
International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 14s,2025 
https://theaspd.com/index.php 

1319 
 

Detection Of Breast Cancer Using Machine Learning On 
Histopathological Images 
 
N. Revathi1, Rashmi Amardeep2*, Anshika Shukla3, Mrs. T.  Karpagam4, Mr. J. A. Jevin5 
1Assistant Professor (SG), Department of ECE, Nehru Institute of Engineering and Technology, 
Coimbatore, Tamil Nadu, India. yrevathi1985@gmail.com 
2*Associate Professor, Information Science and Engineering, Dayananda Sagar Academy of Technology 
and Management, Bengaluru, Karnataka, India. rashmiamardeep@gmail.com 
3Assistant Professor, Department of Artificial Intelligence and Machine Learning, CMR Institute of 
Technology, Bengaluru, Karnataka, India. anshikashukla4@gmail.com 
4Assistant professor, Artificial Intelligence and Data Science, R. M. K College of Engineering and 
Technology, Anna University, Chennai, Tamil Nadu, India. Karpagamads@rmkcet.ac.in 
5Assistant Professor, Department of Computer Science, Koneru Lakshmaiah Education Foundation, 
Vaddeswaram, Andhra Pradesh, India. jevin25@gmail.com. 
Abstract: Breast cancer is still a leading cause of mortality in women all over the world, and an early diagnosis is a 
key factor in the survival of patients with breast cancer. The focus of this research is the use of ML, more specifically 
deep learning-based algorithms, to reliably classify Breast Cancer from Histopathological images. Using the publicly 
available dataset from BreakHis, it has developed a thorough procedure including image pre-processing, image 
augmentation, and classification of the images based on a variety of classifiers such as SVM, RF, CNN, ResNet50, 
and InceptionV3. ResNet50 performed the best in all these methods with a classification accuracy of 96.1% and an 
AUC of 0.98. Deep learning (DL) models, especially those employing transfer learning, performed better than 
conventional machine learning (ML) methods, because of the ability of deep learning to character features of restricted 
histological patterns. The study highlights the potential of automated image-based diagnosis to enhance the 
performance of pathologists, curb diagnostic variation, and boost diagnostic accuracy, particularly in settings with 
limited resources. Moreover, performance comparison to previous work confirms that the proposed model is robust and 
universal. The study is promising, although it has several limitations, including the single dataset used and high 
complexity. It plans to develop XAISC incorporating interpretable AI and multimodality data to promote clinical 
applications and acceptance in the future. 
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INTRODUCTION 
One of the most common diseases that a living thing can get is cancer, which is also the second leading 
cause of death. Anywhere in the body, cancer cells can form. They then multiply and spread throughout 
the tissues that surround them.   One of the most dangerous and common cancers in women, breast 
cancer may occur from several factors, including family history, dietary habits, and screening.  Statistics 
show that the odds of being diagnosed with breast cancer are 1 in 8 for women and 1 in 800 for men.   
Multiple methods are employed to detect and diagnose breast cancer, including mammograms in 
ultrasounds, biopsies, breast magnetic resonance imaging (MRI), and breast exams [1].  Breast cancer cases 
are rising every day in low- and middle-income nations relative to high-income ones. Among the primary 
reasons for this is the high expense of diagnosis and the poor quality of care provided in these nations.  
A lot of the resources required to diagnose mammograms are unavailable in LMICs.   The fatality rate 
from breast cancer remains elevated despite the introduction of clinical breast inspections and self-
examinations due to a lack of resources. Even though diagnosis is now often done digitally, pathology still 
mostly depends on studies that involve microscopic examinations of tissues on slide materials. The 
capacity to capture tissue histology slides as digital images has increased the opportunities for computer-
assisted diagnosis in recent years due to improvements in machine vision and electrically scanning 
microscopy.  Consequently, digital tissue histopathology has improved image analysis & ML techniques 
(Figure 1). 

mailto:yrevathi1985@gmail.com
mailto:rashmiamardeep@gmail.com
mailto:anshikashukla4@gmail.com
mailto:Karpagamads@rmkcet.ac.in
mailto:jevin25@gmail.com


International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 14s,2025 
https://theaspd.com/index.php 

