Iot Based Speed Control And Accident Avoidance Using Ai Road Sign Detection System

S.Gunasekaran¹, Prabakaran S², Sangeetha M³, Vignesh M⁴, Thirumalai P⁵, Selvakumar D⁶

Rsv2008pll@gmail.com, mokipraba@gmail.com, rsv20098pll@@gmail.com, rsv20098pll@@gmail.com, vigneshvignesh11230@gmail.com,thirumalaiperiyannan.p@gmail.com, janarthananjana595@gmail.com

ABSTRACT- Through a traffic sign detection system built using deep learning YOLO framework India achieves better road safety. The system achieves local traffic condition-specific high accuracy performance through training and validation utilizing the Indian Traffic Sign Recognition dataset. Real-time traffic sign detection from changes in road conditions becomes possible through the YOLO architecture which performs both sign classification and feature extraction processes. Real-time video processing enables the system to find and label traffic signs that appear for moving vehicles throughout different locations. Vehicle systems embedded within vehicles detect traffic signs by adjusting vehicle speeds according to safety needs for drivers and pedestrians. This system operates reliably under both nsufficient street lighting conditions and adverse weather and damaged or obscured signs. Testing automotive systems under Indian traffic conditions leads to increased system reliability which results in better practical use. The diverse conditions enable developers to refine their models adequately to excel with Indian road traffic features. The proposed system integrates modern traffic systems with local safety regulations to simultaneously reduce accidents and enhance driving quality.

Keywords: Traffic Sign Detection, YOLO, Indian Traffic Signs, Real-Time Video Processing, Vehicle Safety, Deep Learning, Autonomous Driving, Road Safety, Intelligent Transportation Systems.

INTRODUCTION

Indian driving conditions pose challenges because drivers encounter many dangerous situations alongside unpredictable road behavior and multiple types of traffic signs. According to the Ministry of Road Transport and Highways numerous mishaps occur because drivers don't see traffic indicators or stick to their protocols. Driver assistance systems of the advanced level are essential elements that minimize errors made by human operators together with their application to traffic safety operations. The project develops an Indian traffic sign detection system through deep learning YOLO methodology. The key advantage of YOLO algorithms stems from their ability to process data in real-time with precision resulting in lifesaving decisions instantly. The system analyzes real-time video data to detect traffic signs while it operates independent vehicle speed controls and warns drivers instantly. Secondary training utilizes the Indian Traffic Sign Recognition dataset to process standard signals and unusual local signal variations. Instant detection assists the vehicle to adjust its speed behavior and activity patterns in ways that protects drivers and pedestrians. Extreme conditions with low visibility and weather changes as well as partially hidden signs do not affect the system stability during operation. Multiple testing locations across India will help optimize the system's effectiveness during real-world road conditions. The convergence of advanced AI systems with practical safety measures will build a safer Indian transportation infrastructure.

^{1,2}Asst.Prof / Department of CSE, V.S.B. Engineering College, Karur, Tamil Nadu

