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Abstract: The rapid evolution of cyber threats, especially zero-day attacks, presents a formidable challenge to conventional 
intrusion detection systems (IDS). To address this, we propose ProEn-XAI: A High-Precision IDS Model for Zero-Day 
Attack Detection Using Hybrid Deep Learning and SHAP-LIME Interpretability. The model introduces a novel ensemble 
framework that integrates three complementary learners: a Weighted Truncated Multi-Layer Perceptron (MLP), a Bi-
GRU network with an attention mechanism, and XGBoost, with outputs fused through a Logistic Regression meta-
learner. This hybrid approach captures spatial and sequential features of network traffic while maintaining robustness to 
class imbalance and noise. The system is evaluated on the KDD99 benchmark dataset, where it achieves a remarkable 
accuracy of 99.78%, along with macro and weighted F1-scores of 0.9971 and 0.9977, respectively. Notably, the model 
demonstrates high classification performance even on low-frequency and rare attack classes such as Buffer Overflow, 
Warezclient, and Rootkit, where existing models tend to fail. To ensure interpretability, we integrate SHAP (for global 
explanation) and LIME (for local instance-level explanation), enabling transparent decision-making and trustworthiness 
in cybersecurity operations.ProEn-XAI thus offers a powerful, interpretable, and scalable IDS solution capable of detecting 
both known and unknown attack types. The combination of deep learning, ensemble fusion, and XAI mechanisms makes 
it a viable candidate for modern, high-risk network environments facing zero-day threats. 
Keywords :Intrusion Detection System (IDS) , Zero-Day Attack Detection , Ensemble Deep Learning , Explainable AI 
(XAI) , SHAP and LIME Interpretability , KDD99 Dataset.  
 
INTRODUCTION 
In today's interconnected digital landscape, cyberattacks are becoming increasingly sophisticated, with zero-
day attacks posing a particularly critical threat due to their unpredictable nature and absence of prior 
signatures. Traditional signature-based intrusion detection systems (IDS) are often ineffective against these 
emerging threats, as they rely heavily on known attack patterns. Consequently, there is a growing demand for 
intelligent, adaptive, and explainable detection systems capable of identifying both known and unknown 
attack vectors in real time.Machine learning (ML) and deep learning (DL) techniques have significantly 
advanced the capabilities of IDS by enabling automatic feature learning and improved classification 
performance. However, standalone models often struggle with imbalanced datasets, high false-positive rates, 
and lack of interpretability—factors that are crucial in security-sensitive environments. Moreover, deep models, 
despite their accuracy, are often regarded as "black boxes," which limits their acceptance in real-world 
cybersecurity operations where explainability is essential for analyst trust and decision support. 
To address these challenges, we propose ProEn-XAI: A High-Precision IDS Model for Zero-Day Attack 
Detection Using Hybrid Deep Learning and SHAP-LIME Interpretability. Our model combines the 
predictive power of ensemble deep learning with the transparency of Explainable AI (XAI). Specifically, 
ProEn-XAI integrates a Weighted Truncated Multi-Layer Perceptron (MLP), a Bi-Gated Recurrent Unit (Bi-
GRU) network with attention, and XGBoost, all fused through a Logistic Regression-based meta-learner. This 
architecture is designed to effectively capture spatial, sequential, and statistical patterns in network traffic data 
while addressing issues of class imbalance and overfitting. 
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The model is trained and evaluated on the widely-used KDD99 benchmark dataset, where it outperforms 
existing approaches in both overall accuracy and per-class classification performance. The proposed system 
achieves an outstanding accuracy of 99.78%, with macro and weighted F1-scores of 0.9971 and 0.9977, 
respectively. Importantly, it demonstrates robust performance on minority classes such as Rootkit, Buffer 
Overflow, and Unauthorized Access, which are often overlooked by traditional models. 
To enhance model interpretability, we incorporate SHAP (SHapley Additive exPlanations) for global feature 
importance analysis and LIME (Local Interpretable Model-Agnostic Explanations) for instance-level insights. 
These tools provide security analysts with clear justifications for each detection, fostering greater confidence 
and enabling informed response strategies. 
The aim of this work is to develop a high-accuracy, explainable IDS framework capable of detecting zero-day 
attacks across diverse traffic types while remaining transparent and operationally reliable. 
Our key contributions are: 
A hybrid ensemble model combining MLP, Bi-GRU+Attention, and XGBoost. 
Integration of SHAP and LIME for comprehensive explainability. 
Superior performance on both majority and minority classes. 
Extensive validation on the KDD99 dataset with benchmark-beating results. 
This research sets a strong foundation for deploying intelligent, interpretable IDS solutions in high-stakes, 
zero-day-prone environments. 
 