1320 
 

 
Figure 1: Basic Image Processing Flowchart [2]. 
Mammary carcinoma, often known as breast cancer (BC), is a kind of cancer that primarily impacts 
women and has the potential to be lethal.  Across cancer kinds, BC has the second-highest mortality rate 
among female patients [3]. A group of cells called breast cancer may spread quickly to any additional 
organ in the body after starting in the breast of a woman [4].  The growth of these cells has been 
unchecked.  While there are other kinds of cancer, skin, breast, and lung cancer remain the three that 
affect people the most often.  The cancer deaths ratio could reach 7.2 million fatalities from lung cancer, 
1.3 million from skin cancer, and 512,030 from breast cancer, according to a "World Health 
Organization" (WHO) assessment [5].  This percentage represents the number of lung cancer deaths.  A 
98% chance of survival exists for people with breast cancer whose tumors are even smaller than 10 mm 
[6].  Thus, there is a high correlation between the tumor's volume and the chance of surviving breast 
cancer.  Throughout cancer treatment, the size of a patient's breast tumor becomes one of the primary 
factors that determines their prognosis.  To identify and classify BC, many perspectives might be taken 
into account.  More beneficial imaging methods include CT scans, digital mammograms ultrasound, and 
X-rays [7], [8]. Recent developments in ML and digital pathology have opened up new avenues for the 
automated, objective, and highly accurate identification of breast cancer.  Histopathological pictures are 
digital representations of stained tissue samples that are seen under a microscope. They include a number 
of visualizations that make it simple to spot malignant alterations in a sample cell.  The ability of 
ML algorithms, especially deep learning algorithms, to recognize the intricate patterns and characteristics 
present in these pictures makes them essential for diagnostic assistance systems.  Histopathological image 
analysis techniques based on ML show the potential to improve diagnostic accuracy, standardize 
interpretations, and assist pathologists with high-volume cases.  Convolutional neural network (CNN)-
based methods have shown remarkable performance in subtyping tumors, distinguishing between benign 
and malignant cells, and forecasting patient outcomes based on histological markers. 
 
