend the biological and 
ecological mechanisms that underpin transmission in order to anticipate seasonal fluctuations and optimise 
intervention timing. In the following section, the focus is directed towards an analysis of the climate-
sensitive lifecycle of the malaria vector, with particular reference to its implications for transmission 
potential in Rwanda. 
Utilising daily temperature and rainfall data, a simulation was conducted to ascertain the development rates 
and survival probabilities of mosquitoes across key stages, from egg to adult. The validity of these 
simulations is contingent upon the utilisation of entomological parameters that have been extracted from 
a range of extant laboratory and semi-field studies (see White, 2011; Lunde, 2013; and Supplemental 
White, 2011). The objective of this study is to quantify the impact of environmental fluctuations on 
mosquito dynamics, and consequently, the influence on malaria risk. Table 3 summarizes the key 
parameters used in this biological modelling approach. 
 
Table 3: Key entomological parameters used in the temperature- and rainfall-dependent mosquito 
lifecycle model. 
 

Parameter Description Value / Function 
𝛿 Duration of gonotrophic cycle 3 𝑑𝑎𝑦𝑠 [15] 
𝑏 Oviposition rate (eggs per 

mosquito per day) 
21.19 [15] 

𝜇𝑀 Daily mortality rate of adult 
mosquitoes 

0.096 𝑑𝑎𝑦−1 [15] 

𝜇𝑃 Mortality rate of pupae 0.25𝑑𝑎𝑦−1 [15] 
𝑑𝐸 , 𝑑𝐿 , 𝑑𝑃 Duration of egg, larval and 

pupal stages 
6.64, 3.72, 0.64 𝑑𝑎𝑦𝑠 [16] 

𝜇𝐸
0 , 𝜇𝐿

0 
 

Baseline mortality of early/late 
instars 

0.035𝑑𝑎𝑦−1 [16] 

𝛾 Density-dependence modifier 
(late larvae) 

13.25 [15] 

𝐾(𝑡) Carrying capacity Rainfall-based exponential 
model [15] 

𝜏 Rainfall window affecting 
𝐾(𝑡) 

4 𝑑𝑎𝑦𝑠 [15] 

𝑓(𝑇) Temperature-dependent dev. 
rates 

fitted functions [15], [16] 

𝑠(𝑇) Temperature-dependent 
survival 

fitted functions [15] 

 
3.2.2. Daily temperature and rainfall in Rwanda 
Temperature and rainfall have been identified as the most significant environmental factors influencing 
mosquito population dynamics. In Rwanda, the mean annual temperature remains relatively stable, with 
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slight increases around days 90 and 250 (late March and early September), and a noticeable dip during the 
middle of the dry season (around day 190). This thermal stability provides a foundation for year round 
mosquito survival Rainfall, conversely, displays a distinct bimodal pattern, with peaks occurring around 
days 90–120 and 270–310, corresponding to Rwanda’s two rainy seasons. These periods coincide with 
increased availability of mosquito breeding sites due to surface water accumulation, and thus with 
heightened malaria transmission potential. The onset of the dry season, characterised by a pronounced 
decline in rainfall mid- year, coincides with a contraction of vector populations and a limitation of larval 
habitats. 
 

 
      (a) Daily Mean Temperature  (b) Daily Mean Rainfall 

 
Figure 7: Average daily climatic conditions across Rwanda, based on observed temperature and 

rainfall patterns. 
 
These climatic signals directly modulate key biological processes in the mosquito lifecycle, and they serve as 
temporal anchors for the simulation of temperature- and rainfall-dependent transmission parameters. These 
parameters will be described in the following section. 
 
3.2.3. Mosquitoes lifecycle parameters based on Temperature and rainfall 
In order to evaluate the manner in which seasonal climate modulates mosquito biology and malaria trans- 
mission potential, a simulation was conducted in which key lifecycle parameters were modelled as functions 
of both temperature and rainfall. The relationships under discussion are grounded in published 
entomologi- cal studies, which define development durations as temperature-dependent, and survival and 
recruitment as jointly influenced by temperature and environmental moisture. 
 