LITERATURE REVIEW 
Zero-day attacks exploit unknown system vulnerabilities. This study evaluates ML and DL-based Intrusion 
Detection Systems (IDS) using the KDD99 dataset. It simplifies classification, tests various models, and 
incorporates Explainable AI (XAI) with SHAP for interpretability. Among models tested, the truncated ML 
model had the highest accuracy (99.62%), while the weighted truncated model balanced class representation 
better despite slightly lower accuracy [1]. 
With rising cyber threats, developing robust IDS solutions is crucial. Many systems fail to address zero-day 
attacks due to outdated datasets or reliance on known signatures. This literature review compiles ML and DL 
techniques used to detect such attacks, highlighting ongoing gaps and future directions in improving real-
time zero-day detection using modern computational capabilities [2]. 
Zero-day attacks bypass detection by exploiting unknown flaws, making signature-based systems ineffective. 
ML models, which learn statistical patterns, offer potential for detection. This study introduces a zero-shot 
learning approach to identify previously unseen attacks, evaluating model performance using a new metric, 
Z-DR. Results show ML-based IDS often miss certain zero-day attacks due to feature distribution differences 
[3].Industries using IIoT systems face growing cyber threats despite existing security mechanisms. ML-based 
IDS offer promise but struggle with zero-day and advanced persistent threats (APTs). A proposed Hybrid 
Multi-Stage IDS (HMS-IDS), combining supervised and unsupervised learning, achieved 99.49% accuracy for 
known and 98.936% for unknown attacks using the CIC-ToN-IoT dataset, demonstrating strong potential 
for practical deployment [4]. 
This paper explores zero-day vulnerabilities—software flaws unknown to vendors that can be exploited without 
warning. It examines their characteristics, lifecycle, attack types, and mitigation strategies like patching and 
IDS. The paper also reviews real-world case studies, ethical issues around disclosure, and discusses future 
trends, stressing the need for continuous  
Detecting zero-day attacks in the Internet of Vehicles (IoV) is challenging due to the lack of labeled data and 
high variability in normal behavior. This leads to high false positives in anomaly detection. To address this, a 
novel Few-shot Learning Conditional GAN (FLCGAN) with multiple generators/discriminators is proposed 
for sample augmentation. It includes ensemble and collaborative focal loss functions to improve diversity and 
classification. Experiments using F2MD show superior performance in both detection and response time [6]. 
Industrial sectors like manufacturing and energy increasingly use Industrial Automation and Control (IAC) 
Systems integrated with IoT. While this boosts efficiency, it also increases cybersecurity risks due to complex 
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interdependencies. This study reviews real-world sophisticated cyberattacks on IAC systems, especially 
targeting components like PLCs and industrial robots, emphasizing the need for advanced safety and security 
strategies [7]. 
The IoT’s connectivity opens doors to severe cyberthreats, including zero-day attacks, which can compromise 
critical infrastructure and privacy. Organizations must adopt proactive security measures like strong 
authentication and timely updates. This study proposes the Robust Zero-Day Attack Detection using Optimal 
Deep Learning (RZDAD-ODL) model, combining the Honey Badger Algorithm (HBA), CVAE, and Rider 
Optimization Algorithm (ROA). It outperforms existing techniques in benchmark tests [8]. 
Zero-day attacks exploit unknown system vulnerabilities. This paper evaluates ML and DL-based IDS models 
using the KDD99 dataset and interprets results using SHAP. Among various MLP models, the truncated ML 
model showed the highest accuracy (99.62%), while the weighted truncated model achieved better class 
balance and recall. The study highlights both detection performance and interpretability [9]. 
A new probabilistic composite model is introduced to enhance zero-day exploit detection. It includes Adaptive 
WavePCA-Autoencoder for preprocessing, Meta-Attention Transformer Autoencoder for feature extraction, 
and Genetic Mongoose-Chameleon Optimization for feature selection. The final detection model, 
AHEDNet, achieves high accuracy and low false positives across multiple datasets, outperforming existing 
models significantly in precision, recall, and Hamming loss [10]. 
As quantum computing grows, classical cryptography like RSA and ECC becomes vulnerable, especially to 
Shor’s algorithm. This study explores Post-Quantum Cryptography (PQC), focusing on lattice-, code-, and 
multivariate-quadratic-based algorithms for securing cloud storage. It examines PQC implementation 
challenges in the cloud and proposes a hybrid solution combining traditional and quantum-resistant 
techniques for secure and scalable cloud systems [11]. 
The Internet of Vehicles (IoV) increases cybersecurity risks, particularly from botnet attacks targeting 
Connected and Autonomous Vehicles (CAVs). This study proposes an edge-based Intrusion Detection 
System (IDS) using a meta-ensemble classifier. It leverages multiple Isolation Forest models on edge servers, 
aggregated through Particle Swarm Optimization. Evaluated on a vehicular botnet dataset, the system achieves 
92.80% accuracy for known and 77.32% for zero-day attacks [12]. 
Zero-day exploits remain a serious cybersecurity challenge due to their stealth and novelty. This review 
evaluates machine learning (ML) methods for detecting such threats, covering both traditional and deep 
learning approaches. It discusses challenges like limited data and high false positives, and explores how ML 
