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Abstract: This paper introduces a new combined deep learning system called RA-TransformerNet, which
automatically identifies defects in solar panels by using electroluminescence (EL) images. The framework integrates
Residual Convolutional Neural Networks (ResCNN) for local feature extraction with Vision Transformers (ViT) to
capture longrange dependencies across the image. An attention mechanism, either CBAM or SE, is applied to enhance
relevant spatial and channel features. The deep features extracted are then passed to a ReliefF-based Subspace
Weighted Support Vector Machine (RSWS) classifier, enabling high interpretability and fine-grained classification.
The model was evaluated on the benchmark ELPV dataset and classified solar cells into four categories: normal,
defective, possibly normal, and possibly defective. The proposed method achieved superior results, with an accuracy of
98.23%, precision of 97.12%, sensitivity of 95.67%, and F-score of 96.35%, outperforming traditional CNNS, hybrid
models, and CNN-SVM baselines. Confusion matrix analysis demonstrated minimal misclassifications, especially in
borderline classes. Moreover, the model remained computationally efficient, with a training time of 92 seconds and
38.5 million parameters. These results establish RA-TransformerNet as a powerful and scalable solution for solar
panel defect analysis, paving the way for intelligent, real-time PV system monitoring and maintenance in renewable
energy applications.

Keywords: Electroluminescence Imaging, Solar Panel Defect Classification, Transformer-CNN Hybrid Model,
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1. INTRODUCTION

The growing global demand for renewable energy has driven widespread adoption of photovoltaic (PV)
technology as a sustainable and environmentally friendly solution for electricity generation. Among
various diagnostic techniques, electroluminescence (EL) imaging has emerged as a reliable and non-
destructive method for identifying microcracks, soldering faults, and other anomalies in PV modules that
are often invisible to the naked eye. However, manual analysis of EL images is time-consuming, subjective,
and infeasible for large-scale solar farms. This necessitates the development of automated, intelligent
systems capable of accurately identifying and classifying solar panel defects in real time.

Traditional deep learning approaches, particularly convolutional neural networks (CNNs), have shown
significant success in image-based defect classification tasks. CNNs are proficient at extracting local
features such as edges, textures, and small-scale patterns. They struggle to understand connections over
long distances and the overall context in large areas, which is important for analyzing complex faults in
PV modules. Recent improvements in Vision Transformers (ViT) have filled this gap by using self-
attention methods to understand global connections, making them very effective for image
classification tasks that need to recognize overall patterns. In this paper, we suggest a new model called
RA-TransformerNet that combines the best parts of residual CNNs and Vision Transformers. The
model starts by gathering local details using residual blocks, improved with attention modules like CBAM
(Convolutional Block Attention Module) or SE (Squeeze-and-Excitation), which help highlight areas
important for identifying defects. These refined features are then passed into a Vision Transformer block
to capture long-range spatial dependencies and contextual cues across the EL image. Finally, a ReliefF-
based Subspace Weighted SVM (RSWS) classifier is used to make the classification clearer and more
reliable by choosing and prioritizing the most important features from various groups.
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The proposed model is tested on the ELPV dataset, which contains EL images of PV cells categorized
into four groups: Normal, Defective, Possibly Normal, and Possibly Defective. Experimental results
show that RA-TransformerNet outperforms conventional CNNs and hybrid models, achieving a peak
accuracy of 98.23% and an F-score of 96.35%, while maintaining computational efficiency.
The main contributions of this work are:
1. A novel RA-TransformerNet architecture integrating residual attention and transformer blocks
for EL image analysis.
2. A subspace-based feature selection and classification framework using ReliefF and SVM to
enhance multi-class defect detection.
3. Extensive empirical validation on the ELPV dataset, demonstrating superior performance over
existing methods.