 
            (a) Development and cycle durations (b) Survival probabilities by stage 
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Figure 8: Simulated mosquito lifecycle metrics as a function of daily temperature in Rwanda.  
 

As illustrated in Figure 8, the seasonal progression of both biological cycle durations and stage-specific 
survival probabilities is demonstrated. The development durations encompassing the larval stage, 
oviposition, gonotrophic cycle and sporogony  are known to lengthen during periods of lower temperature 
and reduced moisture, a phenomenon that typically occurs around the mid-year dry season. These extended 
periods are indicative of physiological deceleration in suboptimal conditions, resulting in diminished vector 
productivity and protracted transmission cycles. 
The survival probabilities of the species across all life stages exhibit a similar trend, with a sharp decrease 
during the driest and hottest parts of the year. This decline is concomitant with elevated environmental 
stress and constrained access to aquatic breeding habitats. Rainfall is of particular importance in this 
ecosystem, since it is a key factor in regulating metabolic rates, while temperature is responsible for ensuring 
habitat availability and humidity levels that are conducive to the persistence of vector species.  
It is evident that these climate-driven patterns demonstrate a robust correlation between environmental 
conditions and the biological potential for malaria transmission. The pronounced seasonal shifts in 
development and survival support the design of adaptive, climate-aware control strategies that anticipate 
periods of vector expansion or suppression. 
 
4. Discussion 
The objective of this study was to explore the long-term dynamics of malaria transmission under the 
influence of climate variability. To this end, a stochastic and spatially explicit modelling framework 
grounded in biological realism was employed. The findings indicate that climatic factors, specifically 
temperature and rainfall, play a pivotal role in shaping the seasonal progression of the mosquito lifecycle. 
This, in turn, governs the variable intensity of malaria risk across different geographical locations and 
temporal periods. 
The spatial maps of malaria cases among children and women exhibited a robust seasonal signal, with 
transmission peaking during rainy periods and waning during the dry season. This pattern is consistent 
with well-documented epidemiological trends observed across East Africa, where the abundance of breeding 
sites and ambient humidity drive Anopheles proliferation during the long and short rains . However, while 
children under five exhibited a marked reduction in cases during the dry months, this was not uniformly 
observed among women, suggesting differing patterns of exposure, immunity, or access to care. This 
discrepancy underscores the necessity of conducting a comprehensive risk assessment, taking into account 
the diverse characteristics of different vulnerable groups, when devising intervention strategies. 
The findings were further reinforced by stochastic simulations, which confirmed the observed seasonal 
effects. In circumstances of reduced recruitment or augmented noise intensity, the vector and infection 
compartments demonstrated extinction or fade-out, thus exemplifying the vulnerability of transmission 
under suboptimal climatic conditions. Conversely, simulations under favourable climate conditions 
demonstrated sustained transmission potential, particularly when both temperature and moisture levels 
were optimal. These findings are consistent with the theoretical expectations of Ross-Macdonald-type 
models adapted to climate-dependent parameters (see Smith, 2012; Parham, 2010). 
The simulation of biological parameters from empirical temperature and rainfall functions has elucidated 
the underlying mechanisms of these seasonal dynamics. As demonstrated in Figure 10, the duration 
of development (e.g., gonotrophic cycle, sporogony) was shortest during the warmest and wettest parts of 
the year. This supports the hypothesis that accelerated parasite maturation and mosquito reproduction 
occurred during these periods. Conversely, survival probabilities exhibited a precipitous decline during 
periods of aridity or extreme temperatures, thereby diminishing the resilience of vector populations. 
The integration of these temperature- and rainfall-sensitive parameters provides a more detailed and 
temporally responsive perspective on vector ecology, building upon earlier research that solely considered 
temperature effects [16, 17]. Notwithstanding the contributions outlined above, the model exhibits several 
limitations. The spatial structure is predicated on the assumption of homogeneity within districts, yet it 
does not explicitly incorporate human mobility or vector mobility, both of which are known to influence 



 

International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 14s, 2025 
https://www.theaspd.com/ijes.php 