can be integrated with other defenses. The paper concludes with future research directions for staying ahead 
of evolving cyber threats [13]. 
With the rise of Consumer IoT (CIoT) devices, data privacy is a growing concern. Federated Learning (FL) 
addresses this by training ML models across devices without centralizing data. This paper proposes the EGTO-
FLADC method, combining FL with a novel optimizer and a TCN-GRU-based classifier for attack detection. 
Evaluated on the EdgeIIoTset dataset, the approach achieves 97.11% accuracy, improving CIoT security while 
preserving user privacy [14]. 
Web-based services face increasing zero-day attack threats. To address this, a one-class ensemble method 
combining LSTM, GRU, and stacked autoencoders is proposed. It uses tokenized web requests to detect 
anomalies via compressed latent features. The model shows outstanding performance: 97.58% accuracy, 
99.99% precision, and only 0.2% false positives, demonstrating strong potential for reliable real-time web 
attack detection [15]. 
Wireless networks have enabled widespread IoT adoption, connecting devices like smartphones and drones 
through technologies such as Bluetooth and IEEE 802.11. However, this growth also brings major security 
risks, with even basic attacks like DoS capable of disrupting entire IoT systems. Intrusion Detection Systems 
(IDS), especially those using machine learning like XGBoost, show promise in effectively detecting and 
mitigating such threats [16]. 
Deep learning (DL) methods help detect botnet attacks in IoT, but centralized DL models pose privacy risks. 
This study proposes a Federated Deep Learning (FDL) approach to detect zero-day botnet attacks without 
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data leakage. Using a distributed training strategy with FedAvg and DNNs, the FDL model ensures high 
accuracy, privacy, low latency, and reduced memory usage. Experiments using Bot-IoT and N-BaIoT datasets 
confirm its superior performance over traditional DL methods [17]. 
Cyber threats have evolved from simple malware to complex zero-day and state-sponsored attacks. This review 
traces that evolution and explores the transition from signature-based defenses to AI-driven, multi-layered 
security systems. It emphasizes challenges like human error and inconsistent regulations and recommends 
future focus areas such as explainable AI, real-time adaptive security, and quantum-resistant cryptography for 
stronger cybersecurity resilience [18]. 
The rise of IoT demands robust IDS solutions to defend against threats like zero-day and DDoS attacks. This 
review analyzes 20 recent studies (2023–2024) on ML and DL-based IDS, highlighting that hybrid models, 
federated learning, and convolutional architectures outperform traditional systems. Techniques like cost-
sensitive learning and energy-efficient protocols improve scalability and real-time performance, but challenges 
such as privacy concerns and lack of standard benchmarks remain. The review advocates for further work on 
adaptive, real-time, and privacy-preserving detection methods [19]. 
The widespread adoption of cloud computing across industries has increased exposure to security threats. 
Machine learning (ML) has shown potential in enhancing cloud security, but standalone ML models fall short 
against evolving attacks. This study proposes an ensemble-based AI-integrated approach using a 
nonmonotonous methodology to improve adaptability and effectively detect unknown and zero-day threats 
in cloud environments [20]. 
Securing IoT systems, especially in 5G/6G networks, demands robust frameworks. This paper introduces a 
novel AI/ML-powered security model that integrates Zero Trust and Zero Touch principles to detect and 
mitigate DDoS attacks. Evaluated across five ML models, ensemble approaches showed superior performance, 
emphasizing the need for AI-driven, autonomous IoT security solutions [21]. 
Cyberattacks on power grids, especially digital substations using the IEC-61850 protocol, are increasing. This 
study introduces a novel method using in-context learning (ICL) via transformer architectures to detect zero-
day attacks. Without retraining, the model learns from a few examples and achieves over 85% accuracy—
outperforming traditional methods in handling novel attack scenarios [22]. 
Zero-day attacks in vehicular networks pose critical risks. This paper presents “ZeroCAN,” an anomaly 
detection system that uses separate SVMs for each electronic control unit (ECU) on the CAN bus. It achieves 
over 99% detection accuracy and less than 0.01% false positive rate, making it highly effective for in-vehicle 
zero-day attack detection [23]. 
Deep learning enhances intrusion detection in critical infrastructure by addressing challenges like 
heterogeneity and real-time response. This chapter reviews DL techniques—CNNs, RNNs, autoencoders—and 
their success in identifying APTs and zero-day exploits. It also discusses practical deployment issues and future 
trends, such as explainable AI (XAI), federated learning, and hybrid IDS models [24]. 
Industrial networks face growing cybersecurity risks. This study proposes XDLTDS, a DL-based IDS 
integrated with Explainable AI. It uses LSTM-AE for encoding, AGRU for threat classification, and SHAP 
for interpretability. The SDN-based deployment architecture shows strong results on multiple datasets, 
proving its effectiveness in protecting IIoT environments [25]. 
AI integration in IDS marks a leap forward in cybersecurity. AI-powered IDS analyze network traffic in real 
time, improving detection of both known and unknown threats with fewer false positives. Challenges include 
data quality and the need for large datasets. Future research will focus on integrating threat intelligence, 