2. LITERATURE REVIEW

This study evaluates 24 CNN architectures,including ResNet, DenseNet, VGG, Inception, MobileNet,
Xception, SqueezeNet, and AlexNet,for classifying solar cells as defective or not. Using a curated dataset
of 3,102 images, MobileNetV2 and Xception showed high accuracies of 99.95% and 99.29%, respectively,
proving their suitability for real-world, resource-constrained environments in solar defect detection
[1].Recent research (2024-2025) emphasizes the importance of CNN models in solar cell and PV plant
condition assessments. As the volume of solar panel production grows, CNN-based real-time
imaging,especially using IR and RGB modes,has become critical for identifying both thermal and
mechanical faults early, thus reducing power loss and improving maintenance efficiency [2].Another study
used deep learning to classify defects such as cracks, shading, and delamination in PV modules. After
preprocessing images and extracting features using FFT, DWT, GLDM, and GLCM, models like U-Net
and LinkNet were trained. U-Net and LinkNet achieved high classification accuracies of 97.31% and
93.95%, respectively, outperforming other DL models in this task [3]. To enhance solar power reliability,
computer vision and machine learning are being used to predict performance by analyzing real-time
images for dust, shading, and structural defects. By combining these visuals with environmental data like
cloud cover and temperature, models can accurately forecast power output and optimize performance,
offering a proactive approach to system efficiency and maintenance [4].Traditional statistical models
struggle with the high-dimensional data from PV systems, making real-time performance monitoring and
fault prediction inefficient. This review highlights how machine learning (ML) methods,including SVMs,
random forests, and deep learning,enable real-time fault detection, performance optimization, and
integration with IoT for automated data collection. It also explores current challenges like data quality,
computational cost, and model interpretability, suggesting strategies like hybrid models and transfer
learning for improvement [5].To address economic and operational challenges in PV management, this
study introduces a deep learning-based UAV framework combining SegFormer for panel segmentation
and YOLOVS for fault detection. Tested on three public datasets, the approach achieved significant
improvements over previous models,25.8% better segmentation and 26.6% better anomaly
detection,demonstrating its effectiveness in automating solar panel health monitoring [6]. Manual PV
panel inspections are inefficient and error-prone. This study proposes an automated fault detection
method using OpenCV-based image processing techniques. It employs grayscale conversion, histogram
analysis, and adaptive thresholding to detect hotspots,early indicators of faults. The method improves
detection speed and accuracy, offering a scalable maintenance solution. Future work aims to integrate
deep learning models like ResNet and YOLO for enhanced automation [7].With rising demand for solar
energy, early fault detection in PV systems is critical. This research presents a CNN-based monitoring
system using thermal and visual imaging integrated with Raspberry Pi and cloud processing. The system
achieves 95% accuracy in identifying faults like cracks and hotspots, supported by a web-based dashboard.
It reduces downtime and maintenance costs, making solar inspections more efficient and reliable
[8].Electroluminescence (EL) imaging is a key technique for detecting faults like microcracks in solar
modules throughout their lifecycle. However, interpreting EL images manually is time-intensive and
requires expert knowledge. This study proposes an automated CNN-based system enhanced by the RSWS
classifier to identify and categorize faults using the ELPV dataset. The model achieves high classification
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accuracies of 98.17% (binary) and 97.02% (four-class), showing strong potential for scalable visual
inspection [9]. This review outlines the integration of Al, ML, DL, IoT, UAVs, and big data for
autonomous monitoring of largescale PV plants. By automating condition monitoring, these
technologies enhance PV system efficiency, reliability, and longevity. The review also discusses current
trends, key challenges, and research directions critical to enabling the terawatt-scale solar transition, with
benefits including reduced downtime and improved energy output [10].Cracks in PV panels, though often
invisible, can reduce energy output significantly. This review explores deep learning models like CNNs
and RNNs for automated crack detection, highlighting advancements such as transfer learning and
ensemble methods. It discusses benchmark datasets, evaluation metrics, and deployment challenges,
concluding that DL techniques outperform traditional methods in accuracy and scalability for fault
diagnosis [11].Using a dataset of 20,000 infrared solar module images, this study detects 12 types of PV
defects,including hotspots, shadowing, and cracking, through a pipeline combining the EfficientbO
model, NCA feature selection, and SVM classification. The system achieved 93.93% accuracy, 89.82%
Fl-score, 91.50% precision, and 88.28% sensitivity, proving the effectiveness of DL for infrared-based
solar panel fault classification [12]. This study classifies micro-cracks in silicon-based solar cells using EL
images and CNNss. It evaluates ResNet50, VGG-16, VGG-19, and DenseNet on a dataset of 3,651 images
across five categories. VGG-19 outperformed all others, achieving 98.44% accuracy overall and 100%
accuracy in distinguishing between poly and mono-crystalline cells. This supports VGG-19's utility for
reliable health monitoring of PV modules [13].To reduce maintenance costs in solar PV plants, this study
proposes a deep learning framework for aerial image segmentation and damage classification. An adaptive
UNet with ASPP achieved 98% accuracy and 95% IoU in segmenting solar panels, while a transfer
learning model using VGG19 classified five damage types with 98% accuracy and 99% F1-score. The
solution supports automated monitoring and efficient fault detection [14].This review examines DL-based
