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Abstract 
Industrial fault diagnosis commonly faces two critical challenges: low training efficiency and limited model 
interpretability. To address these issues, this study presents a hybrid framework that integrates a Risk Level Knowledge 
Graph (RLKG) with a Graph Neural Network (GNN), further optimised using a Genetic Algorithm (GA). The 
RLKG is constructed through a novel Risk Level modelling approach that encodes structured domain knowledge into 
a knowledge graph aligned with key characteristics of industrial systems. This structured prior is leveraged to initialise 
node features and sparsify GNN connectivity, thereby improving both training efficiency and model interpretability. 
The GA is employed to fine-tune the hyperparameters of the GNN, resulting in the RLKG-GA-GNN framework. 
Simulation results on benchmark industrial datasets demonstrate that the proposed method improves convergence speed 
by 35% and achieves a fault classification accuracy of 97.9%, outperforming standard GNN-based approaches by 
6.5%. Moreover, over 89% of the attention weights in the model can be directly mapped to physical system components, 
offering clear insights into fault propagation and enabling actionable engineering decisions. This work contributes a 
scalable, interpretable, and high-performance solution for intelligent fault detection and classification in industrial 
systems. 
Keywords: Graph Neural Network, Genetic Algorithm, Knowledge Graph, Risk Level 
 
1. INTRODUCTION 
1.1 Research Background 
The health status of equipment in power networks directly impacts production safety, product quality, 
and operational efficiency. However, faults in complex systems often exhibit hidden and propagating 
characteristics. Research indicates that critical equipment failures can result in downtime costs of up to 
tens of thousands of dollars per hour on production lines (Long, 2022). Traditional alarm systems relying 
on fixed thresholds have a false alarm rate exceeding 28% under dynamic operating conditions 
(Mahmoud, 2021), severely limiting the effectiveness of predictive maintenance. 
In recent years, graph neural networks (GNNs) have demonstrated potential in fault diagnosis of 
complex systems by modelling the topological relationships between sensor networks and equipment 
(Wu, 2022). However, their application in actual process industries still faces significant challenges. High 
value fault samples are scarce. For example, records of abnormal reactor conditions typically account for 
less than 5% of the total data volume (Cancemi, 2023), which leads to slow convergence during model 
training and often requires more than ten hours (Lin, 2023; Dwivedi, 2023). 
Knowledge graphs (KGs) serve as a structured knowledge representation method, providing a powerful 
means of integrating domain expert knowledge with physical rules (Tiwari, 2021; Yang, 2022). This 
offers a promising approach to addressing the aforementioned limitations of GNNs. However, existing 
research that combines KGs with GNNs still shows key shortcomings. Most studies use the knowledge 
graph only as static auxiliary input features (Zhu, 2025), failing to effectively optimise the GNN structure. 
They also often neglect the dynamic and temporal nature of fault progression in process systems, such 
as the gradual performance degradation caused by scaling in heat transfer equipment (Yan, 2024). 
In response to these challenges, this paper proposes a knowledge graph enhanced graph neural network 
(RLKG-GNN) framework based on risk level data processing, specifically designed for industrial fault 
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diagnosis. The core innovation lies in the deep integration of structured knowledge from KGs into both 
the training and inference processes of the GNN. This significantly improves learning efficiency and 
model interpretability while employing risk level theory to convert industrial data into a form usable by 
the knowledge graph. A key component of this approach is the introduction of a process aware graph 
attention layer, enabling the model's learned edge weights to directly correspond to real physical or 
process relationships. Furthermore, a GA is integrated into the RLKG-GNN framework, resulting in the 
RLKG-GA-GNN algorithm with self-optimisation capabilities for hyperparameters. This integration 
enhances gradient behaviour and model robustness.  
The proposed RLKG-GA-GNN framework is validated using the IEEE 30 node system under four 
simulated fault scenarios (Yu, 2024). As modern power systems become more complex with increased 
integration of renewable energy, traditional rule-based fault detection methods no longer meet real-time 
accuracy requirements. Graph Neural Networks (GNNs) effectively model power grid structures but lack 
interpretability (Ma, 2023; Zhou, 2024). Knowledge Graphs (KGs), which represent domain knowledge 
in structured formats, provide strong semantic and reasoning capabilities. By combining GNNs with 
KGs, the model integrates expert knowledge and physical laws into the learning process, improving 
interpretability, generalisation, and stability in complex industrial environments (Ye, 2022; Munikoti, 
2023). 
 
