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Abstract 
India's extensive road network plays a crucial role in national development, yet faces persistent challenges due 
to inadequate maintenance, particularly in rural and urban segments. This study integrates calibrated HDM-
4 deterioration models with machine learning (ML) techniques to improve the prediction and management of 
pavement distresses such as cracking and potholes. Data were collected from 20 road sections spanning 108 
km across Madhya Pradesh, with performance indicators analyzed over a five-year period. Calibration of HDM-
4 parameters for both rural and urban sections revealed discrepancies between model predictions and field 
conditions, especially under varying environmental and traffic stressors. To enhance predictive capability, 
machine learning models—Random Forest, Gradient Boosting, and Artificial Neural Networks—were applied. 
The Random Forest model demonstrated the highest accuracy for cracking prediction (R² = 0.95), while ANN 
effectively captured pothole progression with an R² of 0.89. The Box-Cox transformation and statistical 
assumptions were addressed to ensure model robustness. The findings underscore the importance of combining 
empirical and data-driven approaches for reliable pavement management, enabling better maintenance 
scheduling and resource optimization. 
Keywords: Cracking, Potholes, Maintenance, Machine learning, Highway 
 
1. INTRODUCION 
India’s road network, the second-largest globally, spans over 5.89 million kilometers and plays a 
vital role in economic development and social connectivity. Of this, rural roads constitute about 
70.65%, followed by district and urban roads [1]. Rural roads provide crucial links to remote areas, 
improving access to markets, healthcare, and education, while urban roads support the growing 
transportation needs of expanding cities [2]. Despite its vastness, India's road infrastructure suffers 
from inadequate maintenance, leading to rapid deterioration. This challenge is particularly acute 
in rural regions, where limited resources and subjective decision-making often delay timely repairs 
[3]. To address this, Pavement Management Systems (PMS) and Pavement Maintenance 
Management Systems (PMMS) have been introduced to facilitate optimized maintenance planning 
and execution [4]. 
Globally, tools such as the Highway Development and Management Model (HDM-4), developed by 
the World Bank, are widely used for road investment analysis and pavement performance 
forecasting [5]. HDM-4 enables multi-level evaluation—project, program, and strategy—and 
incorporates economic and technical parameters for maintenance prioritization. However, its 
empirical models require extensive calibration to suit regional conditions like traffic composition, 
climate, construction standards, and subgrade variability [6]. In India, road agencies like MoRTH 
and NHAI have mandated the use of HDM-4 for long-term planning [7]. Yet, studies report that 
uncalibrated HDM-4 models often deviate from actual pavement conditions, especially in terms of 
cracking, rutting, and potholes [8]. 
Machine Learning (ML) techniques have recently emerged as effective tools for pavement distress 
prediction. Algorithms such as Random Forests (RF), Gradient Boosting Machines (GBM), and 
Artificial Neural Networks (ANN) can handle nonlinear relationships and large datasets better than 
traditional statistical models [9]. These models have shown promising results in accurately 
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predicting distresses by learning from historical data and recognizing complex interactions among 
variables like traffic load, environmental conditions, and material properties [10]. 
This research aims to develop robust pavement deterioration models for both urban and rural 
networks by integrating ML techniques with calibrated HDM-4 models. The focus is on predicting 
key distresses—cracking, ravelling, potholes, rutting, and edge breaks—based on time-series field data 
collected over five years. This integrated approach intends to improve forecasting accuracy, optimize 
maintenance scheduling, and support data-driven decision-making for asset preservation. 
 