^{3,4}Prof / Department of CSE, V.S.B. Engineering College, Karur, Tamil Nadu,

^{5,6}Department of CSE, V.S.B. Engineering College, Karur, Tamil Nadu,

RELATED WORK

The research group comprising Wang J. and Chen Y., Dong Z., Gao M created a modified version of YOLOv5 network for real-time traffic sign detection across various size levels. A review of this system improves the network's feature analysis capability across different sign dimensions that boosts accuracy in challenging traffic situations. The researchers optimize anchor boxes and develop attention mechanisms to boost performance in detecting small objects. Studies of improved YOLOv5 network performance help develop adaptable real-time traffic sign detection systems which interpret signs more effectively to enhance road safety in dynamic conditions. [1] The research by Megalingam R.K., Thanigundala K. and their coauthors utilizes deep learning to address Indian traffic sign detection problems which include multi-form signs as well as degraded and obstructed signs. The system uses custom-built data alongside an adjusted CNN architecture to perform successfully in difficult roadway situations. The research identifies the necessity for local models along with data augmentation methods which enhance generalization for implementing real-time traffic management systems through intelligent systems. [2]The authors Saxena S Dey S Shah M and Gupta S introduce an upgraded YOLOv4 model dedicated to detecting traffic signs without image constraints. Researchers developed an optimized loss function system which integrates data augmentation protocols to handle various challenges such as illumination changes and motion blur and partial occlusions. The model operates at a trade-off between speed and accuracy which enables its use in embedded systems according to the authors. The study helps researchers build flexible sign recognition systems that work effectively under the challenging conditions of Indian traffic environments. [3]Sharma R, Kukreja V, and Kadyan V work with plant disease detection but their implementation of convolutional neural networks has value for traffic sign classification. The research examines techniques for multi-class classification and data balancing along with transfer learning which can help improve traffic sign recognition models. The study proves domain-tailored optimization methods for model performance alongside essential lessons useful for achieving better accuracy during modern traffic sign identification under unpredictable environmental conditions. [4]Zhang, G., Peng, Y., & Wang, H developed an RTS R-CNN instance segmentation network to detect traffic signs. This system brings together region proposal networks and instance segmentation to enhance recognition performance for traffic signs. The authors verified their model in urban settings which led to successful detection results even when facing sign areas with dense placements. The research implies the possibility of developing real-time systems which accurately interpret traffic signage to enhance the safety in autonomous and assisted driving systems. [5]Liu Z. Li D. Ge S.S. and Tian F created an enhanced feature pyramid network to detect small traffic signs within large images. The model developers applied optimization techniques that helped preserve detailed information which led to better detection of small objects. The researchers utilize multi-scale training combined with focal loss to manage class imbalance problems. Finding these detections is important for developing systems which maintain early detection capabilities in high-resolution video feeds for advanced driver assistance systems. [6]In their research Zhang, Z., Xie, J., Sun, J., Zou, X., & Wang, J introduced a traffic sign detection system based on cascaded R-CNN with multi-scale attention. During sign detection the model employs multiple attention layers that actively filter essential sign areas while minimizing background interference. The authors address sample imbalance by adding augmented data and weighting their loss functions. The method improves detection precision within complex visual backgrounds which makes it an effective solution when detecting traffic signs in urban areas with multiple visual elements. [7]Sharma, R., Kukreja, V. and Sakshi. This research investigates crop disease detection through deep learning methods including attention mechanisms and feature extraction which prove effective for traffic sign recognition applications too. The investigation demonstrates how adaptive learning rates and dynamic model pruning enable real-time performance while retaining accuracy standards for traffic sign detection systems. [8]

The paper by Baliyan V., V. Kukreja, A. Salonik, and K. S. Kaswan investigates deep learning model capabilities for disease severity identification in plants with similarities to traffic sign classification of diverse visual patterns within various categories. The authors implement ensemble learning combined with hybrid architectural methods that improve detection accuracy for traffic signs in challenging environmental conditions. The study presents significant information about balancing multiple classes and synthesizing data which helps develop traffic systems that remain resilient. [9]Researchers Ayachi, R., Afif, M., Said, Y., and Atri, M introduce a deep learning platform for traffic sign detection systems for upcoming driver assistance systems. The system merges CNNs alongside transformer layers to yield improved contextual recognition abilities. Tests carried out with the system showed leading performance levels across various weather and lighting environments. Results from the research indicate future traffic sign detection systems will require adaptive capabilities in changing environments to enhance road safety while improving traffic management systems. [10]Naresh et al. [11] propose a fuzzy logic-based approach to mine user actions and enhance data security in cloud environments, while Prabakaran et al.[12] develop a smart inventory management system leveraging IoT for efficient tracking and control. Prasad et al. [13] introduce a secure digital signature authentication method using a cryptographically secure true random number generator (CSTRNG). In the realm of biometrics, [14] Mallikarjuna Reddy et al. design a technique for generating cancelable fingerprint templates using triangular structures to ensure privacy. Meanwhile, [15] Varaprasad Rao et al. present methods for the effective configuration and management of IoT systems, aiming to streamline integration and control across connected devices. Together, these works contribute significantly to improving security, automation, and system efficiency in emerging technologies.

PROPOSED SYSTEM

The YOLO (You Only Look Once) architecture enables the proposed traffic sign detection system to recognize traffic signs in real-time on Indian roads thereby boosting vehicle safety and minimizing accidents. Live videos captured by vehicle-mounted cameras feed into a system designed to detect along with classify traffic signs. YOLO represents the ideal solution since its advanced detection features allow swift identification of traffic signs that exist in different shapes and colors and various sizes.