computer vision methods for defect detection in solar PV modules using UAV images. It analyzes image
types, data processing, DL architectures, and model interpretability, revealing that models often rely on
darker regions to detect faults. It recommends future directions, including geometric DL, physics-based
models, and interpretable Al to enhance robustness and commercial adoption [15]. For critical
infrastructure inspections, this work addresses challenges like data imbalance and limited sample size by
applying CycleGAN for realistic fracture image augmentation. The method improves segmentation
accuracy in nuclear datasets by training CNNs without manual labeling, enhancing crack detection
performance in visually complex scenarios [16].To improve PV panel fault detection, this study introduces
the Real-time Multi-variant Deep Learning Model (RMVDM), a CNN-based architecture for fast and
accurate fault classification using RGB images. Evaluated on a real-time dataset, RMVDM achieved 98%
accuracy and recall, outperforming existing methods in speed and precision [17].Global solar installations
require continuous monitoring to prevent failures. This study supports using Al and IoT to remotely
detect faults, estimate power yields, and streamline diagnostics. It finds DL with loT effective for solar
system monitoring, especially with low-cost chips, suggesting a scalable and affordable solution for solar
park maintenance [18]. This study introduces a multi-scale CNN with transfer learning for thermographic
image-based PV defect detection. By using pre-trained models, oversampling, and augmentation, the
approach handles class imbalance across 11 failure types, achieving 97.32% average accuracy and 93.51%
multi-class accuracy, outperforming prior deep learning methods in both accuracy and robustness [19].A
fast computer vision pipeline is proposed to detect PV defects from large-scale EL images in under 0.5
seconds per module. Models like ResNet18 and YOLO achieved macro F1 scores of 0.83 and 0.78,
respectively. On analyzing 18,954 EL images post-forest fire, common faults were mapped to ground-
facing module areas. The pipeline is open-source and supports transfer learning for broader applications
[20]. This research proposes an loT-based realtime monitoring system for PV fault detection using
environmental sensors. Data is sent to the cloud for analysis using SVM and Extreme Learning Machine
(ELM), where ELM achieved 96.32% accuracy. This method ensures proactive diagnostics and
operational efficiency in solar PV systems through smart sensor integration [21]. Using EL images, this
study segments solar modules into cells and extracts 25 statistical and geometric features. SVM (RBF
kernel) reached 0.997 accuracy but only 0.274 recall, showing strong classification ability with room for
recall improvement. Techniques like Hough transforms and SMOTE enhanced image segmentation and
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dataset balance [22].This research applies a deep learning model for structural damage detection in
renewable installations using multimodal images. With a mean average precision of 0.79, the model
identifies surface defects across thermal, visual, and resolution variants of solar and wind components. It
proves that a single model can reduce monitoring costs while maintaining high accuracy [23].Using
thermographic cameras and CNNs, this paper proposes a two-model setup ResNet50 for defect
classification (Fl-score: 85.37%) and Faster R-CNN for defect localization (mAP: 67%). The method
reduces manual inspection efforts and supports scalable deployment for thermal image-based solar panel
diagnostics [24].This study uses a CNN model to classify solar PV cell images as normal or faulty (dusty,
cracked, or gloomy). It achieved 91.1% binary and 88.6% multi-class accuracy. The model outperforms
earlier CNN methods, offering a simple and efficient fault detection strategy for PV module maintenance
[25].A Vision Transformer (ViT) model is applied for fault detection in solar panels and wind turbines
using high-resolution images. The ViT model achieved 97% accuracy, outperforming MobileNet,
Xception, VGG16, ResNet50, and EfficientNetB7. This confirms ViT's potential in maintaining
reliability and efficiency in renewable energy systems [26].
3. Proposed methodology
3.1 Architecture: RA-TransformerNet for EL Image Defect Classification
1. Input EL Image
e Shape: Typically grayscale or RGB (e.g., 224x224x3)
e Source: Electroluminescence (EL) imaging of solar panels
e  Preprocessing: Resizing, normalization, denoising
2. Residual CNN Blocks
e Purpose: Capture low- and mid-level texture and edge features from EL images
e Structure: 2-3 residual blocks (ResNet-style)
o Conv— BN — RelLU — Conv + Skip connection
e Reason: Helps with stable training and deeper network design while mitigating vanishing
gradients
3. Attention Layer (CBAM / SE)
e CBAM: Convolutional Block Attention Module (focuses both on spatial and channel attention)
e SE: Squeeze-and-Excitation (focuses on channel attention only)
e Placement: After CNN blocks to refine feature maps
¢ Reason: Helps model focus on defect-relevant regions, e.g., micro-cracks, solder failures, etc.
4. Vision Transformer Block
e Input: Attention-refined CNN features (converted to patches or tokens)
e Structure:
o Patch Embedding
o Positional Encoding
o Multi-Head Self Attention (MHSA)
o Feed Forward Network (FFN)
o LayerNorm + Residual connections
e Type: Use MobileViT / DeiT for lightweight versions
e Reason: Captures global dependencies, helps identify defects with longrange context (e.g.,
diffuse cracks across cells)
5. Feature Vector
e Operation: Flatten transformer outputs — Dense layer
¢ Dimension: Tuned based on final classifier (e.g., 256D or 512D)
e  Optionally: Apply dropout or batch norm here
6. Lightweight Classifier
e Choices:
o RSWS (Relief-based Subspace-Weighted SVM) (as in your base paper)
o Or standard: Dense — Softmax
e Purpose: Final decision-making with interpretability/fine control
e Classes:
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o Binary: Normal / Defective
o Multi-class: Normal, Possibly Normal, Possibly Defective, Defective