2. REVIEW OF LITERATURE 
The implementation of PMS in India dates back to the mid-1980s, with early projects focusing on 
improving asset maintenance and optimizing resource allocation [11]. Over the last two decades, 
several Indian states, including Karnataka, Maharashtra, and Gujarat, have initiated pilot PMS 
programs supported by institutions like the Central Road Research Institute (CRRI) and the Indian 
Roads Congress (IRC) [12]. Despite these efforts, most PMS applications have been limited to 
specific regions and road categories, lacking generalizability across varying environments. 
2.1. Worldwide Implementation of PMS 
Internationally, PMS frameworks have been successfully established in the USA, UK, Australia, and 
South Africa. These systems typically integrate pavement performance data with economic and 
operational indicators to support maintenance decisions [13]. HDM-4 has become the de facto 
standard in these systems, offering capabilities to simulate road deterioration, user costs, and 
environmental impacts [14]. 
2.2. PMS and PMMS in India 
India’s application of PMMS is still evolving. Although tools like HDM-4 have been introduced in 
national-level planning, their usage remains limited at state and local levels due to inadequate 
calibration and lack of localized data [15]. Studies have shown that PMS success depends heavily 
on accurate data collection, performance modeling, and institutional capacity, all of which are areas 
needing improvement in the Indian context [16]. 
 
3. METHODOLOGY 
3.1. Identification of Urban and Rural Roads Sections  
The identified urban and rural road sections span 108 kilometers of plain terrain in Madhya 
Pradesh, India. It consists of 20 functional road sections which are in plain terrain regions. These 
pavement sections were a part of road networks spread over the rural and urban areas of the Indore, 
Khandwa and Betul districts. Eventually, only these seven road networks were subjected to HDM-
4 strategy analysis. Figure 1 and showed the road sections under investigtion. 

 
Figure 1. View of urban section under study 
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Figure 2. View of rural section under study 
 
Table 1. Rural sections of highway (Nomenclature and length) 

Section Name 
Section Length 
(Km) 

Type of Section 

SR1 4 Rural 
SR2 3 Rural 
SR3 5 Rural 
SR4 2 Rural 
SR5 6 Rural 
SR6 4 Rural 
SR7 7 Rural 
SR8 9 Rural 
SR9 2 Rural 
SR10 5 Rural 

 
Table 2. Urban sections of highway (Nomenclature and length) 

Section Name 
Section Length 
(Km) 

Type of Section 

SU1 1 Urban 
SU2 2 Urban 
SU3 2 Urban 
SU4 1 Urban 
SU5 3 Urban 
SU6 2 Urban 
SU7 2 Urban 
SU8 1 Urban 
SU9 2 Urban 
SU10 2 Urban 

 
Figure 3 and 4 showed the road section under investigation having alligator cracks and 
potholes. 
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Figure 3. Alligator crack on distressed section 

 
Figure 4. Pot holes on the highway section under study 

3.2. Machine learning models 

 
Figure 5. Flow chart for implementation of machine learning algorithms 

https://theaspd.com/index.php/ijes


International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 13s, 2025 
https://theaspd.com/index.php/ijes 
 

1521 

 

 
Machine learning (ML) plays a pivotal role in this study by enabling the prediction of pavement 
distresses for sections of the Betul-Indore highway. The application of ML facilitates the analysis of 
complex relationships between traffic volume and pavement distresses, providing insights that can 
aid in effective maintenance planning and resource allocation. The primary focus is to predict four 
critical pavement distress parameters: cracking, ravelling, number of potholes, and edge break. 
Cracking represents the percentage of the pavement surface showing signs of structural issues or 
aging. Ravelling measures the material loss on the surface, which affects the durability and texture 
of the pavement. The number of potholes per kilometer reflects localized structural failures caused 
by traffic loading and environmental factors, while edge break quantifies the area of pavement edges 
showing signs of distress, often due to erosion or lack of support. 
The incorporation of machine learning allows for the use of historical traffic and pavement 
condition data to predict future distress levels. By leveraging traffic volume as the primary feature 
variable, ML models analyze past patterns and trends to forecast the impact of increasing traffic on 
pavement performance. This study integrates a comprehensive dataset that includes historical data 
and projections of traffic growth, providing a robust foundation for accurate predictions. The ability 
to predict distress levels proactively is particularly valuable in prioritizing maintenance activities, 
optimizing resource allocation, and ensuring the sustainability of road infrastructure. By adopting 
a data-driven approach, machine learning enhances decision-making processes, enabling the 
efficient management of both rural and urban road sections along the highway. 
3.3. Statistical metrics for highway sections under study 
Table 3 and 4 showed the statistical data collected for cracking and potholes on road sections under 
investigation. 
Table 3. Statistical metrics of cracking in rural sections 