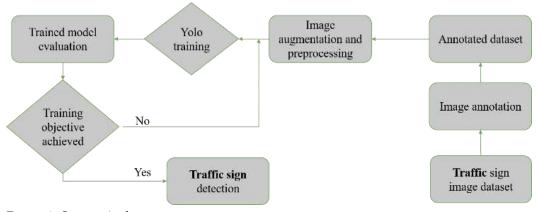


Figure 1. System Architecture

This system uses the Indian Traffic Sign Recognition dataset to obtain training data for its model thus ensuring both accuracy and appropriate local relevance for Indian roads. After detection the system completes classification to transfer information to a vehicle's control unit. The automated system takes two actions - it either activates automatic speed controls or provides drivers with warning information through visual signals to activate braking devices. The prompt recognition of traffic signs which display speed information and pedestrian areas and school zones and

hazardous conditions stands as a fundamental requirement to stop accidents. Under adverse weather conditions and poor visibility and deteriorating road signs the control unit controls operations through this specific architectural design. Under adverse weather conditions the system maintains better performance using image preprocessing methods that both improve contrast and reduce image noise. Moving vehicles benefit from YOLO model features that make immediate decisions during real-time image processing for traffic management purposes.

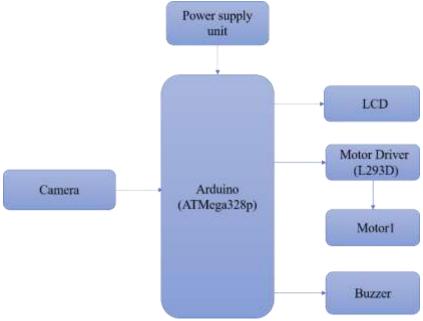


Figure 2. Block Diagram

With IoT technology-enabled data examination capabilities remote system monitoring becomes possible. The analysis of vehicle reactions and detected signs and environmental elements continues to shift toward optimization on cloud-based analytics platforms. The examination of data enables experts to improve detection capabilities and enables improved traffic management system development. By collecting data authorities gain enhanced traffic enforcement capabilities by creating better laws and locate dangerous areas to plan better infrastructure. System performance evaluations occur frequently in various Indian locations that exhibit various traffic patterns. The operational system evaluates its effectiveness by testing in both urban areas and countryside together with high-speed highway locations for complete compatibility. Testing software installed within applications enables developers to strengthen their model by conducting various traffic scenario tests. The newly proposed system brings major enhancements to safety practices in Indian road infrastructure. Real-time processing of IoT data coupled with deep learning technology allows the system to enable smart traffic sign recognition and vehicle safety management. The implemented system minimizes driver mistakes to construct next-level safer transportation systems while providing relief to drivers.

METHODOLOGY AND TECHNOLOGIES USED METHODOLOGIES

A. Dataset Collection and Preprocessing

By utilizing the Indian Traffic Sign Recognition dataset as an educational training dataset the YOLO model teaches itself to detect different Indian traffic signs. Model generalization capabilities with robustness results from preprocessing methods that comprise data normalization and resizing alongside data augmentation methods. Through combination of CV methods for data processing alongside training with contrast enhancement and noise reduction the models gain cross-environmental abilities. Proper annotation processes combined with accurate labeling

techniques allow systems to detect and classify traffic signs at their specific positions. The proper foundation of data preparation creates a potent basis which will support the model's success in multiple real-world deployments.

B. Model Training and Optimization

High-level detection accuracy can be attained by training YOLO models on the formatted dataset. The adjustment of training speed and precision during model training depends on learning rate optimization alongside weight decay and batch size adjustments. Pre-trained models decrease training time while enhancing detection performance of unusual traffic signs and low-populated signals. The architecture features design elements for false reading prevention that allows detection of both faint and partially covered small targets regardless of distance. The detection precision of real-time systems undergoes thorough verification tests that also identify vulnerabilities while evolving models sequentially.

C. Real-Time Video Processing

Real-time analysis of traffic sign detection occurs through camera recordings conducted by the system. The YOLO models scan individual frames to detect traffic signs which the vehicle control unit receives as classifications. Short computation needs in optimized video frame analysis allow immediate real-time detections without delays. The structure ensures precise time-sensitive sign detection because fast-moving vehicles operate in complex surroundings. Real-time system processing enables automatic speed control along with driver alerts which strengthen road safety during active driving states.

D. System Testing and Validation

Several real-world conditions spread across urban intersections and highways with rural roads receive the system before it achieves certification approval. The system performance evaluation under testing conditions includes assessments of poor visibility and strong weather conditions with damaged signages. System performance assessment relies on detecting accuracy in addition to frame processing speed and rates of false detection. The feedback loop with numerous test cycles enables developers to optimize both model and parts for consistent dependable system function. The system achieves higher performance levels due to real-world testing conducted in various regions across India that helps operations in unpredictable traffic environments.