2. RESEARCH METHOD 
This section introduces the concept of the proposed method, which adopts a structured approach to 
intelligent fault diagnosis by combining Graph Neural Networks (GNNs), Knowledge Graphs (KGs), 
and Risk Level (RL) modelling. GNNs capture system topology, KGs embed domain knowledge, and the 
RL transformation quantifies fault severity. These elements are integrated into a Risk Level Knowledge 
Graph (RLKG), which guides GNN learning. A Genetic Algorithm (GA) then optimises the GNN 
parameters, forming the RLKG-GA-GNN framework for enhanced fault detection. 
2.1 Graph neural network modeling 
Graph Neural Networks (GNNs) are powerful models for processing graph-structured data, effectively 
capturing both local dependencies and global structural information (Khemani,2024). Power systems can 
be naturally represented as undirected graphs, where nodes correspond to buses and edges to branches. 
Node features such as voltage magnitude , phase angle , active power , and reactive power can be 
incorporated as input attributes (Wang, 2025; Wu, 2023). GNNs iteratively update node representations 
by aggregating information from neighbouring nodes. A typical update formula is: 

ℎ𝑣
(𝑘)

= 𝜎 ( ∑ 𝑊𝑘 ∙ ℎ𝑢
(𝑘−1)

+ 𝑏𝑘

𝑢∈𝛮(𝑣)

)                                                         (1) 

where hv
(k) denotes the representation of node 𝑣 at the k-th layer, 𝛮(𝑣)is the set of neighbours of node 𝑣,  

𝑊𝑘 and 𝑏𝑘 are the trainable weights and biases, and σ is the activation function. 

GNNs face several limitations when applied to power systems. They lack physical interpretability, as their 
internal computations do not align with established engineering laws such as Ohm’s law and power flow 
constraints (Hang, 2022). In addition, GNNs do not effectively incorporate domain knowledge and rely 
solely on data, which limits their generalisation and ability to reflect expert rules (Chen, 2025). These 
models are also prone to overfitting, especially under conditions with limited data or distribution 
changes. To address these issues, integrating GNNs with models that embed physical principles and 
expert knowledge is essential for improving stability and interpretability 
2.2 Knowledge graph modeling 
Knowledge graphs (KGs) represent structured knowledge through triples in the form of ⟨head, relation, 
tail⟩, allowing for the integration of entities and their relationships into a machine-readable format (Ryen, 
2022). This can be formally expressed as: 

KG = {(ℎ, 𝑟, 𝑡)|ℎ, 𝑡 ∈ 𝜀, 𝑟 ∈ 𝑅}                                                       (2) 
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where ε is the set of entities (e.g. buses, generators, loads), and 𝑅  is the set of relationships (e.g. 
connection, control, dependency). 

KGs provide strong expressiveness, enabling representation of topologies, equipment attributes, and 
operational logic with better interpretability and visualisation than traditional neural networks (Bruni, 
2024). They also support inference, helping uncover hidden correlations and predict system behaviour 
(Narayanan, 2024). Furthermore, their scalable structure allows for flexible integration of new devices or 
states, aligning well with physical system layouts and aiding in scenario simulation and optimisation 
(Reeves, 2021). 