1522  

transmission heterogeneity [18]. Furthermore, the utilisation of rainfall as a proxy for moisture and 
habitat availability, without accounting for land use, hydrology, or evapotranspiration, may have resulted 
in an inaccurate assessment of larval site persistence. The entomological parameters, although derived 
from robust literature, may not fully capture intra-species variation or local behavioural adaptations 
among Rwandan vector populations. 
Nevertheless, the model’s flexibility allows for its extension and calibration with local data. Future research 
could benefit from the integration of this framework with remote sensing inputs (e.g., NDVI, LST), 
the incorporation of high-resolution mobility data, and the exploration of intervention strategies using stochastic 
control or agent-based approaches. It is imperative to acknowledge the capacity to generate dynamic maps 
of entomological parameters, including the vector recruitment rate. The potential for early warning systems 
and adaptive control planning in the context of climate change is highlighted by θM (t). 
In summary, the present study demonstrates that integrating stochasticity, spatial heterogeneity, and 
climate-driven biological processes significantly enhances our ability to understand and anticipate malaria 
transmission dynamics. The substantial seasonal modulation of development and survival that has been 
observed in the course of the simulations serves to reinforce the necessity for interventions that are climate- 
adaptive, for spatial targeting, and for continuous monitoring of environmental drivers in regions that are 
experiencing high levels of burden. 
 
5. Conclusion 
The objective of this study was to comprehend the long-term dynamics of malaria transmission by inte- 
grating climate variability, biological mechanisms, and spatial patterns into a unified modelling framework. 
Stochastic simulations and spatial analysis were employed to ascertain the impact of environmental factors, 
chiefly temperature and rainfall, on the development, survival and, ultimately, the transmission 
potential of malaria in Rwanda. The findings indicated a robust seasonal pattern, with both biological 
cycles and disease incidence exhibiting a close correlation with the country’s bimodal rainfall pattern. By 
integrating daily meteorological data with entomological functions, it was demonstrated how shifts in 
climate conditions shape the viability of vector populations and the risk of sustained transmission. 
These findings contribute to a growing body of research that emphasises the importance of environmental 
context in malaria epidemiology. Whilst earlier models have addressed the impact of temperature on vector 
competence, this study broadens the perspective by explicitly incorporating both moisture dynamics and 
stochastic variability. These elements are crucial for understanding transmission in real-world, fluctuating 
settings. The findings of this study serve to reinforce the theoretical predictions that transmission fades 
under marginal climatic conditions, thereby underscoring the significance of minor fluctuations in 
environmental drivers on transmission dynamics. 
From a pragmatic perspective, the findings provide significant insights for malaria control programmes 
seeking to align their strategies with seasonal and spatial transmission patterns. For instance, the model 
iden- tifies time windows – typically during and just before the rainy seasons when vector recruitment, 
survival, and parasite development accelerate. These moments represent critical opportunities to scale up 
vector con- trol interventions, including indoor residual spraying (IRS), the distribution and replacement 
of long-lasting insecticidal nets (LLINs), and environmental larval source management. Furthermore, the 
model’s structure facilitates the optimisation of intermittent preventive treatment (IPT) for pregnant 
women and seasonal malaria chemoprevention (SMC) for children, by determining the timing and location 
of these interventions to maximise their impact. 
Moreover, the spatial dimension of the simulations indicates that a one-size-fits-all approach may be 
inadequate.  It is evident that districts exhibiting persistent or less seasonal transmission such as 
those in eastern Rwanda may require year-round intervention coverage. Conversely, other regions could 
benefit from more targeted, time limited strategies. This kind of localized, data-driven planning has the 
potential to enhance resource efficiency and improve outcomes, especially in settings where resources are 
limited. However, the study is not without its limitations. The spatial model under scrutiny here makes the 
assumption of internal homogeneity, whilst eschewing any explicit accounting for human mobility, 
intervention coverage, or socio-economic variation. The utilisation of literature based entomological 
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parameters, while founded on empirical evidence, may not wholly mirror local vector behavior or 
ecology. It is recommended that future endeavors seek to validate and calibrate the model with field data, 
integrate real-time environmental indicators (e.g., satellite derived water indices), and explore predictive 
applications such as early warning systems or intervention scenario testing. 
In conclusion, this study proposes a framework that captures the complex, climate-sensitive nature of 
malaria transmission. This finding serves to reinforce the prevailing view that transmission is not solely a 
biological phenomenon, but also an environmental process, which can be anticipated, disrupted, and ulti- 
mately controlled. By aligning interventions with ecological signals, we move closer to a future where malaria 
transmission is not only understood but strategically outmaneuvered. 
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Appendix A.  Proofs of Theoretical Results 
Appendix A . 1 .  Positivity of the system 
Proof. To ensure positivity, we apply It ô ’s Lemma to the logarithm of each variable. Define: 