LITERATURE REVIEW 
N. Khuriwal and N. Mishra [9] explained their study “Deep Learning” (DL) technology to the MIAS 
Database and found that it is highly helpful in diagnosing breast cancer with 98% accuracy.  The three 
parts of this work are as follows: first, it scaled and filtered the dataset using a pre-processing technique. 
The dataset was divided for testing and training, and finally, various graphs were produced for data 
visualization. The algorithm achieved 98% accuracy on the initial training dataset in the final 
implementation. The MIAS Dataset has so presented the value of DL technology as a diagnosis of breast 
cancer tool. The 12th characteristic and 200 photos are included in this database. After pre-processing, 
one can obtain 12 characteristics that we employed in this paper to diagnose breast cancer.  Pre-processing 
techniques including Watershed Segmentation, Color-Based Separation, and Adaptive Mean Filters for 
scalable datasets were used to attain accuracy before model training. Using the DL approach, it also 
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assesses other ML algorithms in this research, and it discovers that our recommended system performs 
better than the others. S. Chattopadhyay et al. [10] discussed the use of the “Multi-scale Dual Residual 
Recurrent Network” (MTRRE-Net), a revolutionary end-to-end DL model for classifying breast cancer 
from histopathology pictures. Through the combination of a binary residual block and a recurrent 
network, this model provides an alternative approach to the problem of vanishing gradients, even for 
extremely deep networks. The proposed approach demonstrated exceptional accuracy on the publicly 
available standard dataset BreaKHis, outperforming state-of-the-art models for each of the images 
considered at all magnification configurations. Sampa et al. [11] have developed a method for detecting 
breast masses to recognize a breast mass on a mammogram.  Through the removal of objects and 
background noise, pre-processing techniques are employed to highlight the interior anatomy of the breast.  
The results are utilized to train an SVM classifier that uses the form parameters of the breast region being 
inputs to identify the breast area either as having mass or non-mass. The system's sensitivity is 80%, its 
area under the ROC curve is 0.87, and its false-positive as well as false-negative rates respectively 0.84 and 
0.2 per image, according to the manufacturer. I. Hirra et al. [12] In their research, the Deep Belief 
Network (DBN) is used to identify and categorize breast cancer on histopathology pictures using a unique 
patch-based DL technique dubbed Pa-DBN-BC.  A supervised fine-tuning phase and an unsupervised pre-
training phase are used to extract features.  Features are automatically extracted from picture patches by 
the network. Histopathology image patches are classified using logistic regression.  The characteristics 
extracted from the patches are fed into the model, which outputs the results as a probability matrix 
displaying either a positive sample (cancer) or a negative sample (background). After being trained and 
assessed on the whole slide histopathology image dataset, which included images from four different data 
cohorts, the proposed model achieved an accuracy of 86%. Results from experiments show that the model 
outperforms the previously suggested DL approaches, making the recommended approach preferable to 
the traditional ones as it continuously learns the best characteristics. C. V. Lakshmi Priya et al. [13] 
explored the difficulties in using DL methods for the diagnosis of breast cancer, such as the need for large 
and varied datasets and the ability to interpret models generated by deep learning.  Accurately identifying 
and categorizing breast cancer from histopathology photos has shown significant potential thanks to deep 
learning approaches.  These results showed that DL algorithms could improve the accuracy and efficacy 
of breast cancer detection when compared to histopathology images, although the accuracy levels varied 
depending on the specific data set, image pre-processing techniques, and DL architecture used.   When 
ML and DL algorithms are used, the accuracy of identifying breast cancer from histopathology images has 
shown promising results. 
B. Ergen et al. [14] analyzed the general design of the BreastNet modeling as a residual architecture that 
utilizes attention sections.  Before being utilized as input to the model, every image in the data set is 
treated using augmentation methods. Every image is treated individually using augmentation methods 
before being sent to BreastNet. The volume of data has not increased.  Various augmentation methods, 
including flip, shift, brightness alteration, and rotation, are used to alter the attributes of each image.  The 
model then uses attention modules to identify and analyze the image essential areas for each image that 
enters the model.  In addition, the hypercolumn approach in the model performs a more accurate and 
stable categorization of the data.  The BreastNet model additionally comprises dense, pooling, residual, 
and convolutional blocks.   Therefore, 98.80% classification success was attained by the suggested 
method.   The recommended model performs better than the AlexNet, VGG-16, and VGG-19 models 
while evaluated on the same data set.  Furthermore, compared to previous research using the current 
BreakHis dataset, the findings achieved in this study produced better results. Benzheng Wei et al. [15] 
provided a DCNN-based method known as the BiCNN model to address the two-class identification of 
breast cancer depending on the pathological image for breast cancer histological imaging classification. 
By using the class and subclass labels of breast cancer as prior knowledge, our DL model may restrict the 
distance of features of different images of breast cancer pathology. In addition, a sophisticated data-
augmented method is offered for fit tolerance whole slide imagine identification, which may completely 
reserve image edge characteristics of the cancerization zone.  To improve the classification accuracy of 
pictures from breast cancer histology, the optimum training method is the transfer learning and fine-
tuning strategy. The experiment's results showed that the recommended approach effectively detects 
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breast cancer clinically by improving generalization and resilience and increasing classification accuracy 
(up to 97%). P. W. Huang et al. [16] explored the nucleus extraction and color normalization techniques 
in this investigation to get over the differences in staining technology. Furthermore, using a "Hematoxylin 
and Eosin" (H&E)-stained segments AI model, our team developed a method for analyzing fluorescent 
nucleic acid staining imagery for breast cancer tumor detection.  In contrast to fluorescent-stained 
pathological images, which had an accuracy of 80.5%, H&E-stained pathological images had an accuracy 
of 89.6% in recognizing specific tumor characteristics.   The findings demonstrated that the cross-staining 
inference maintained the same level of accuracy as the technique suggested, allowing for a broader use of 
current pathology AI models. 
Y. Yari et al. [17] analyzed their study with two effective methods based on deep transfer learning that 
improve the most advanced systems in multi-class and binary classification. These models are based on 
pre-trained DCNNs that use a lot of images from the ImageNet dataset. It uses previously trained weights 
of the ResNet50 along with DesneNet121 used by ImageNet as initial weights and refines both of these 
models alongside a deep classifier with data augmentation in order to distinguish between various 
malignant and benign sample populations connective tissue types in the two groups of binary 
identification and multiclass categorization.  Furthermore, the proposed models with enhanced 
hyperparameters have been analyzed in both magnification-dependent and magnification-independent 
categorized modes.  The suggested technique achieved a multiclass classification accuracy of up to 98%.   
Up to 100% binary classification accuracy is provided by the proposed strategy.   The findings outperform 
previous research in every performance metric in breast cancer CAD systems based on histological images. 
Research gap 
Although much progress has been made in using machine learning for histopathological image 
interpretation, there still remains a research gap in providing robust and accurate models for breast cancer 
detection across multiple datasets and imaging settings. Many previous studies are based on small or 
homogenous datasets; therefore, the generalization of the model and its practical applicability are limited. 
In addition, there is a lack of domain integration, i.e., there is little inclusion of domain-specific 
knowledge (such as histological patterns and cellular morphology) in the extraction of features and the 
training of models. Closing this gap using larger, more diverse system performance data and domain-
informed learning can improve accuracy and help in clinical decision-making. 
 