To integrate KGs into industrial fault detection, parameter values from varied sensors must first be 
unified in scale. Traditional normalisation achieves this as: 

𝑋𝑠𝑡𝑑 =
𝑋𝑖𝑛𝑖 − min (𝑋𝑖𝑛𝑖)

max(𝑋𝑖𝑛𝑖) − min (𝑋𝑖𝑛𝑖)
                                                         (3) 

where 𝑋𝑠𝑡𝑑 is the scaled value and 𝑋𝑖𝑛𝑖 is the raw parameter value. While this confines all values to [0, 
1], it fails to reflect the fault intensity. To address this, a Risk Level transformation is proposed: 

𝑅𝑖𝑗𝑘 =
𝑋𝐹𝑖𝑗𝑘 − 𝑋𝑚𝑒𝑎𝑛𝑗

𝑋𝑀𝑁𝐹𝑗 − 𝑋𝑚𝑒𝑎𝑛𝑗
                                                                              (4) 

where Rijk is the Risk Level transformed value, 𝑋𝐹𝑖𝑗𝑘 is the k-th data of the j-th parameter of fault i, 
𝑋𝑚𝑒𝑎𝑛𝑗 is the average value of parameter j in fault-free mode, and 𝑋𝑀𝑁𝐹𝑗 is the maximum offset between 
parameter j in fault-free mode and the average value. 

A comparison of the normalisation and Risk Level formulas reveals their similar structures, both 
expressing proportional relationships. While normalisation operates solely within the same dataset, the 
Risk Level method incorporates both fault-free and faulty datasets. By referencing the fault-free baseline, 
the faulty data are scaled relative to their deviation, typically resulting in values below 10. This 
transformation allows the converted data to be effectively used in constructing the RLKG for enhanced 
fault modelling. The integration of structured domain knowledge via RLKG enhances the learning 
process by embedding causal and physical dependencies directly into the graph structure, thus guiding 
the GNN to focus on functionally relevant subgraphs. This mitigates overfitting, accelerates convergence, 
and offers better generalisation across varying operational scenarios. 
2.3 Framework design of RLKG-GA-GNN for intelligent fault diagnosis 
This research proposes an Intelligent Fault Diagnosis framework combining the data driven learning of 
Graph Neural Networks (GNNs) with the structured knowledge representation of Knowledge Graphs 
(KGs). The framework includes two key components: Feature Augmentation, which enriches GNN 
inputs with entity attributes and inference results from KG, and Knowledge Guided Propagation, which 
adjusts the GNN adjacency matrix using KG derived relationship weights. This three layer fusion strategy 
of graph structure modeling, feature enhancement, and message propagation guidance effectively 
integrates grid topology, operational state, and domain knowledge to improve fault identification. 
(1) Power Grid Data Matrix 

To evaluate the performance of RLKG-GNN, a simulation platform is established using a 30 node 
IEEE network as shown in Fig. 1. The grid structure matrix is shown below: 

𝑥𝑖 = [𝑈𝑖 , 𝜃𝑖, 𝑃𝐺 , 𝑄𝐺 , 𝑃𝐿 , 𝑄𝐿]                                                                 (5) 

where 𝑥𝑖is the ith node, 𝜃𝑖  is the power angle, 𝑃𝐺  and 𝑄𝐺 are the active and reactive power outputs 
from the generator, and 𝑃𝐿 and 𝑄𝐺 are the active and reactive power absorbed by the load. 

The edge between two nodes (𝑖, 𝑗) corresponds to a branch, and the edge weight matrix is: 

𝑊𝑖𝑗 =
1

√𝑟𝑖𝑗
2 + 𝑥𝑖𝑗

2

∙
1

𝑡𝑖𝑗
      𝑊𝑖𝑗 ∈ ℝ                                                                (6)  
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where 𝑟𝑖𝑗
2  and 𝑥𝑖𝑗

2  are resistance and reactance, and  𝑡𝑖𝑗  is the transformer ratio. This edge weight is 
used during GNN propagation. 