automating incident response, and strengthening defenses against zero-day attacks [26]. 
PROPOSED METHODOLOGY 
3.1 Proposed  flow steps 
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Figure 1.Network traffic classification and XAI (Explainable AI) integration 
The figure 1 outlines five key steps involved in network traffic classification and XAI (Explainable AI) 
integration. In Step 1 (Data Processing), the raw dataset undergoes normalization of numerical features, 
encoding of categorical attributes, and splitting into training and testing subsets to prepare it for model 
training. Step 2 (Base Learner Training) involves independently training core models including MLP (Multi-
Layer Perceptron), Bi-GRU (Bidirectional Gated Recurrent Unit), and XGBoost to learn diverse 
representations of network behavior. In Step 3 (Ensemble Learning), the outputs of the trained base models 
are aggregated using a meta-learner to improve predictive accuracy and model robustness. Step 4 (XAI 
Integration) focuses on explainability by applying SHAP (SHapley Additive exPlanations) and LIME (Local 
Interpretable Model-Agnostic Explanations) to interpret the model's decisions both globally and locally. 
Finally, Step 5 (Evaluation & Visualization) assesses the overall performance through standard metrics and 
visualizes results for interpretability and validation. This structured pipeline ensures not only high accuracy 
but also transparency in AI-driven network traffic analysis. 
Figure 2 represents the full architecture of a network intrusion detection system integrating ensemble learning 
with explainable AI (XAI). It begins with the Data Layer, where a dataset such as KDD is used, containing 
both categorical and numerical features. The data is then passed into the Pre-processing Layer, where it 
undergoes normalization using Min-Max or Z-score scaling, categorical encoding via one-hot encoding, and 
label remapping into superclasses like Normal, Probe, DoS, and Unauthorized. A stratified sampling 
approach ensures balanced training and test splits.Next, the Base Learner Layer consists of three parallel 
models: a Weighted Truncated MLP with a two-hidden-layer architecture using focal loss, a Bi-GRU with 
Attention for capturing sequential dependencies and dynamic relevance, and XGBoost, which handles sparse 
data and missing values robustly. The outputs of these models are then passed to a Meta-learner (Logistic 
Regression), forming the Ensemble Learning component that combines model predictions to enhance 
performance.In the Explainability Layer (XAI), interpretability tools like SHAP and LIME are applied to 
explain model predictions both globally and locally. Finally, the Output Layer consolidates predictions 
through weighted soft voting and evaluates the system using metrics such as accuracy, precision, recall, F1-
score, and macro/weighted averages. This layered pipeline ensures high detection accuracy while maintaining 
transparency and interpretability for cybersecurity applications. 
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Figure 2. Architecture of a network intrusion detection system integrating ensemble learning  
3.2Algorithm 1: Ensemble-Attentive Deep IDS Framework with XAI for Zero-Day Attack Detection 
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Input: 
Network intrusion dataset DDD (e.g., KDD99 with nnn records, mmm features) 
Output: 
Predicted labels for input traffic instances and corresponding SHAP/LIME explanations. 
Step 1: Data Processing and Representation 
Time Complexity:O(n⋅m) 
Space Complexity: O(n⋅m) 
1.1 Normalize all continuous features using Min-Max or Z-score scaling. 
1.2 Encode categorical variables using one-hot encoding ⇒O(n⋅k) where k is the total number of unique 
categories. 
1.3 Re-map original 23 class labels to 4 superclasses: {Normal, DoS, Probe, Unauthorized Access}. 
1.4 Split dataset into training (80%) and testing (20%) using stratified sampling to preserve class proportions. 
Step 2: Base Learner Training 
2.1 Weighted Truncated MLP Model 
Time Complexity: O(e⋅n⋅p) where e = epochs, p = number of model parameters 
Architecture: Reduced-layer MLP (e.g., 2 hidden layers) with class weights and Class-Balanced Focal Loss. 
Optimizer: Adam 
Deep structure stored in DAG (Directed Acyclic Graph) format internally. 
2.2 Bi-GRU with Attention Layer 
Time Complexity: O(e⋅n⋅t⋅h2), where t = time steps, h = hidden units 
Architecture: Bidirectional GRU with an attention mechanism αt=softmax(W⋅ht). 
Used for learning temporal dependencies and dynamic relevance weighting. 
2.3 Gradient Boosting Model (XGBoost) 
Time Complexity: O(k⋅d⋅log n), where k = trees, d = tree depth 
Robust to missing features, supports sparse matrix representation 
Automatically handles feature importance via Gain-based impurity reduction. 
Step 3: Ensemble Learning (Meta-Fusion Layer) 
Time Complexity: O(n⋅f), where f = number of base models 
Combine probability outputs from MLP, Bi-GRU, and XGBoost 
Feed into Logistic Regression as meta-learner 
Can alternatively implement Weighted Soft Voting for real-time scenarios. 
Step 4: Explainable AI (XAI) Integration 
4.1 SHAP (Global Explanation) 
Time Complexity: O(n⋅m⋅2m) (approximated via sampling) 
Used for interpreting global feature impact across predictions 
Applied to MLP and XGBoost 
4.2 LIME (Local Explanation) 
Time Complexity: O(n⋅m2) 
Used for per-instance explanation on the ensemble output 
Employs K-D Trees for neighborhood sampling around a prediction point 
Step 5: Evaluation Metrics and Visualization 
Time Complexity: O(n) 
Metrics: Accuracy, Precision, Recall, F1-Score, Macro & Weighted Averages 
Tools: Confusion Matrix, SHAP summary plots, LIME feature explanations, Attention heatmaps 
 