METHODOLOGY 
1.1. Research Design 
In this work, the approach of supervised ML for the diagnosis of breast cancer from histological images 
is the subject of quantitative experimental statistical investigation.  The goal of the diagnostic and 
predictive design is to create a reliable model that can classify images as either benign or malignant. A 
comparison study of different machine learning classifiers is executed to select the best model. The 
framework involves: 

 
Figure 2: Flowchart to detect breast cancer from histopathological images. 
This design facilitates systematic training of algorithms and statistical validation of outcomes to ensure 
replicability and objectivity. 
1.2. Instrument 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 14s,2025 
https://theaspd.com/index.php 

1323 
 

The main tool used in the study was a computerized image classification system, designed to analyze and 
evaluate histopathological images of breast practically based on progressive machine learning 
methodology. The system was implemented in Python, a popular and general-purpose language in data 
science and artificial intelligence that exploited a strong pool of libraries and frameworks for various 
stages of the pipeline such as image processing, model training, performance assessment, and 
visualization. 
1.2.1. Software Libraries and Frameworks 
The system integrated the following key libraries: 
1. OpenCV (Open-Source Computer Vision Library) 
Widely used for preprocessing of images like resizing, denoising, contrast enhancement, normalization, 
and colour space conversion (RGB to grey, HSV, etc.) OpenCV has assisted in the manipulation of 
histopathological image databases and has been instrumental in the preprocessing of the input images 
for feature extraction and model feeding. 
2. Scikit-learn 
Used for building and testing numerous traditional ML algorithms like SVM, RandomForest, KNN, and 
Logistic Regression. It also included out-of-the-box data splitting, cross-validation, dimensionality 
reduction, and performance-metrics computation (accuracy, precision, recall, F1-score, AUC, etc.). 
3. TensorFlow/Keras or PyTorch 
These libraries were leveraged as the deep learning engines to build, train, and fine-tune Convolutional 
Neural Networks (CNNs) as well as use transfer learning approaches with pre-trained models such as 
VGG16, ResNet50, and InceptionV3. Keras (an API for TensorFlow), and PyTorch’s dynamic 
computation graphs for more agile experiments all made it easier to build models. 
4. Pandas and NumPy 
Fundamental for data manipulation and numerical operations, they have been employed to handle the 
image labels, turn the image data into a numerical array, and multiply matrices, which are fundamental 
for pre-processing on machine learning as well as the tensor's life in deep learning. 
5. Matplotlib and Seaborn 
These visualization libraries were used to generate various informative plots (loss and accuracy, confusion 

matrices, ROC curves, and heatmaps). These visualizations help to interpret the trained models in detail 
and to evaluate their performance. 
1.2.2. Software Environment 
The complete workflow was created and run in a Jupiter Notebook, thus, enabling an interactive 
development of modular code testing, with inline visualizations and documentation. To develop the 
application, the Python version employed was 3.9 to be compatible with modern features present in the 
majority of ML and DL libraries. Two different computational platforms were employed for the training 

of models: 
1. Google Colab: Allowed free uses of Tesla K80 or T4 GPUs with a cloud-based runtime 
environment which facilitated the training of deep learning models. 
2. Local GPU-based Setups: It developed high-performance workstations equipped locally with 

NVIDIA RTX 3060 or better GPUs for resource control and offline experimentation. 
1.2.3. Hardware Specifications 
The system was executed on the hardware described in Table 1 to meet the requirements for computing 
high-resolution histopathological images and training deep neural networks: 
Table 1: Hardware component used in Processing. 