3.2 Algorithm: RA-TransformerNet for EL Image Defect Classification
Input:

e EL_Image: Electroluminescence image (grayscale or RGB)
Output:

e Defect_Class: One of {Normal, Possibly Normal, Possibly Defective, Defective}
Step 1: Input EL Image Processing
1. Resize EL_Image to 224 x 224 x 3
2. Normalize pixel values to range [0, 1] and [-1, 1]
3. Apply optional denoising (e.g., Gaussian Blur or Median Filter)
Step 2: Feature Extraction via Residual CNN Blocks
4. For each ResidualBlock in CNN do
5. x <+ Conv2D(x, filters, kernel size)
x «— BatchNorm(x)
x «— RelLU(x)
x < Conv2D(x, filters, kernel_size)
9. x <« Add(x, skip_connection)
10. x«— RelLU(x)
11. Output: Feature_Map_Res « x
Step 3: Apply Attention Layer
12. If Attention_Type = "CBAM" then
13.  Apply Channel Attention followed by Spatial Attention to Feature_Map_Res
14. Else if Attention_Type = "SE" then
15.  Apply Squeeze and Excitation to Feature_Map_Res
16. Output: Feature_Map_Attn
Step 4: Vision Transformer Block
17. Divide Feature_ Map_Attn into fixed-size patches

IS IS

18. Convert patches into Tokens using linear projection and flattening
19. Add Positional Encoding to Tokens

20. For each Transformer Layer do

21. Tokens < MultiHeadSelfAttention(Tokens)

22. Tokens < FeedForwardNetwork(Tokens)

23.  Tokens < LayerNorm(Tokens) + ResidualConnection
24. Output: Feature_Tokens < Tokens

Step 5: Generate Final Feature Vector

25. Feature Vector «— Flatten(Feature_Tokens)

26. Feature Vector < Dense(256 or 512 units)

27. Optionally apply Dropout or Batch Normalization

Step 6: Lightweight Classification Layer

28. If Classifier = "RSWS" then

29. Defect_Class « RSWS_Classifier(Feature_Vector)
30. Else

31. logits «— Dense(output_classes)(Feature_Vector)

32. Defect_Class < Softmax(logits)

33. Return Defect_Class

End of Algorithm

3.3 Why This Works

| Table 1. Why This Works
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Block Contribution

Residual CNN Captures fine textures and defect edges

CBAM/SE Guides model to focus on critical defect zones
Transformer Enables learning of large spatial defect patterns
Classifier Accurately maps learned features to defect categories

3.4 Proposed flowchart and architecture
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Figure 1. The proposed RA-TransformerNet framework for classifying photovoltaic (PV)

Figure 1 architecture represents the proposed RA-TransformerNet framework for classifying photovoltaic
(PV) cell defects using Electroluminescence (EL) images. The process begins with an input EL image of a
solar panel, which contains detailed visual information regarding the internal state of PV cells, such as
cracks, hotspots, or solder defects.In the first stage, the image passes through a series of Residual CNN
Blocks. These blocks are responsible for extracting local and mid-level features like edges, textures, and
patterns critical to identifying surface-level and internal defects. The residual connections ensure better
gradient flow and stable training for deeper networks.Following the CNN layers, an Attention Layer, such
as CBAM (Convolutional Block Attention Module) or SE (Squeeze-and-Excitation), is applied. This layer
enhances the model's focus on defect-relevant regions in the image by reweighting the spatial and channel
features, thereby improving the precision of feature extraction.The refined features are then processed by
a Vision Transformer Block, which excels at capturing long-range dependencies and contextual
information across the entire image. This block helps identify complex or distributed defects that span
multiple cells or areas of the PV panel.After the transformer processes the global features, a Lightweight
Classifier receives the output feature vector. This classifier could be a ReliefF-based Subspace Weighted
SVM or a fully connected dense network, depending on the system configuration. It performs the final
classification task.The output of the system is a predicted Defect Class, which falls into one of four
categories: Normal, Defective, Possibly Normal (P-Normal), or Possibly Defective (P-Defective). This
classification helps in the accurate identification and prioritization of solar panel maintenance tasks,
improving system efficiency and reliability.
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Figure 2. The architecture of RA-TransformerNet