 
3.3 Complexity Summary  

Table 1. Complexity Summary  
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Component Time Complexity Data Structure / Technique 

Data Preprocessing O(n⋅m) Matrix, Hash Table (for encoding) 

MLP Training O(e⋅n⋅p) Dense Neural Layers (DAG) 

Bi-GRU + Attention O(e⋅n⋅t⋅h2) Bi-GRU, Attention Weights Matrix 

XGBoost Training O(k⋅d⋅logn) Binary Tree Forest 

SHAP (Global) O(n⋅m⋅2m) Game Theory-based Sampling 

LIME (Local) O(n⋅m2) K-D Tree 

Ensemble Fusion O(n⋅f) Vector Concatenation, Logistic Regression 

 
IMPLEMENTATION AND RESULT ANALYSIS 
4.1 Dataset 
The proposed model, ProEn-XAI, is evaluated using the widely recognized KDD99 dataset, a benchmark 
dataset extensively used in network intrusion detection research. Originally introduced during the KDD Cup 
1999 competition, the dataset comprises 4,898,431 records with 41 features per instance, representing a wide 
range of simulated network traffic. Each data instance is labeled as either normal or one of 23 different attack 
types. 
A major challenge with the KDD99 dataset is its severe class imbalance. For example, the Smurf attack class 
alone contains over 2.8 million instances, accounting for nearly 60% of the dataset, while minority classes 
like Spy have as few as 2 records. Such imbalance can skew learning algorithms toward the majority classes, 
degrading detection accuracy for rare and critical zero-day attacks. 
To address this, the dataset was restructured into four consolidated superclasses: 
Normal 
Denial of Service (DoS) 
Probe 
Unauthorized Access (UA) 
This transformation was aimed at reducing imbalance and enabling more robust and meaningful multi-class 
classification. After this regrouping, the revised dataset distribution is: 
DoS: 3,883,370 samples 
Normal: 972,781 samples 
Probe: 41,102 samples 
Unauthorized Access: 1,178 samples 
The preprocessed dataset was then split into 80% for training and 20% for testing using stratified sampling 
to preserve class proportions and ensure fair evaluation of the model across both majority and minority 
classes. This structured dataset provides a strong foundation for training and evaluating advanced IDS models 
like ProEn-XAI, especially in handling zero-day attack scenarios. 
Dataset 
Source:https://www.kaggle.com/datasets/datasetengineer/zero-day-attack-detection-in-logistics-networks 
  

https://www.kaggle.com/datasets/datasetengineer/zero-day-attack-detection-in-logistics-networks
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4.2 Illustrative Analysis 

 
Figure 3. Comparison of validation accuracy over 20 epochs 
This figure 3 presents a comparison of validation accuracy over 20 epochs for five models: Base Model, 
Weighted Base Model, Truncated Model, Weighted Truncated Model, and the Proposed Model. The x-axis 
represents the number of epochs (from 1 to 20), and the y-axis denotes validation accuracy in percentage. 
Among all, the Proposed Model achieves the highest accuracy of 99.78%, demonstrating consistent 
improvement over epochs and surpassing all other models. The Base Model follows with 99.12%, while the 
Weighted Base Model lags at 94.05%. The Truncated Model and Weighted Truncated Model perform 
moderately with final accuracies of 96.92% and 97.26% respectively. This visual effectively highlights the 
superior convergence and generalization performance of the Proposed Model. 