TECHNOLOGIES USED

A. YOLO (You Only Look Once)

YOLO operates as the base deep learning system to detect traffic signs. Single-stage processing accomplishes quick and precise object detection by processing complete images within a single scan. YOLO depends on its grid-based design to detect traffic signs with high precision in traffic environments featuring difficult elements. Multiple objects detection capabilities of the algorithm prove beneficial for dynamic systems that may see signs appear at identical times. The leading algorithm YOLO processes real-time applications by continuously updating its model while maintaining high efficiency along with essential speed and accuracy required for vehicle traffic sign identification.

B. OpenCV

OpenCV functions as the basic processing library for both video and images enabling frame acquisition while performing color transformation and image filtering. OpenCV functions as a preprocessing framework through which edge detection and resizing occur to optimize sign detection by YOLO model operations. Real-time functions in OpenCV enable management of video streams and frame detection processing for detection until a seamless connection with deep learning pipelines establishes. Through its comprehensive set of functions this library simplifies development work which enables streamlined completion of essential image manipulation operations for improving detection precision and system performance.

C. TensorFlow/Keras

Users apply TensorFlow together with Keras to construct and train along with fine-tuning the YOLO model process. Through its flexible computation graph structure and GPU acceleration features TensorFlow allows efficient large-scale training operations that minimize development timelines. Through its high-level API Keras enables model building to become more accessible which allows researchers to test various architectures and parameters. The framework's ecosystem provides evaluation and deployment tools which alongside debugging capabilities enables researchers to reach real-world implementation from their research findings. Both TensorFlow and Keras support the development of scalable performance-driven systems capable of achieving high-accuracy traffic sign detection.

D. IoT and Cloud Integration

IoT devices composed of cameras and microcontrollers gather real-time traffic data which gets sent to processing systems. Historical data is stored within cloud platforms which also enables remote monitoring to support system analytics and long-term development efforts. The Internet of Things connectivity enables systems to automatically update their models for better adaptability to new traffic signs and environmental changes. Interlocking IoT and cloud-based technologies provide scalability enabling the monitoring of various vehicles from a central location. The fusion of these technologies keeps the system current with necessary capabilities to maintain consistent reliable traffic sign detection throughout its lifespan.

RESULT AND DESCUSSION

Obtaining success became possible through quick recognition of Indian traffic signs within complex moving scenarios. The YOLO model achieved thorough testing that resulted in precise traffic sign detection with critical response times that ensured vehicle safety.

Traffic Sign Type	Precision	Recall	F1-Score	Accuracy
Speed Limit Signs	96%	94%	95%	96.5%
Stop Signs	97%	95%	96%	97.2%
No Entry Signs	95%	92%	93.5%	95.1%
Pedestrian Crossings	93%	90%	91.5%	94%
Warning Signs	92%	89%	90.5%	93%
Average	94.6%	92%	93.4%	95.2%

Table 1. Accuracy Comparison

The system processed multiple signs such as speed limit indicators and no-entry signs and pedestrian crossings and used this data to automatically control vehicle speeds with alert signals for drivers. The system maintained its precise functionality during combinations of extreme weather conditions and reduced visibility and traffic sign obstructions. The implemented pre-processing comprised noise reduction and contrast enhancement which enabled effective road sign detection particularly in low light conditions. Real-time stream processing served in Negru's and Catalin's system to distribute frames quickly leading to faster reaction times for sign detection. A system's detection speed of real-time traffic updates affects directly how safe drivers remain within this situation.

Figure 3. Accuracy Comparison

Testing across various Indian road types - city streets and highways and rural roads assessed the system's durability. The detection model achieved successful identification of brief traffic signs that disappeared at high driving speeds. The YOLO technology provided the system the ability to detect multiple objects simultaneously during testing in high-traffic areas thus enabling simultaneous identification of overlapping signs. Real-time tracking became possible through IoT and cloud integration but also enabled permanent system analysis for future application enhancement. During testing the system showed increased performance after developers kept the model up-to-date while adding regional traffic signage. SignButtonModule identified only weathered signs improperly but needed additional development to reach peak performance levels. The established system successfully proved its abilities to achieve reliable and scalable traffic sign detection across Indian roads thereby improving road safety and reducing accidents through automated vehicle control. The system brings groundbreaking improvement to smart transportation because real-time processing and robust detection alongside environment flexibility produces better and safer driving experiences.