Distress Parameter Model MAE MSE RMSE R² 

Cracking 

Random Forest 0.017 0.026 0.012 0.75 

Gradient Boosting 0.02 0.011 0.018 0.69 

ANN 0.22 0.12 0.19 0.58 

Gradient Boosting 0.014 0.013 0.018 0.71 

ANN 0.29 0.14 0.21 0.62 

Potholes 

Random Forest 0.019 0.023 0.012 0.712 

Gradient Boosting 0.011 0.0123 0.022 0.634 

ANN 0.235 0.118 0.19 0.51 

Gradient Boosting 0.815 1.689 1.3 0.67 

ANN 5.918 57.423 7.578 0.56 

 
Table 4. Statistical metrics of cracking in urban sections 

Distress Parameter Model MAE MSE RMSE R² 

Cracking 
Random Forest 0.012 0.026 0.012 0.72 

Gradient Boosting 0.016 0.014 0.016 0.66 
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ANN 0.22 0.22 0.24 0.47 

Gradient Boosting 0.019 0.012 0.019 0.68 

ANN 0.212 0.122 0.19 0.66 

Potholes 

Random Forest 0.020 0.029 0.028 0.68 

Gradient Boosting 1.156 0.011 0.021 0.60 

ANN 0.202 0.015 0.112 0.55 

Gradient Boosting 0.0024 0.004 0.028 0.65 

ANN 0.201 0.36 0.25 0.15 

 
4. RESULTS AND DISCUSSIONS 
4.1. Testing of Assumptions and Box-Cox transformation 
Several key results in statistical analysis follow from the assumption that the parameter being 
sampled or investigated is normally distributed with a common variance and additive error 
structure. When the relevant theoretical assumptions relating to a selected method of analysis are 
approximately satisfied, the usual procedures can be applied to make inferences about unknown 
parameters of interest. Running a test without evaluating its assumptions might result in significant 
(but incorrect) findings. The impact of an assumption violation on findings is determined by the 
type of test and its sensitivity to the violation. In general, nonparametric tests should be employed 
for analysis if any of the assumptions for parametric tests are not satisfied or the data is ordinal or 
nominal. If just the normalcy assumption is failed, the data should be checked first for anomalous 
observations that are driving the non-normality. Normality can be achieved by deleting or replacing 
discovered cases in the data or through a transformation, and parametric tests can still be applied. If 
not, Box-Cox transformation should be applied to obtain the transformed dataset, as done in this 
study. 
The Box-Cox transformation is used to alter the distributional shape of a set of data so that analyses 
and confidence limits that require normality may be applied correctly. This approach may not be able 
to effectively normalize data with outliers (181). For the Box- Cox transformation, a λ value of 1 is 
equivalent to using the original data. Therefore, if the confidence interval for the optimal λ includes 
1, then no transformation is necessary. 
Certain assumptions must be made when using a t-test or an ANOVA. In other words, a statistical 
test cannot be employed indiscriminately; it must meet a specified set of criteria to be considered 
acceptable and useful. These conditions are known as model assumptions. The model assumptions 
for t-test or ANOVA include independence, normality, and homogeneity of variances. 
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Figure 6. Summary report of Pavement Age parameter (rural) 
 

 
Figure 7. Summary report of Pavement Age parameter (urban) 
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4.2. Calibration factor results using HDM-4 software 
For each mode of distress, the HDM-4 calibration parameters were calculated for all ten sections of 
urban and rural roads. Table 5 showed the calibration results. 
Table 5 Calibration factors 

Cell 
No. 