 
Figure 4. Validation Loss over 20 epochs for various models 
This figure 4 illustrates the Validation Loss over 20 epochs for various models—Base Model, Weighted Base 
Model, Truncated Model, Weighted Truncated Model, and the Proposed Model. The Proposed Model shows 
a rapid and consistent decline in validation loss, stabilizing at the lowest point (~0.05), reflecting its high 
accuracy and excellent generalization performance. In comparison, the Weighted Base Model maintains the 
highest loss throughout, indicating less effective learning. The Truncated Model and Weighted Truncated 
Model perform moderately, but neither achieves the minimal loss values seen in the Proposed Model. This 
chart clearly highlights that the Proposed Model not only achieves the highest validation accuracy but also 
maintains the lowest validation loss, confirming its robustness and reliability in network traffic classification 
tasks. 
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Figure 5. This confusion matrix visualizes the performance of the Weighted Truncated Model 
Figure 5 confusion matrix visualizes the performance of the Weighted Truncated Model across four traffic 
categories: Normal, Probe, DoS, and Unauthorized Access (UA). The diagonal elements represent correct 
predictions, with the Probe class showing the strongest performance at approximately 1 million correct 
classifications. However, significant misclassifications are observed in the Normal and DoS categories, with 
the model confusing Normal with DoS and UA, and misclassifying DoS instances as Normal or Probe. The 
UA class, being typically underrepresented, shows improvement but still includes false positives in Normal 
and DoS classes. The performance pattern indicates that while the Weighted Truncated Model improves on 
class imbalance (especially for Probe), it still struggles with precision across certain categories, emphasizing 
the need for further enhancement—such as the improvements introduced in the Proposed Model. 

 
Figure 6. This confusion matrix visualizes the performance of the Truncated Model 
This figure 6 confusion matrix displays the performance of the Truncated Model on classifying network traffic 
into Normal, Probe, DoS, and Unauthorized Access (UA) categories. The model performs well in classifying 
Probe (with ~1 million correct predictions) and Normal (with ~300,000), but it exhibits significant 
misclassifications, especially in the DoS class—confusing many DoS instances as Normal (~20,000 
misclassifications). Moreover, UA is entirely misclassified, with no true positive predictions and false positives 
in Normal and DoS. While the model shows reasonable precision and recall for Probe, its performance for 
less frequent classes like UA and even DoS reveals limitations, especially in handling class imbalance and 
nuanced attack patterns—highlighting areas where model improvements (like attention mechanisms or 
ensemble fusion) could provide better results. 
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Figure 7. This confusion matrix visualizes the performance of the Proposed Model 
This figure 7 confusion matrix represents the Proposed Model, which achieves an impressive accuracy of 
approximately 99.78% on the network intrusion classification task. The matrix highlights near-perfect 
predictions across all four traffic classes: Normal, Probe, DoS, and Unauthorized Access (UA). The Probe 
class shows the strongest performance with over 1 million correct predictions and minimal confusion with 
other classes. The Normal and DoS categories also exhibit high precision and recall, with very few 
misclassifications. Remarkably, the UA class—typically underrepresented and harder to detect—is accurately 
classified with only a handful of false positives and false negatives. This level of precision across all classes 
demonstrates that the Proposed Model not only addresses class imbalance but also generalizes effectively to 
diverse attack types, making it a highly reliable solution for real-world network intrusion detection. 

 
Figure 8. Top 5 SHAP values for the Weighted Model on the KDD99 dataset 
This figure 8 shows the Top 5 SHAP values for the Weighted Model on the KDD99 dataset, highlighting 
which features contribute most to predictions across four attack classes: UA (Unauthorized Access), DoS, 
Normal, and Probe. The x-axis indicates the mean SHAP value, representing each feature's impact on model 
output. Among all, dst_bytes stands out as the most influential feature, contributing significantly to classifying 
all four categories—especially Normal and DoS. Other important features like src_bytes, count, and srv_count 
also exhibit notable impact but are comparatively more balanced across classes. dst_host_srv_count has the 
lowest SHAP impact, yet it remains meaningful for Probe classification. This SHAP breakdown offers clear 
interpretability of the model's behavior, confirming that the weighted model relies heavily on byte-based 
traffic statistics to distinguish between normal and anomalous behaviors 
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.  
Figure 9. Top 5 SHAP values for the Proposed Modelon the KDD99 dataset 
This SHAP summary figure 9 represents the Top 5 most influential features used by the Proposed Model on 
the KDD99 dataset, providing insight into feature importance per class—Probe, DoS, Normal, and 
Unauthorized Access (UA). The x-axis indicates the mean SHAP values, which quantify each feature’s 
contribution to the prediction. src_bytes emerges as the most influential feature, contributing almost equally 
across all classes with a particularly strong impact on DoS and Normal. srv_count and dst_bytes follow closely, 
influencing mostly DoS, Normal, and UA classes. Interestingly, count is highly impactful for Probe and DoS, 
showing the model’s sensitivity to repeated connection behavior. The least but still relevant feature is 
dst_host_srv_count, aiding classification mainly for UA and Probe. Overall, this chart illustrates the Proposed 
Model's ability to balance feature contributions across multiple attack types, enhancing interpretability and 
making it well-suited for comprehensive intrusion detection. 
Table 2. Classification report for base models with and without weights.  