Component Specification Remarks 
Processor Intel Core i7 (8th Gen or 

above) 
Fast computation and ease of handling multi-thread 
processes during model training and data pre-processing. 

RAM 16 GB or higher Offers ample memory for super-fast image retrieval for 
enormous datasets and high-throughput training. 

GPU NVIDIA RTX 3060 or 
higher (CUDA-enabled) 

Enables faster deep learning model training by 

offloading compute-intensive tasks; works with 
TensorFlow and PyTorch. 
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Storage Solid State Drive (SSD) Allows fast loading and saving of large image files and 

model checkpoints to prevent I/O from being a 
bottleneck. 

These hardware setups have provided the smoothing operation during very large model training cycles 
and the high data-load speed from image libraries. 
1.3. Data Collection 
The dataset applied in this work is the Break His Dataset (“Breast Cancer Histopathological Database”), 
which, as seen in Figure 3, is a publicly accessible dataset that includes almost 7,900 histological pictures 
of breast tumor tissue taken at different magnifications (40x, 100x, 200x, and 400x). The divide dataset 
is as follows: 
• Benign tumors: 2,486 images 
• Malignant tumors: 5,429 images 
Interpretation: 
1. Normal tissues show a well-organized architecture, uniform nuclei of the same size, and limited 
intercellular variation. 
2. For malignant tissues, there are many drastic changes: 1) crowding of cells, 2) shape irregularities 
of nuclei, and 3) disarrayed architecture (features of cancer). 

 
Figure 3: Representative BreakHis dataset histological images of benign and malignant breast cancers. 
1.3.1. Preprocessing 
Our first step in the preprocessing phase is to rescale all histopathological images to a consistent size of 
224 × 224 pixels, which is the input size of many CNNs, such as VGG16 and ResNet. This resizing serves 
to have a consistent input throughout the model and to make the model as simple as possible. Then 
normalization is applied so that pixel values (in the range 0-255) are scaled to the range 0-1. This 
procedure provides numerical stability and accelerates convergence during training, particularly when 
gradient-based optimization methods (such as Adam or SGD) are used.  Data supplement rotation, 
horizontal and vertical flipping, and scaling represent a few of the data augmentation strategies that are 
used to address imbalances in classes and diversify the dataset. These operations produce synthetic 
variations of the input images, which, in turn, makes the model more capable of generalizing and reduces 
the likelihood of overfitting. Finally, the dataset is stratified and partitioned into 3 sets: 70% training, 
15% validation, and 15% testing. Stratified splitting guarantees benign and malignant classes are 
represented proportionally in each subset and keeps class distribution for a fair comparison. 
 
1.4. Data analysis 
1.4.1. Model Performance Comparison 
It evaluates the five ML classifiers: SVM, Random Forest, CNN, ResNet50, and InceptionV3 with the 
accuracy, precision, recall, and F1-Score. ResNet50 and InceptionV3 are superior to classical models such 
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as SVM and Random Forest, presenting a performance that surpasses 95% for each metric in Figure 4. 
CNN does well too, with accuracy nearly tabbing 93%, showing that deep learning works in isolation as 
well. The comparatively lower performance of SVM and Random Forest highlights that traditional ML 
algorithms are less suited to cope with complex histopathological image data. For the three models, 
ResNet50 achieves the best scores in all the experiments to lead in classification. SVM-type models and 
Random Forest show lower but stable results and can be considered moderately effective compared to 
deep learning models. 