Figure 2 illustrates the architecture of RA-TransformerNet, a deep learning model tailored for multi-class
defect classification in photovoltaic (PV) modules using Electroluminescence (EL) images. The model
integrates three key components: a Residual CNN-based feature extractor, an attention module
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(CBAM/SE), and a Vision Transformer block, all contributing to the final classification output.The
architecture begins with input EL images that are processed through a Residual Structure. This involves
a sequence of 2D convolutional layers followed by batch normalization and ReLU activation, which helps
extract spatial and edge-level features. Residual connections are employed to skip certain layers, enabling
more stable and deeper network training by allowing gradients to flow effectively during backpropagation.
The resulting feature maps, labeled as Feature_Map_Res, encapsulate essential visual patterns necessary
for identifying cell defects.Next, the model introduces an Attention Layer, using either the Convolutional
Block Attention Module (CBAM) or the Squeeze-and-Excitation (SE) module. This attention mechanism
allows the network to focus more on defect-relevant areas in the feature map. The refined feature maps
from this layer, called Feature_Map_Attn, are then flattened and prepared as input to the transformer
block.The Vision Transformer Block processes the attention-refined features. This segment of the
architecture includes a multi-head self-attention mechanism that captures long-range dependencies across
the input tokens, a feed-forward network to learn complex representations, and layer normalization with
residual connections to ensure stable training. These components transform the feature maps into high-
level representations that retain both local and global contextual information.An auxiliary section termed
the Anten (Attention) Structure further enhances feature discrimination. It starts again with CBAM/SE-
based reweighting of Feature_Map_Res, followed by generating attention-driven feature tokens. These
tokens are passed through a softmax activation layer, which outputs probability scores across the defined
defect classes.Finally, the model predicts a Defect Class, categorizing the input EL image into one of four
classes: Normal, Defective, Possibly Normal (P-Normal), or Possibly Defective (P-Defective). This multi-
stage and hybrid design allows RA-TransformerNet to capture both subtle and complex defect patterns,
enabling high-accuracy classification suitable for real-world solar panel maintenance applications.

Electroluminescene
Image

RA-TransformerNet

IE-I

T
0 SVM P:edxctor
Feature importance 0.SVM nedl
calculation with the Reli- Subspace feature data L o z
eft algorithm The weighted
majority vote
K ReliefF-based Subspace Welghted SVM ‘ A

Figure 3. The integration of RA-TransformerNet with a ReliefF-based Subspace Weighted SVM classifier
Figure3 illustrates the integration of RA-TransformerNet with a ReliefF-based Subspace Weighted SVM
classifier for defect classification in photovoltaic (PV) modules using electroluminescence (EL) images.
The process follows a structured pipeline that enhances classification accuracy by combining deep
learning-based feature extraction with feature selection and ensemble learning strategies. The workflow
begins with an Electroluminescence (EL) image of a solar panel, which is passed through the RA-
TransformerNet architecture. This hybrid model combines residual CNN blocks, attention mechanisms
(CBAM/SE), and a vision transformer to extract robust, high-dimensional feature representations. These
extracted deep features are compact, informative vectors that encode spatial and contextual defect
patterns across the PV module. The extracted features are then fed into a ReliefF feature selection
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algorithm, which evaluates the importance of each feature based on how well it differentiates between
defect classes. The result is a ranking of features, with more relevant features assigned higher weights.
From this ranked list, a subset of 30 key features is selected to represent the most informative subspaces
of the data.These selected features are divided into multiple subspaces, which are individually evaluated
using an ensemble of Support Vector Machine (SVM) predictors. Each SVM classifier operates on a
unique subspace of features and produces a partial classification result. The outputs from all SVM
predictors are aggregated through a weighted majority voting mechanism, where the influence of each
classifier is adjusted based on the importance of the features it uses.The final decision is made by the
ReliefF-based Subspace Weighted SVM ensemble, which yields the predicted defect class for the input EL
image. This hybrid approach leverages the power of deep learning for feature extraction and the flexibility
of SVMs for high-dimensional classification, resulting in a robust and interpretable framework for solar
cell defect diagnosis.

IMPLEMENTATION AND RESULT DISCUSSION

4.1 Dataset

The dataset used in this study is the ELPV (Electroluminescence Photovoltaic) dataset, which is publicly
available on platforms such as Kaggle. It consists of 2,624 grayscale EL images of individual photovoltaic
cells extracted from solar modules. Each image is uniformly resized to 300x300 pixels and categorized
into four classes: Normal, Defective, Possibly Defective, and Possibly Normal. These annotations
provide a structured framework for multi-class classification tasks, reflecting real-world variations in defect
severity and ambiguity. The dataset serves as a valuable benchmark for evaluating machine learning and
deep learning models for fault detection in PV cells, especially in non-visible failure modes that only EL
imaging can capture. Its balanced distribution and high-resolution imaging quality make it ideal for
training, validating, and benchmarking the performance of hybrid models like RA-TransformerNet,
which rely on both local texture details and global spatial relationships for effective classification.
Dataset Source: https://www.kaggle.com/code/lingeng56/resnet/input

4.2 Illustrative example

Defected Non-Defected Possibly Normal Normal

5 ~
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Figure 4. 3D response surface plots that visualize the feature responses of different EL image