𝑌 = 𝑙𝑛 𝑋 ,  where 𝑋 ∈ {𝑆𝑀, 𝐼𝑀, 𝑆𝐻 , 𝐼𝐻 , 𝑅𝐻} (𝐴. 1) 
 
Using Ito’s formula for a function ℎ(𝑋)  =  𝑙𝑛 𝑋, we obtain: 
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𝑑(𝑙𝑛 𝑋) =
1

𝑋
 𝑑𝑋 −

1

2

(𝑔(𝑋))
2

𝑋2
 𝑑𝑡 (𝐴. 2) 

 
 

• Positivity of SM 

 

Applying Ito’s lemma to 𝑌 = 𝑙𝑛(𝑆𝑀) 

𝑑(𝑙𝑛 𝑆𝑀) =
1

𝑆𝑀
 𝑑𝑆𝑀 −

1

2

(𝜎𝑆𝑀𝑆𝑀)2

𝑆𝑀
2  𝑑𝑡 (𝐴. 3) 

 
Substituting 𝑑(𝑆𝑀): 

𝑑(𝑙𝑛 𝑆𝑀) =
𝜆𝑀

𝑆𝑀
− 𝛽𝑀𝐻𝐼𝐻 − 𝜇𝑀 −

1

2
𝜎𝑆𝑀

2  𝑑𝑡 + 𝜎𝑆𝑀  𝑑𝑊1 (𝐴. 4) 

 
Since the drift term does not force SM to zero and the noise term vanishes at zero, SM remains strictly 
positive. 
 

• Positivity of IM 
 
Applying Ito’s Lemma to 𝑌 = 𝑙𝑛(𝐼𝑀): 
 

𝑑(𝑙𝑛 𝐼𝑀) =
𝛽𝑀𝐻𝑆𝑀𝐼𝐻

𝐼𝑀
− 𝜇𝑀 −

1

2
𝜎𝐼𝑀

2  𝑑𝑡 + 𝜎𝐼𝑀  𝑑𝑊2 (𝐴. 5) 

 

Since 
𝛽𝑀𝐻𝑆𝑀𝐼𝐻

𝐼𝑀
≥ 0 and the noise term vanishes at zero, IM remains positive. 

 

• Positivity of SH 
Applying Ito’s Lemma to 𝑌 = 𝑙𝑛(𝑆𝐻) : 

𝑑(𝑙𝑛 𝑆𝐻) =
𝜆𝐻

𝑆𝐻
− 𝛽𝐻𝑀𝐼𝑀 − 𝜇𝐻 +

𝛾𝑅𝐻

𝑆𝐻
−

1

2
𝜎𝑆𝐻

2  𝑑𝑡 + 𝜎𝑆𝐻  𝑑𝑊3 (𝐴. 6) 

 
Since the drift term does not force SH to zero and the noise term vanishes at zero, SH remains strictly 
positive. 
 

• Positivity of IH 
Applying Ito’s Lemma to 𝑌 = 𝑙𝑛(𝐼𝐻): 
 

𝑑(𝑙𝑛 𝐼𝐻) = (
𝛽𝐻𝑀𝑆𝐻𝐼𝑀

𝐼𝐻
− (𝜇𝐻 + 𝜌) −

1

2
𝜎𝐼𝐻

2 ) 𝑑𝑡 + 𝜎𝐼𝐻  𝑑𝑊4 (𝐴. 7) 

 

Since 
𝛽𝐻𝑀𝑆𝐻𝐼𝑀

𝐼𝐻
≥ 0  and the noise terms vanishes at zero,  𝐼𝐻 remains strictly positive. 