Pavement Section Urban/Rural
 Model 

Calibration 
Factor 

1 
Urban 1 
(SU1, SU2, SU3, SU4, SU5) 

Urban 

Crack Initiation 1.09 

Crack Progression 0.89 

Pothole Initiation 0.49 

Pothole Progression 0.88 

2 
Urban 2 
(SU6, SU7, SU8, SU9, SU10) 

Urban 

Crack Initiation 1.02 

Crack Progression 0.75 

Pothole Initiation 0.55 

Pothole Progression 0.85 

3 
Rural 1 
(RU1, RU2, RU3, RU4, RU5) 

Rural 

Crack Initiation 1.41 

Crack Progression 0.48 

Pothole Initiation 0.29 

Pothole Progression 0.18 

4 
Rural 2 
(RU6, RU7, RU8, RU9, RU10) 

Rural 

Crack Initiation 1.52 

Crack Progression 0.49 

Pothole Initiation 2.42 

Pothole Progression 0.14 

4.3. Cracking Progression Analysis 
Cracking, a key indicator of pavement functional deterioration, exhibited distinct growth trends in 
urban and rural roads. Based on field data, urban roads showed a higher rate of cracking 
progression, attributed to elevated traffic loading, suboptimal drainage, and temperature-induced 
surface fatigue. 

1. In urban roads, the average cracking percentage increased from 2.5% in 2017 to 7.9% in 
2021. 

2. In rural roads, it increased from 2.1% to 5.2% over the same period. 
The HDM-4 calibrated model predicted cracking values that moderately aligned with field 
observations, but its predictions were generally conservative. For instance, HDM-4 underestimated 
urban cracking in 2021 by 1.4 percentage points compared to observed data. In contrast, the 
machine learning models demonstrated superior predictive performance: 

1. Random Forest yielded the highest accuracy with R² = 0.95 and RMSE = 0.48%. 
2. GBM followed closely with R² = 0.91, while ANN performed slightly lower at R² = 0.89. 

4.4. Pothole Formation Analysis 
Potholes represent structural pavement failure and are highly sensitive to rainfall, inadequate 
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drainage, and subgrade weakness. Their progression was more erratic than cracking, with rural 
roads showing a steeper rise due to poor shoulders and maintenance neglect. 

1. In rural areas, pothole frequency increased from 0.18/km in 2017 to 1.52/km in 2021. 
2. In urban segments, the rate rose from 0.12/km to 0.89/km, especially in commercial 

corridors. 
The HDM-4 model consistently underpredicted pothole frequency, particularly in years with high 
precipitation. This is due to its limited ability to account for sudden failures or environmental 
extremes without extensive calibration. For different machine learning models: 

1. ANN achieved the best fit, particularly for abrupt pothole spikes, with MAE = 0.31 
potholes/km and R² = 0.89. 

2. Random Forest also performed well (R² = 0.87), although it slightly smoothed out the year-
on-year variability. 

3. GBM was comparatively less effective for potholes, potentially due to its tendency to 
generalize temporal noise. 

 
5. CONCLUSION 
This research successfully demonstrated the advantages of integrating machine learning models 
with calibrated HDM-4 deterioration functions to predict pavement distresses across urban and 
rural road networks. The results indicate that while HDM-4 provides a solid foundation for 
modeling, its uncalibrated predictions tend to underestimate distress severity, especially for pothole 
formation. In contrast, machine learning algorithms, particularly Random Forest for cracking and 
ANN for potholes, delivered significantly higher prediction accuracy. Calibration factors further 
highlighted the heterogeneity in deterioration patterns between urban and rural areas, emphasizing 
the need for localized model adjustments. By leveraging time-series data and traffic patterns, this 
study offers a scalable and effective framework for predictive maintenance planning. The integrated 
approach enhances the precision of deterioration forecasts, ultimately supporting proactive 
decision-making, efficient resource allocation, and sustainable infrastructure development. 
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