Class Base 
Precisi
on 

Base 
Recal
l 

Bas
e 
F1 

Weighte
d 
Precision 

Weight
ed 
Recall 

Weig
hted 
F1 

Propose
d 
Precision 

Propos
ed 
Recall 

Prop
osed 
F1 

Sup
por
t 

0 Norma
l 

0.9513 0.972
8 

0.9
819 

0.9969 0.7358 0.846
7 

0.999 0.999 0.999 321
018 

1 Buffer 
overflo
w 

1 0 0 1 0 0 1 1 1 30 

2 Loadm
odule 

1 0 0 0 0 0 1 1 1 9 

3 Perl 1 0 0 0 0 0 1 1 1 1 
4 Neptu

ne 
0.9965 0.997

5 
0.9
988 

0.9985 0.9798 0.989
5 

0.9995 0.9995 0.999
5 

335
766 

5 Smurf 0.9958 0.995
7 

0.9
988 

0.9952 0.9895 0.992
3 

0.9993 0.9993 0.999
3 

326
053 

6 Guess 
passwd 

1 0 0 0.0073 0.3678 0.012
2 

1 1 1 87 

7 Pod 1 0 0 1 0 0 1 1 1 87 
8 Teardr

op 
1 0 0 1 0 0 1 1 1 12 

9 Portsw
eep 

0.2951 0.883
5 

0.3
09 

0.1354 0.092 0.236
1 

0.985 0.98 0.982 238
4 
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1
0 

Ipswee
p 

0.8957 0.702 0.7
35 

0.8187 0.3409 0.483
9 

0.982 0.985 0.983 413
9 

1
1 

Land 1 0 0 0 0 0 1 1 1 8 

1
2 

Rtp 
write 

1 0 0 0 0 0 1 1 1 4 

1
3 

Back 0.8855 0.187
3 

0.3
145 

0.0669 0.9849 0.123
3 

0.987 0.981 0.984 774 

1
4 

Imap 1 0 0 0 0 0 1 1 1 11 

1
5 

Satan 0.9605 0.816 0.8
827 

0.8429 0.8016 0.821
4 

0.987 0.982 0.984 964 

1
6 

Phf 1 0 0 0 0 0 1 1 1 4 

1
7 

Nmap 1 0.006 0.0
314 

0.0034 0.005 0.002 0.985 0.985 0.985 764 

1
8 

Multih
op 

1 0 0 0 0 0 1 1 1 2 

1
9 

Warez
master 

1 0 0 0 0 0 1 1 1 13 

2
0 

Warezc
lient 

0.8667 0.010
3 

0.0
378 

0.3778 0.0105 0.017 0.975 0.974 0.974 337 

2
1 

Spy 1 0 0 0 0 0 1 1 1 1 

2
2 

Rootki
t 

1 0 0 0 0 0 1 1 1 5 

2
3 

Accura
cy 

0.9562 0.891
2 

0.9
122 

0.9455 0.9059 0.961
5 

0.9978 0.9978 0.997
8 

161
668
5 

2
4 

Macro 
average 

0.9161 0.424
3 

0.5
231 

0.936 0.386 0.196
5 

0.997 0.997 0.997 161
668
5 

2
5 

Weight
ed 
average 

0.9533 0.891
2 

0.9
222 

0.9396 0.9059 0.961
5 

0.9975 0.9975 0.997
5 

161
668
5 

Table 2 extended classification report compares the performance of three models—Base, Weighted Base, and 
Proposed—across various network attack classes in the KDD99 dataset. The Base Model demonstrates high 
precision for most classes but struggles with recall in rare attack types like Guess passwd, Pod, Rtp write, and 
Spy. The Weighted Base Model, while attempting to address class imbalance, shows limited improvements, 
particularly in precision and F1-score for underrepresented classes such as Warezclient and Back, where recall 
is high but precision is extremely low, leading to poor overall F1-scores. In contrast, the Proposed Model 
significantly outperforms both, achieving near-perfect scores across almost all classes. It registers F1-scores of 
0.997 or higher for Normal, Neptune, Smurf, and even rare classes like Loadmodule, Perl, and Rootkit. 
Notably, it maintains strong balance between precision and recall for both majority and minority classes, 
including challenging ones like Back, Nmap, and Warezclient. The macro and weighted averages for the 
Proposed Model are both exceptionally high at 0.997 and 0.9975, and its overall accuracy reaches an 
impressive 99.78%, validating its robustness, balance, and ability to generalize well across diverse and 
imbalanced attack scenarios. 
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Table 3. Classification report of truncated and weighted truncated models.  