 

• Positivity of RH 
 
Applying Ito’s Lemma to 𝑌 = 𝑙𝑛(𝑅𝐻): 
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𝑑(𝑙𝑛 𝑅𝐻) = (
𝜌𝐼𝐻

𝑅𝐻
− (𝜇𝐻 + 𝛾) −

1

2
𝜎𝑅𝐻

2 ) 𝑑𝑡 + 𝜎𝑅𝐻  𝑑𝑊5 (𝐴. 8) 

 

Since 
𝜌𝐼𝐻

𝑅𝐻
≥ 0 and the noise terms vanishes at zero,  𝑅𝐻 remains strictly positive. 

 
Appendix A.2. Stability Analysis 
 
Proof. To analyze the stability of the system, we first determine the equilibrium points by setting the 
drift terms to zero: 

𝜆𝑀 − 𝛽𝑀𝐻𝑆𝑀𝐼𝐻 − 𝜇𝑀𝑆𝑀 = 0 (𝐴. 9) 
𝛽𝑀𝐻𝑆𝑀𝐼𝐻 − 𝜇𝑀𝐼𝑀 = 0 (𝐴. 10) 

𝜆𝐻 − 𝛽𝐻𝑀𝑆𝐻𝐼𝑀 − 𝜇𝐻𝑆𝐻 + 𝛾𝑅𝐻 = 0 (𝐴. 11) 
𝛽𝐻𝑀𝑆𝐻𝐼𝑀 − (𝜇𝐻 + 𝜌)𝐼𝐻 = 0 (𝐴. 12) 

𝜌𝐼𝐻 − (𝜇𝐻 + 𝛾)𝑅𝐻 = 0 (𝐴. 13) 
 
 

• Local Stability Analysis 
We compute Jacobian matrix J evaluated at an equilibrium point  (𝑆𝑀

∗ , 𝐼𝑀
∗ , 𝑆𝐻

∗ , 𝐼𝐻
∗ , 𝑅𝐻

∗ ). The Jacobian 
is given by: 

 
 
The stability is determined by the eigenvalues of J. If all eigenvalues have negative real parts, the equilibrium 
is locally asymptotically stable. 
 
Theorem A.1. The stochastic epidemic model is stochastically asymptotically stable in the mean 
square sense if there exists a positive definite Lyapunov function 𝑉(𝑆𝑀 , 𝐼𝑀 , 𝑆𝐻, 𝐼𝐻, 𝑅𝐻) such that the 
infinitesimal generator LV satisfies: 

𝐿𝑉 ≤ −𝑐𝑉 + 𝑑 (𝐴. 15) 
for some positive constants c and d. Moreover, for stability, the noise intensity parameters 
𝜎𝑆𝑀 , 𝜎𝐼𝑀 , 𝜎𝑆𝐻 , 𝜎𝐼𝐻 , 𝜎𝑅𝐻 
must satisfy certain bounded conditions such that stochastic perturbations do not dominate the 
deterministic stability properties. 

• Global Stability Analysis 
 
We construct a suitable Lyapunov function V and analyze its time derivative dV/dt to establish global 
stability. Define: 

𝑉 = 𝑎1(𝑆𝑀 − 𝑆M
∗ )2 + a2(IM − IM

∗ )2 + a3(SH − SH
∗ )2 + a4(IH − IH

∗ )2 + a5(RH − RH
∗ )2 (A. 16) 

 
Computing dV/dt and ensuring dV/dt ≤ 0 establishes global stability. 
 
 
Appendix A.3. Extinction of the disease 
 
 Proof. Let define Z(t) = ln IH (t). 
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Since IH (t) > 0 almost surely, Z(t) is therefore well defined. Now let’s apply Ito’s formula: 
 

SinceIH(t) > 0almostsurely, Z(t)isthereforewelldefined. Nowlet’sapplyItô’sformula: 
 

dZ(t) =
1

IH(t)
dIH(t) −

1

2IH(t)2 (dIH(t))
2

. 