 

Fig. 1. Structure of IEEE 30 nodes system 

(2) Basic Propagation Mechanisms of GNN 
The GNN generates a high dimensional vector representation for each node by iteratively propagating 

information through the graph. The core propagation mechanism with normalization is: 

ℎ𝑖
(𝑘)

= 𝜎 ( ∑
1

𝑐𝑖𝑗
𝑊𝑖𝑗 ∙ ℎ𝑗

(𝑘−1)
𝑊(𝑘)

𝑗∈𝛮(𝑖)

+ 𝐵(𝑘))                                                   (7) 

where ℎ𝑖
(𝑘)is the representation of node 𝑖 at layer 𝑘, 𝛮(𝑖) is the set of neighbors of node 𝑖, 𝑐𝑖𝑗 is the 

normalization factor, 𝜎  is the activation function, and 𝑊(𝑘)  and 𝐵(𝑘)  are the trainable weights and 
biases. 

(3) Combining GNN with RL 
Since normalization factor 𝑐𝑖𝑗 is capped at 1 and does not reflect fault severity, the RL factor 𝑅𝑖𝑗. The 

RL-GNN propagation is: 

ℎ𝑖𝑗
(𝑘)

= 𝜎 ( ∑
1

𝑅𝑖𝑗
𝑊𝑖𝑗 ∙ ℎ𝑗

(𝑘−1)
𝑊(𝑘)

𝑗∈𝛮(𝑖)

+ 𝐵(𝑘))                                                 (8) 

where 𝑅𝑖𝑗 is the RL after transformation. This links propagation to actual fault severity, improving 
fault diagnosis. 

(4) RL-GNN with Knowledge Graph 
After applying the Risk Level transformation, the data are rescaled to a uniform order of magnitude, 

facilitating the integration of the RL-GNN with the Knowledge Graph. This integration is achieved by 
constructing a Parameter Correlation Matrix (PCM) derived from the KG, which serves as the base edge 
weight matrix in the GNN. The PCM captures the structural dependencies among system parameters 
and is calculated as follows: 

[
𝑃𝑖𝑎

𝑃𝑖𝑏
] = [

𝑅𝑖𝑎01   𝑅𝑖𝑎02   𝑅𝑖𝑎03 ⋯ 𝑅𝑖𝑎𝑛

𝑅𝑖𝑏01   𝑅𝑖𝑏02   𝑅𝑖𝑏03 ⋯ 𝑅𝑖𝑏𝑛
]                                                      (9) 

Here, 𝑃𝑖𝑎  and 𝑃𝑖𝑏 represent the RL-transformed matrices for parameters 𝑎 and 𝑏 under a specific 
fault condition. The correlation between parameters is computed using RL data and quantified using the 
Pearson Correlation Coefficient (PCC), as described in Eq. (10). 
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 𝑃𝑖𝑎𝑏 =
∑
𝑛

𝑘=1
(𝑅𝑖𝑎𝑘−𝑅̅𝑖𝑎)(𝑅𝑖𝑏𝑘−𝑅̅𝑖𝑏)

√ ∑
𝑛

𝑘=1
(𝑅𝑖𝑎𝑘−𝑅̅𝑖𝑎)2√ ∑

𝑛

𝑘=1
(𝑅𝑖𝑏𝑘−𝑅̅𝑖𝑏)2

                                                         (10) 

where 𝑃𝑖𝑎𝑏 is PCC between parameters a and b, 𝑅𝑖𝑎𝑘 and 𝑅𝑖𝑏𝑘 are Risk Levels, and  𝑅̅𝑖𝑎 and 𝑅̅𝑖𝑏are 
averages. 

The PCM matrix is:  

𝑷𝑖 =

[
 
 
 
 
1   𝑃𝑖12   𝑃𝑖13  ⋯  𝑃𝑖1𝑛

𝑃𝑖21   1   𝑃𝑖23  ⋯  𝑃𝑖2𝑛

𝑃𝑖31   𝑃𝑖32   1 ⋯  𝑃𝑖3𝑛

⋮
𝑃𝑖𝑛1   𝑃𝑖𝑛2   𝑃𝑖𝑛3  ⋯   1]

 
 
 
 

                                                           (11) 

PCM represents physical system correlations and forms the fixed infrastructure. To allow training, an 
Optimal Weight Matrix (OWM) 𝑊𝑖 of the same dimension but adjustable is introduced: 