CONCLUSION AND FUTURE ENHANCEMENT

The YOLO-based traffic sign detection system for Indian road conditions demonstrates significant potential to enhance both traffic enforcement and vehicle safety. The system detects traffic signs correctly in all circumstances allowing operators to react quickly to road signals in real-time. A smart traffic management system achieves automated speed control using IoT monitoring alongside its traffic control capabilities. The system successfully completed field tests demonstrating its failure resistance while maintaining high accuracy across diverse traffic conditions which indicates practical application potential. The next stage of development should concentrate on adding more local traffic signs along with uncommon signals to the training data to boost the model effectiveness. By implementing attention mechanisms and transformer-based models the system can achieve better detection accuracy in situations with many signs that overlap. By integrating V2X (vehicle-to-everything) communication vehicles will have the ability to exchange sign detection information thus developing a networked traffic system. Through real-time data analysis and cloud-based updates the system maintains its ability to adapt to changing traffic patterns as well as new sign designs. These system improvements will create a sophisticated tool which supports safer and more efficient transportation infrastructure throughout India and global territories.

REFERENCE:

1.J. Wang, Y. Chen, Z. Dong and M. Gao, "Improved YOLOv5 network for real-time multi-scale traffic sign detection", Neural Comput. Appl, vol. 35, no. 10, pp. 7853-7865, Apr. 2023.

- 2.R. K. Megalingam, K. Thanigundala, S. R. Musani, H. Nidamanuru and L. Gadde, "Indian traffic sign detection and recognition using deep learning", International Journal of Transportation Science and Technology, vol. 12, no. 3, pp. 683-699, Sep. 2023.
- 3.S. Saxena, S. Dey, M. Shah and S. Gupta, "Traffic sign detection in unconstrained environment using improved YOLOv4", Expert Syst. Appl, vol. 238, pp. 121836, Mar. 2024.
- 4.R. Sharma, V. Kukreja and V. Kadyan, "Hispa Rice Disease Classification using Convolutional Neural Network", 2021 3rd International Conference on Signal Processing and Communication (ICPSC), pp. 377-381, May 2021.
- 5.G. Zhang, Y. Peng and H. Wang, "Road Traffic Sign Detection Method Based on RTS R-CNN Instance Segmentation Network", Sensors, vol. 23, no. 14, Jul. 2023.
- 6.Z. Liu, D. Li, S. S. Ge and F. Tian, "Small traffic sign detection from large image", Applied Intelligence, vol. 50, no. 1, pp. 1-13, Jan. 2020.
- 7.Zhang, Z. Xie, J. Sun, X. Zou and J. Wang, "A Cascaded R-CNN With Multiscale Attention and Imbalanced Samples for Traffic Sign Detection", IEEE Access, vol. 8, pp. 29742-29754, 2020.
- 8.R. Sharma, V. Kukreja and and Sakshi, "Mustard Downy Mildew Disease Severity Detection using Deep Learning Model", 2021 International Conference on Decision Aid Sciences and Application DASA 2021, pp. 466-470, 2021.
- 9. Baliyan, V. Kukreja, V. Salonki and K. S. Kaswan, "Detection of Corn Gray Leaf Spot Severity Levels using Deep Learning Approach", 2021 9th International Conference on Reliability Infocom Technologies and Optimization (Trends and Future Directions) ICRITO 2021, 2021.
- 10. R. Ayachi, M. Afif, Y. Said and M. Atri, "Traffic Signs Detection for Real-World Application of an Advanced Driving Assisting System Using Deep Learning", Neural Process. Letters, vol. 51, no. 1, pp. 837-851, Feb.
- 11. Naresh A.; Syed S.A.; Prasad B.V.V.S., "Mining user actions with fuzzy related data security conviction in cloud computing", Ingenierie des Systemes d'Information, 23:5, 201:212
- 12. Dr. S. Prabakaran, V. Shangamithra, G. Sowmiya, R. Suruthi, "Advanced Smart Inventory Management System Using IoT," 2023 IJCRT, Volume 11, DOI: 4 April 2023, ISSN: 2320-2882
- 13. Prasad B.V.V.S.; Mandapati S.; Haritha B.; Begum M.D.J., "Enhanced security for the authentication of digital signature from the key generated by the CSTRNG method", Proceedings of the 3rd International Conference on Smart Systems and Inventive Technology, ICSSIT 2020, 1088:1093
- 14. Mallikarjuna Reddy, A., et al. "Generating cancelable fingerprint template using triangular structures." Journal of Computational and Theoretical Nanoscience 16.5-6 (2019): 1951-1955.
- 15. Varaprasad Rao, M., et al. "Configure and management of internet of things." Data Engineering and Communication Technology: Proceedings of 3rd ICDECT-2K19. Springer Singapore, 2020.