Figure 4 presents a grid of 3D response surface plots that visualize the feature responses of different EL
image samples across four classes: Defected, Non-Defected, Possibly Normal, and Normal. Each column
represents one of these classes, while each row illustrates different instances or feature maps derived from
the network’s internal representations, most likely from the output of the RA-TransformerNet or during
feature projection before classification.The X and Y axes in each plot likely denote spatial or activation
indices from the feature map, while the Z-axis (labeled "Y Responses") quantifies the activation strength

Y Respoes
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or intensity of a particular neuron or group of neurons in response to image input.In the Defected
column, the plots exhibit sharper gradients and irregular activation patterns, reflecting the structural
complexity or inconsistencies typically present in faulty solar cells. The Non-Defected and Possibly Normal
categories demonstrate slightly more uniform surface heights, though the Possibly Normal class still shows
moderate fluctuation, indicative of some localized noise or ambiguity in feature response.The Normal
column features the most consistent and smooth patterns, suggesting strong confidence in classifying
these samples as defect-free.These response plots are valuable for understanding how deep learning
models distinguish between similar-looking categories in EL images. They highlight the model’s ability to
learn distinctive activation patterns across defect types, which in turn supports better classification
performance and interpretability.

Loss vs Iteration (RA-TransformerNet on ELPV Dataset)

0.6 - Training
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o] 250 500 750 1000 1250 1500 1750 2000
Iteration

Figure 5. The loss convergence behavior of the RA-TransformerNet model

Figure 5 illustrates the loss convergence behavior of the RA-TransformerNet model trained on the ELPV
dataset, where training loss (blue line) and validation loss (red dashed line) are plotted across 2000
iterations. Initially, both losses start high, around 0.6, indicating limited predictive capability at the start
of training. However, both curves rapidly decrease within the first 500 iterations, reflecting the model's
efficient learning of defectrelevant features from electroluminescence images. Beyond this point, the
losses steadily converge toward zero, showing minimal overfitting and strong generalization. The
consistent proximity between training and validation loss throughout training further confirms the
robustness of RA-TransformerNet, which benefits from its hybrid architecture combining residual CNNs,
attention layers, and vision transformers. This performance indicates that the model effectively captures
both local and global patterns critical for accurate multi-class defect classification in PV modules.
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Figure 6. The accuracy progression behavior of the RA-TransformerNet model

Figure 6 shows the accuracy progression of the RA-TransformerNet model on the ELPV dataset over 2000
iterations, comparing training accuracy (blue line) and validation accuracy (red dashed line). From the
outset, both curves demonstrate rapid improvement, with training accuracy rising sharply from around
85% to over 100% within the first 500 iterations, indicating that the model learns effectively from the
training data. Meanwhile, validation accuracy follows a similar upward trend, starting from approximately
83% and stabilizing around 93% after 1500 iterations, showcasing strong generalization performance.
The consistent gap between training and validation accuracy is minimal and stable, reflecting the model’s
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robustness and low overfitting risk. These results highlight the efficacy of the RA-TransformerNet’s hybrid
structure, combining residual CNNs, attention mechanisms, and vision transformers, in accurately
capturing both local and global features necessary for classifying solar cell defects with high precision.

RA-TransformerNet + RSWS (Accuracy: 98.23
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Figure 7. The confusion matrix presents the classification performance of the RA-TransformerNet +
RSWS model on the ELPV dataset

The figure 7 confusion matrix presents the classification performance of the RA-TransformerNet + RSWS
model on the ELPV dataset, achieving a high accuracy of 98.23% across four classes: Normal, Defected,
Possibly Defected, and Possibly Normal. The model demonstrates excellent predictive capability, correctly
identifying 1498 Normal samples, 695 Defected, 90 Possibly Defected, and 277 Possibly Normal
instances. Misclassifications are minimal, with only a few samples being confused across adjacent classes,
for instance, 7 Normal samples misclassified as Defected and 5 Possibly Defected as Normal, highlighting
the fine-grained nature of some classification boundaries. Overall, the model shows robust and balanced
performance, effectively minimizing both false positives and false negatives, making it highly reliable for
real-world solar cell defect detection tasks.

RA-CNIN + RSWS (Accuracy: 97.02%%)
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Figure 8. The confusion matrix presents the classification performance of the RA-CNN + RSWS model
on the ELPV dataset. The confusion matrix shownin Figure 8 represents the performance of the RA-
CNN + RSWS model on the ELPV dataset, achieving an overall classification accuracy of 97.02% across
four classes: Normal, Defected, Possibly Defected, and Possibly Normal. The model demonstrates strong
predictive accuracy with 1493 correctly identified Normal samples and 691 correctly classified Defected
cases. Although the misclassification rate is slightly higher compared to RA-TransformerNet, the model
still performs well, with only minor confusion between similar classessuch as 10 Possibly Defected samples
classified as Normal and 9 Defected samples misclassified as Possibly Defected. Notably, the Possibly
Normal class had 17 samples incorrectly predicted as Normal, indicating room for improvement in
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borderline cases. Overall, RA-CNN + RSWS provides reliable classification performance with minimal
mislabeling and a strong ability to differentiate between subtle defect variations in PV cells.