 
Using the SDE of IH(t), we compute: 

 

1

IH
dIH = (

βHMSHIM

IH
− (μH + ρ)) dt + σIHdWt, 

(dIH)2 = σIH
2 IH

2 dt ⇒  
1

2IH
2

(dIH)2 =
1

2
σIH

2 dt. 

dZ(t) = (
βHMSHIM

IH
− (μH + ρ) −

1

2
σIH

2 ) dt + σIHdWt. 

Using the assumption 
SHIM

IH
≤ δ, so:  

βHMSHIM

IH
≤ βHMδ.   Thus, 

 

dZ(t) ≤ (βHMδ − (μH + ρ) −
1

2
σIH

2 ) dt + σIHdWt. 

Defineλ =
1

2
σIH

2 − (μH + ρ) + βHMδ. Under the assumption λ > 0, we obtain: 

 
dZ(t) ≤ −λdt + σIHdWt.  Integrating both sides: 

 
Z(t) ≤ Z(0) − λt + σIHWt. 

 
Dividing by  t  and using the strong law of large numbers for Brownian motion: 

 

lim supt→∞

Z(t)

t
≤ −λ almost surely. 

 
SinceZ(t) = ln IH (t), weconclude: 

 

lim supt→∞

1

t
ln IH (t) ≤ −λ,  almost surely. 

 
Remark. This result shows that under low transmission conditions (R0 < 1) and moderate noise intensity, 
infection in the human population will vanish with probability one. The decay is exponential, 
meaning that the disease not only fades, but does so rapidly and reliably over time, reinforcing the impact 
of both deterministic control and environmental variability. 
 
Appendix A.4. Stationary 
Proof. Let V(X) = |X|2 = ∑ xi

2 .  
Then ∇V = 2X,  ∇2V = 2I. 

 
 
The generator is 

LV = 2⟨X, b(X)⟩ + 2 ∑ σi
2xi

2 
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Since each xibi(X) includes negative quadratic terms, there exist constants a > 0, C > 0 such that 
 

⟨X, b(X)⟩ ≤ −a|X|2 + C 
 
Hence 

LV ≤ −2a |X|2 +  2C +  2σ{\max}
2 |X|2. 

Let c ∶=  2a −  2σ{\max}
2 >  0, then 

LV ≤ −c |X|2 +  d. 
 
By the Theorem 4.6 of Mao (2007) [19], this implies existence of a stationary distribution. 
Remark.  This means that when the basic reproduction number R0 is more than 1 and the noise 
intensity is not too large, the disease will continue in the population. In other words, the state variables 
change randomly over time but stay within a biologically meaningful range in R5 , and the system’s 
long-term behavior is probabilistic. 
 
Appendix A.5. Ergodicity 
 
 Proof. Define: 
 
V1 =  σ{SM}SM ∂{SM}

, V2 =  σ{IM}IM ∂{IM}
, V3 =  σ{SH}SH ∂{SH}

, V4 =  σ{IH}IH ∂{IH}
, V5 =

 σ{RH}RH ∂{RH}
,  V0 =  b(X). 

 
Compute Lie brackets: 

[V0, Vi](X) ≠ 0 \quad \text{for }i =  1, … , 5, 
 
due to nonlinear interaction terms. 
Let L(X) be the Lie algebra generated by {V1, . . . , V5} and their brackets with V0. Then: 

Rank(L(X)) =  5 for all X ∈ R{+}
{5}

∖ K 
 
 
By H örmander’s theorem, the process is hypoelliptic. Combined with positivity and the existence of 
a Lyapunov function, ergodicity follows. 
 
Remark. The ergodicity result means that, in the right conditions, the malaria transmission system will 
forget its initial state and evolve towards a stable long-term statistical behavior. This means that, over time, 
the probability distribution of the disease states will come to the same average, even though the environment 
changes randomly. 
 
 