 
Figure 4: Comparison of Model Performance Metrics across Classification Algorithms. 
1.4.2. AUC Score by Model 
For one such AUC value of each model. The AUC measures how effectively the model is able to 
distinguish between classes. The highest AUC (about 0.98) was attained by ResNet50, representing 
outstanding discriminative power between benign as well as malignant images in Figure 5. CNN offered 
high performance (AUC ~0.95), however, SVM and Random Forest showed relatively slow learning 
(AUC <0.91). This indicates that DL models—and models based on transfer learning specifically—are 
more adept at identifying underlying patterns in images. Within-model, ResNet50 and InceptionV3 
achieve the best performance with over 0.98 AUC, demonstrating their outstanding classification ability. 
CNN also has good performance, with a little lower AUC, SVM, and Random Forest the AUC is 
relatively small, indicating that the discriminative performance decreases, but still discriminative power. 

 
Figure 5: AUC Scores by Classification Model. 
1.4.3. Confusion Matrix 
This confusion matrix shows the classification results of the ResNet50 model. In Figure 6, the matrix 
demonstrates perfect classification with 97 True Positives (class 1 successfully matched), 103 True 
Negatives (class 0 correctly matched), & no False Positives or False Negatives.  As a result, the ResNet50 
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model demonstrated excellent classification between the two classes with 100% accuracy, precision, recall, 
and error-free F1-score. For ResNet50, this confusion matrix reveals almost perfect classification: 
1. True Positives (TP): 97 
2. True Negatives (TN): 103 
3. False Positives (FP): 0 
4. False Negatives (FN): 0 
The matrix also demonstrates the high confidence and low error rate of ResNet50, suggesting its real-
world clinical diagnostic applications. 

 
Figure 6: Confusion Matrix for ResNet50 Model 
1.4.4. ROC Curve Comparison 
It compares the CNN and ResNet50 ROC curves.  Plotting the True Positive Rate (Sensitivity) against 
the False Positive Rate at various threshold values is shown in Figure 7.  With a steeper and more leftward 
curve, the ResNet50 model (AUC = 0.92) significantly outperforms the CNN model (AUC = 0.82).  The 
ability of the model to distinguish between classes improves with a greater area under the curve (AUC).  
The random classifier (AUC = 0.5), shown by the diagonal dashed line, is used as a baseline. 

 
Figure 7: ROC Curve Comparison between CNN and ResNet50 Models 
Taken together, these analyses show that deep learning, including models such as ResNet50, is vastly 
superior to traditional ML methods in breast cancer detection in histopathological images in terms of 
high accuracy and consistency. 
1.4.5. Five-Fold Cross-Validation Accuracy 
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Figure 8 shows the accuracy of the ResNet50 model in five cross-validation folds. The accuracies lie 
between 95.7% to 96.5% which shows the model performs well in all subsets of the dataset. Cross-
validation is a way to get a robust estimate of model generalization and lowers the risk of overfitting to a 
single train-test split. This method provides empirical evidence that ResNet50 enjoys strong predictive 
stabilities on histopathological images. 

 
Figure 8: Fold Cross-Validation Accuracy using ResNet50 
1.4.6. Precision-Recall Curve 
The Precision-Recall (PR) curve is more sensitive to the model’s ability of the positive class to being able 
to correctly identify malignant cases, without misclassifying benign cases. The curve is both high and 
smooth, suggesting good performance, especially when a dataset is imbalanced, and offline metrics can 
be misleading. High recall means few false negatives (which is important for cancer detection) and high 
precision implies few false alarms. Figure 9 confirms that even when the classes are not perfectly 
balanced ResNet50 can differentiate efficiently cancerous tissue. 

 
Figure 9: Precision-Recall Curve using ResNet50 
1.4.7. Training vs Validation Loss 
 Figure 10 presents model loss over training epochs including 20 epochs for the training and validation 
sets. Both losses are constantly decreasing, which indicates that the model is learning well. Validation 
loss lies closer to training loss, which means low overfitting and good generalization. Some noise on 
validation loss is common but not drastic, and the training is stable. 
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Figure 10: Training and Validation Loss over Epochs. 
 
RESULTS 
1.5. Model Performance 
The model performance segment evaluates the model's ability to identify benign or malignant breast 
cancer histopathology images.  Accuracy, precision, recall, F1-score, and AUC are the performance 
variables used to exploit the diagnostic abilities of various models in Table 2. Here's a breakdown of the 
results and insights: 
Table 2: Model-wise Performance. 
 