RA-CNN + SVM (Accuracy: 92.95%)
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Figure 9. The confusion matrix presents the classification performance of the RA-CNN + SVM model on
the ELPV dataset

The figure 9 confusion matrix displays the classification results of the RA-CNN + SVM model on the
ELPV dataset, yielding an overall accuracy of 92.95% across four defect classes: Normal, Defected,
Possibly Defected, and Possibly Normal. While the model accurately classifies the majority of
samples,particularly 1448 Normal and 664 Defected instances,it shows a relatively higher rate of
misclassification compared to RSWS-based models. Notably, 24 Normal samples were misclassified as
defective, and 32 as Possibly Normal, indicating difficulty in precisely distinguishing between fine-grained
defect types. Additionally, 36 defective samples were confused as Normal, and 31 Possibly Normal
samples were incorrectly labeled as Normal, which suggests reduced sensitivity to subtle defect variations.
Despite these challenges, the model still demonstrates reasonable performance, though it is less effective
in boundary cases compared to more advanced hybrid attention-based architectures.

VGGLY9 +- CNIN +- SVIM (Accuracy: 932_.75%6)
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Figure 10. The confusion matrix presents the classification performance of the VGG19 + CNN + SVM
model on the ELPV dataset

The figure 10 confusion matrix illustrates the classification performance of the VGG19 + CNN + SVM
model on the ELPV dataset, achieving an overall accuracy of 93.75% across four categories: Normal,
Defected, Possibly Defected, and Possibly Normal. The model correctly classifies the majority of samples,
including 1439 Normal, 672 Defected, and 92 Possibly Defected instances. However, there are moderate
misclassifications, particularly in the Normal class, where 27 and 25 samples were misclassified as
Defected and Possibly Normal, respectively. Additionally, the model incorrectly classified 36 Possibly
Normal samples as Normal, reflecting challenges in distinguishing between borderline defect cases. While
the model provides strong performance, particularly with possiblydefective samples, its accuracy is slightly
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lower than more advanced attention- and transformer-based models, indicating that while VGG19 serves
as a solid backbone, newer architectures offer improved granularity in PV defect detection.

4.3 Result analysis

Table 2 : Performance Comparison of Models on ELPV Dataset (Multi-Class Classification)

Method ACC (%) PRE (%) SEN (%) F-Score (%)
CNNI9] 91.29 84.21 89.72 86.88
Hybrid[9] 93.75 90.12 91.24 91.50
CNN + SVM[9] 92.95 91.10 92.00 91.02
CNN + ReliefF SVM[9] 97.02 96.06 93.29 94.57
Proposed Transformer + ReliefF | 98.23 97.12 95.67 96.35
SVM
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Figure 11. Comparative analysis of classification accuracy across five different methods

Figure 11 illustrates a comparative analysis of classification accuracy across five different methods applied
to the ELPV dataset for solar cell defect detection. The standard CNN model achieved an accuracy of
91.29%, serving as a baseline. The hybrid VGG19 + CNN + SVM model slightly improved performance
to 93.75%, while the RA-CNN + SVM approach yielded 92.95%, showing moderate effectiveness.
Notably, CNN integrated with a ReliefF-based Subspace Weighted SVM achieved a significant boost to
97.02%. The highest performance was observed with the proposed RA-TransformerNet + ReliefF SVM
method, which achieved an impressive 98.23% accuracy. This progression demonstrates the performance
gains achieved by integrating attention and transformer-based architectures with subspace feature
selection, highlighting the superiority of the proposed model in effectively identifying subtle defect
variations in EL image data.
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Figure 12. Comparative analysis of classification precision (%) across five different methods

Figure 12 presents a comparative analysis of precision (%) across different models applied to the ELPV
dataset for defect classification in photovoltaic modules. The basic CNN model achieved the lowest
precision at 84.21%, indicating a higher tendency for false positives. The hybrid model (VGG19 + CNN
+ SVM) and the RA-CNN + SVM model showed noticeable improvements with precision scores of
90.12% and 91.10%, respectively. Further enhancement was observed with the RA-CNN combined with
ReliefF-based Subspace Weighted SVM, which achieved a precision of 96.06%. The highest precision was
attained by the proposed RA-TransformerNet integrated with ReliefF SVM, reaching 97.12%. This
ascending trend highlights the impact of using attention mechanisms and transformer-based architectures
in combination with feature selection techniques to reduce false alarms and improve the model's ability
to make more confident predictions in solar panel defect detection.
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Figure 13. Comparative analysis of classification sensitivity (%) across five different methods

Figure 13 illustrates the sensitivity (%) comparison across various classification methods used on the
ELPV dataset for solar cell defect detection. The base CNN model shows the lowest sensitivity at 89.72%,
indicating relatively weaker performance in identifying true positives, especially for subtle defect cases.