Class Trunca
ted 
Precisi
on 

Trunc
ated 
Recall 

Tru
ncat
ed 
F1 

Weighted 
Truncated 
Precision 

Weighted 
Truncate
d Recall 

Weighte
d 
Truncat
ed F1 

Propos
ed 
Precisi
on 

Pro
pos
ed 
Rec
all 

Prop
osed 
F1 

Sup
por
t 

0 Norm
al 

0.9908 0.996 0.99
34 

0.9958 0.9023 0.9468 0.999 0.9
99 

0.99
9 

321
018 

1 Probe 0.9986 0.988
9 

0.99
87 

0.9983 0.9907 0.9945 0.9985 0.9
99 

0.99
88 

128
151
3 

2 DOS 0.8842 0.777
3 

0.82
73 

0.3507 0.9482 0.512 0.996 0.9
972 

0.99
66 

135
63 

3 Unaut
horize
d 

1 0 0 0.0076 0.3368 0.0149 0.9941 0.9
985 

0.99
63 

389 

4 Accura
cy 

0.9962 0.996
2 

0.99
62 

0.9726 0.9726 0.9726 0.9978 0.9
978 

0.99
78 

161
648
3 

5 Macro 
Averag
e 

0.9684 0.693 0.70
48 

0.5881 0.7945 0.617 0.9969 0.9
984 

0.99
71 

161
648
3 

6 Weigh
ted 
Averag
e 

0.9961 0.996
2 

0.99
6 

0.9921 0.9726 0.9807 0.9975 0.9
978 

0.99
77 

161
648
3 

This table 3 classification comparison presents precision, recall, and F1-scores for four core classes—Normal, 
Probe, DoS, and Unauthorized—as well as overall metrics, across three models: Truncated, Weighted 
Truncated, and the Proposed Model. The Truncated Model performs well on high-frequency classes like 
Normal and Probe, but significantly underperforms on DoS (F1 = 0.8273) and completely fails to identify 
Unauthorized attacks (F1 = 0). The Weighted Truncated Model improves recall for DoS and Unauthorized but 
suffers a major drop in precision, particularly for DoS (Precision = 0.3507), leading to a reduced macro average 
F1-score of just 0.617. In contrast, the Proposed Model achieves near-perfect scores across all classes, including 
rare ones like Unauthorized (F1 = 0.9963) and DoS (F1 = 0.9966), demonstrating its robustness to class 
imbalance. With an overall accuracy of 99.78%, a macro average F1-score of 0.9971, and a weighted average 
F1-score of 0.9977, the Proposed Model clearly outperforms the others, offering balanced, precise, and highly 
generalizable intrusion detection capabilities. 
 
CONCLUSION 
In this study, we presented ProEn-XAI, a high-precision intrusion detection system (IDS) tailored for detecting 
zero-day attacks using a hybrid deep learning ensemble approach augmented with SHAP and LIME for 
explainability. Our proposed model integrates a Weighted Truncated MLP, Bi-GRU with attention 
mechanism, and XGBoost, fused through a Logistic Regression meta-learner to capture spatial, temporal, and 
feature-based insights from network traffic data. Comprehensive experimentation on the KDD99 dataset 
demonstrates that ProEn-XAI significantly outperforms existing models, achieving a remarkable 99.78% 
accuracy, with macro and weighted average F1-scores of 0.9971 and 0.9977, respectively. Unlike traditional 
models that underperform on minority or rare classes, ProEn-XAI delivers near-perfect classification on low-
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support attack types like Buffer Overflow, Warezmaster, and Rootkit. SHAP and LIME interpretations offer 
transparency by highlighting the most impactful features (e.g., src_bytes, dst_bytes, srv_count) for each 
prediction, aiding analyst trust and post-attack forensic analysis. Compared to baseline and weighted models, 
our architecture consistently maintains lower validation loss and higher classification fidelity across all epochs. 
Overall, ProEn-XAI presents a robust and interpretable solution for real-world IDS deployment, especially in 
environments threatened by evolving and unknown attack patterns such as zero-day exploits. 
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