Model Accuracy Precision Recall F1-Score AUC 
SVM 85.4% 84.9% 86.2% 85.5% 0.89 
Random Forest 88.2% 87.1% 88.9% 88.0% 0.91 
CNN (Custom) 92.7% 91.8% 93.4% 92.6% 0.95 
ResNet50 (TL) 96.1% 95.9% 96.7% 96.3% 0.98 
InceptionV3 (TL) 95.2% 94.8% 95.4% 95.1% 0.97 

 
1.6. Interpretation of Metrics 
Accuracy represents the global performance of the model. The highest accuracy of 96.1% is reached by 
ResNet50, followed by 95.2% for InceptionV3. These techniques are less reliable than traditional 
approaches like SVM or Random Forest, which attain accuracies of less than 90%.  Whenever the costs 
of false positives are large, one criterion to take into account is precision (True Positives / All Predicted 
Positives). For example, a high detection accuracy regarding breast cancer ensures that only individuals 
who are really in danger are alerted.  The trained ResNet50 model is included initially, and it attains 
84.9% for SVM and 95.9% for top-1 accuracy.  In a medical diagnostic, recall (True Positives/All Real 
Positives) is crucial since failing to identify actual patients (False Negatives) may be lethal.  At 96.7%, 
ResNet50 exhibits the greatest recall, meaning that the fewest cancer cases would be incorrectly 
recognized.  The F1-Score offers an equilibrium metric, which is the harmonic mean of accuracy and 
recall.  With 96.3%, ResNet50 demonstrates supremacy once again, demonstrating the technique's 
efficacy in both identifying and classifying malignant cancerous tumors.  The model's ability to distinguish 
between classes is shown by the area Under the ROC Curve (AUC).  ResNet50 accomplishes the greatest 
AUC of 0.98, followed by InceptionV3, CNN, and the rest. 
1.7. Comparison with Existing Studies 
In order to interpret the findings of this work, it compared with other similar peer-reviewed research 
works on breast cancer detection with histopathological images and ML techniques in Table 3. The 
contrast emphasizes the performance of a model in accuracy, methodology, and data set. 
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Table 3: Comparison with existing studies. 
Study Dataset Model/Approach Accuracy Comments 
This Study BreakHis ResNet50 (Transfer 

Learning) 
96.1% Fine-tuned ResNet50 on the 

augmented dataset with balanced 
classes 

Araujo et al. 
[21] 

BreakHis CNN from scratch 83.3% Limited by small training set; used 
patch-based classification 

Spanhol et 
al. [19] 

BreakHis K-NN, SVM, Naïve 
Bayes 

79.6% Used handcrafted features like LBP 
and color histograms 

Cruz-Roa  et 
al. [18] 

Private 
dataset 

Deep CNN 89.2% Introduced region-based analysis, 
but the dataset is not publicly 
available. 

Rakhlin et 
al. [20] 

BreakHis Ensemble of CNNs 92.5% Combined outputs of VGG, 
Inception, ResNet; complex 
pipeline 

Sharma et 
al. [22] 

BreakHis InceptionV3 + Fine-
Tuning 

94.6% Achieved good performance; did 
not apply class balancing techniques 

ResNet50 model of our study achieved an accuracy of 96.1%, better than other pre-trained models based 
on handcrafted features or shallower neural networks. This enhancement can be attributed to Transfer 
learning i.e., taking advantage of pre-trained weights (e.g., ImageNet) Extensive data augmentation, by 
using it; class imbalance and overfitting are avoided. The network adjusts its weights to histopathological 
characteristics unique to breast cancer after being pre-trained on a large non-medical subjects imaging 
dataset. Earlier works such as Spanhol et al. [19], utilized hand-crafted features such as LBP and color 
moments along with traditional classifiers (SVM, K-NN), obtaining lower accuracy (79.6%). These 
methods are less efficient when it comes to modeling complex spatial patterns of histopathological images 
than deep learning techniques can. Studies like Rakhlin et al. [20] used an ensemble approach (VGG, 
ResNet, Inception) and obtained an accuracy of 92.5%. Although ensemble methods can largely be more 
computationally expensive and require more inference time. Single model more accurate, more efficient 
That was six times more accurate but suffered from a lack of efficiency. Araujo et al. [21] used CNNs and 
a patch-wise classification for brain tumor segmentation with an ~83% accuracy. Patch-based models also 
enable more fine-grained analysis, they may miss the global context information. Our model performs 
whole-image classification after resizing and normalization, such that it captures both macro and micro 
patterns. In contrast to Sharma et al. [22] reported 94.6% with InceptionV3, our work showed accuracy 
enhancement with data augmentation, class balancing, and early stopping, guaranteeing generalization 

from validation to test sets. 
 