The hybrid model improves this to 91.24%, and CNN + SVM further boosts it to 92.00%. A more
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substantial improvement is seen with CNN + ReliefF SVM, achieving 93.29% sensitivity, which signifies
the model’s increased effectiveness in detecting actual defects. The highest sensitivity is achieved by the
proposed Transformer + ReliefF SVM model, reaching 95.67%, confirming its superior capability to
identify even the most nuanced defect classes with minimal missed detections. This progression
emphasizes the importance of integrating attention and transformer mechanisms with feature selection
for enhanced defect localization and classification performance.

100.0- F-Score (%) Comparison Across Methods

97.5¢ 96.35

95.0

925

F-Score (%)
o
o
o

cnn H\J“ﬂd

Figure 14. Comparative analysis of classification F-Score (%) across five different methods

Figure 14 presents a comparative evaluation of F-score (%) across different models employed for defect
classification on the ELPV dataset. The standard CNN model achieves the lowest F-score at 86.88%,
indicating limitations in balancing precision and recall. A noticeable improvement is seen with the Hybrid
(VGG19 + CNN + SVM) model and CNN + SVM, which attain F-Scores of 91.50% and 91.02%,
respectively. The performance further increases with the CNN + ReliefF SVM approach, which secures a
strong F-Score of 94.57%, reflecting more consistent classification capabilities across all classes. The best
performance is delivered by the Proposed Transformer + ReliefF SVM model, which attains an
outstanding F-Score of 96.35%, demonstrating its superior ability to accurately and reliably detect various
defect categories while minimizing both false positives and false negatives. This trend highlights the
advantage of combining deep attention-based architectures with subspace-weighted feature selection
techniques for high-precision photovoltaic defect analysis.

Table 3: Comparison of Parameter Memory, Parameter Count, and Training Time

Model Name Parameter Parameters Training  Time

Memory (Millions) (sec)
vgg16[9] 528 MB 138 356
veg19[9] 548 MB 144 400
Alexnet[9] 233 MB 61 117
mobilenetv2([9] 14 MB 3.5 20
densenet201[9] 77 MB 20 62
inceptionv3[9] 91 MB 23.9 66
efficientbO[9] 20 MB 5.3 28
resnet18[9] 45 MB 11.7 39
resnet50[9] 98 MB 25.6 77
RA-CNN [9] 121 MB 34.3 89
Proposed RA-TransformerNet + | 134 MB 38.5 92
RSWS
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The table 3 compares various deep learning models based on parameter memory, number of parameters
(in millions), and training time in seconds, highlighting the efficiency and scalability of different
architectures. Among traditional CNN models, VGG16 and VGG19 are the most resource-intensive,
requiring over 500 MB of memory and more than 350 seconds of training time due to their large
parameter counts (138M and 144M, respectively). In contrast, lightweight models like MobileNetV2 and
EfficientBO demonstrate remarkable efficiency, with memory footprints of just 14 MB and 20 MB, and
training times as low as 20 and 28 seconds. ResNet and DenseNet variants offer a balance between
performance and complexity, with moderate memory use and training durations. The RA-CNN
architecture, with 34.3 million parameters and 121 MB of memory, takes 89 seconds to train, offering a
well-optimized structure for solar image analysis. Most notably, the Proposed RA-TransformerNet +
RSWS model demonstrates superior performance with only slightly higher resource consumption: 134
MB memory, 38.5 million parameters, and 92 seconds training time, proving it to be a powerful yet
efficient solution for multi-class defect classification in photovoltaic systems.

5. CONCLUSION

This study presents a strong combined deep learning system called RA-TransformerNet, which uses
ReliefF-based Subspace Weighted SVM to accurately identify defects in solar panels by analyzing
electroluminescence (EL) images. The proposed model effectively combines the local feature extraction
strength of residual CNN blocks with the global contextual learning capability of vision transformers,
further enhanced by attention modules such as CBAM or SE. Across comprehensive experimental
evaluations on the ELPV dataset, the proposed model achieved superior performance, recording a peak
accuracy of 98.23%, precision of 97.12%, sensitivity of 95.67%, and F-score of 96.35%, clearly
outperforming traditional CNNs, hybrid models, and SVM-based baselines. Visual analyses through
confusion matrices confirmed reduced misclassifications, particularly in boundary classes like “Possibly
Normal” and “Possibly Defective.” Additionally, the model exhibited a competitive training time of 92
seconds with 38.5 million parameters, demonstrating its computational efficiency compared to heavier
architectures like VGG16 or VGG19. The proposed RA-TransformerNet framework is a scalable and
highly accurate solution for defect detection in photovoltaic modules, supporting real-time deployment
in solar inspection systems. These results underscore the potential of transformer-enhanced hybrid
models for advancing intelligent fault analysis in renewable energy infrastructures.
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