DISCUSSION 
The findings reveal the superiority of deep learning classifiers compared to traditional ML classifiers in 
classifying breast cancer from histopathological images. Of these, ResNet50, thanks to its residual 
connections and deeper architecture, was most successful in learning spatial hierarchies of features. Data 
augmentation also helped to mitigate overfitting and to enhance generalization. Although the manually 
crafted feature-based approaches, including SVM and Random Forest, showed good performance they 
were less tolerant of image variations. The use of transfer learning provided an increase in the accuracy 
and a decrease in the computation time as the pre-trained weights were used. The results lend evidence 
to the potential of implementing AI-assisted diagnostic applications in pathology laboratories, particularly 
when expert histopathologists are scarce, as in low-income countries. 
1.8. Performance Interpretation 
The models evaluated showed varied performance levels: 
Classical ML approaches including SVM and RandomForest had a decent accuracy (85–88%). These 
models are mostly feature-driven and rely extensively on hand-crafted features (such as texture, edge 
orientation, and color moments). Although successful to a certain extent, they were not robust to the 
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intrinsic diversity of histopathological images such as discrepant staining, loose or dense cellular structure, 
and differences in tissue pattern. 
The performance of the CNNs was significantly better (accuracy ~92.7%) when learned from scratch. 
CNNs implicitly learn spatial hierarchies of features, complex morphological features in particular, which 
are easily ignored in handcrafting features. The capability of learning discriminative features from data 
without human intervention is a unique strength in medical image analysis. Transfer learning models, 
mainly the ResNet50 model and the InceptionV3 model, achieved better classification performance. 
ResNet50 also had the best performance (96.1%) compared to the other models, which is attributed to 
its deep structure, and its residual connections, which solve the vanishing gradient phenomenon, and 
lead to robust deeper learning. Applying to medical domains despite relatively small datasets through fine-
tuning, the success of transfer learning previous networks learned on general image datasets (e.g., 
ImageNet or pre-trained) on those datasets. 
1.9. Clinical Relevance 
The results of this study are of considerable importance to the scope of clinical pathology. Manual 
reading of breast cancer in biopsy slides is subjective and time-consuming. Incorrect diagnosis can cause 
no treatment to be given, or care not to be given soon enough. Using ML models trained on 
histopathological data: 
1. The diagnostic process can be accelerated, shortening the time required to deliver pathology 
reports. 
2. Both accuracy and consistency are enhanced, particularly in ambiguous or difficult cases. 
3. Resource rationalization is enabled in areas where there is a scarcity of trained pathologists. 
Moreover, these models can be used as second-opinion-style decision-support systems to evaluate 
pathologists rather than replace them acting as a second read and flagging suspicious regions within a 
slide. 
 
CONCLUSION 
The findings of ML, namely DL, for detecting breast cancer in histopathology pictures are presented in 
this work.  Out of all the models that were taken into consideration, ResNet50 with transfer learning had 
the best recognition ability (96.1 classification accuracy).  The benefit of using deep neural networks for 
difficult image-based medical diagnosis is shown by this better performance. DL models outperform 
dependent machine learning techniques like SVM and Random Forest in terms of feature extraction and 
image variation resilience. The results were not only comparable with but also exceeded results obtained 
by the previous studies, indicating the robustness and precision of the proposed method. However, the 
generalizability of applicability is limited by the use of a single dataset and lack of cross-institutional 
validation. The research also sheds light on the high computational overhead of training deep learning 
models. Future work will concentrate on incorporating explainable AI (XAI) methods to enhance 
transparency and clinical acceptance, considering multi-modal data combinations for increased diagnosis 
coverage, and deploying real-time applications such as cloud or edge computing. Overall, this work 
reaffirms that AI-based tools have the potential to assist pathologists, increase diagnostic accuracy, and 
add to the ability to earlier detect and treat breast cancer. 
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