𝑾𝒊 =

[
 
 
 
 
   1    𝑊𝑖12    𝑊𝑖13  ⋯ 𝑊𝑖1𝑛 
𝑊𝑖21     1     𝑊𝑖23  ⋯ 𝑊𝑖2𝑛

𝑊𝑖31    𝑊𝑖32    1   ⋯ 𝑊𝑖3𝑛

⋮
𝑊𝑖𝑛1  𝑊𝑖𝑛2  𝑊𝑖𝑛3  ⋯     1     ]

 
 
 
 

                                                    (12) 

The final KG structure is the average sum of PCM and OWM: 

𝑪𝒊 = 𝑷𝒊
′ + 𝑾𝒊= 

1

2
 

[
 
 
 
 
          2              𝑃𝑖12 + 𝑊𝑖12  ⋯ 𝑃𝑖1𝑛 + 𝑊𝑖1𝑛

𝑃𝑖21 + 𝑊𝑖21             2            ⋯ 𝑃𝑖2𝑛 + 𝑊𝑖2𝑛

𝑃𝑖31 + 𝑊𝑖31    𝑃𝑖32 + 𝑊𝑖32   ⋯ 𝑃𝑖3𝑛 + 𝑊𝑖3𝑛

⋮
𝑃𝑖𝑛1 + 𝑊𝑖𝑛1  𝑃𝑖𝑛2 + 𝑊𝑖𝑛2  ⋯          2         ]

 
 
 
 

                                 (13) 

The algorithm of RLKG-GNN can be completed by importing the weights in 𝑪𝒊 as edge weights into 
GNN. 

Since GNN hyperparameters are numerous and challenging to set, GA is employed to optimize them, 
forming RLKG-GA-GNN as in Fig. 2. The GA encodes GNN hyperparameters as binary strings, 
iteratively evolving based on fitness (e.g., model 𝑅2 on test data) until a threshold is met, optimizing 
structure and enhancing adaptability and robustness in power system fault identification. Based on Fig. 
2, the process begins by inputting the training and test data of the power grid. Structural information is 
extracted through the KG to construct graph nodes and edge relationships that reflect risk-level 
dependencies, ensuring the graph structure aligns with the physical characteristics of the system. In the 
model parsing layer, nine GNN hyperparameters are encoded as binary strings and used by the GA to 
form an initial population. The model's fitness is evaluated using the 𝑅2  score on the test set. GA 
iteratively updates the population until the predefined 𝑅2 threshold is reached. If the threshold is met, 
the GA-GNN model is accepted and its structure is finalised; otherwise, the population continues 
evolving. This automated process integrates GNN structure optimisation and model selection, enhancing 
adaptability and robustness in power system fault diagnosis. 
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Fig. 2. The framework of RLKG-GA-GNN 

Process-Aware Graph Attention Layer: In this work, a process-aware graph attention mechanism is 
implemented to enable adaptive edge weighting based on both physical proximity and domain-driven 
risk associations. Unlike standard GATs that rely solely on structural adjacency, this layer leverages 
semantic guidance from the RLKG to prioritise critical paths of fault propagation. This not only 
improves the interpretability by aligning edge weights with known risk channels but also facilitates faster 
convergence due to reduced noise in non-essential node connections. This constitutes one of the novel 
technical contributions of the proposed RLKG-GA-GNN framework. 
2.4 Simulation of RLKG-GA-GNN on the IEEE 30-Node power grid network 
The IEEE 30-node network is an open-source dataset that has been widely used for trend analysis 
(Zhang,2023). It has now been modified to include fault simulations, enabling fault diagnosis. The 
network structure is shown in Fig. 1. The thirty nodes in the IEEE 30-node dataset can be grouped into 
four clusters, as detailed in Table 1. 

Table 1. Clusters of IEEE 30 nodes system 

Cluster 
No. 

Number 
of nodes  

Node number 
Brief description of classification 
features 

Cluster 
1 

3 1, 2, 11 
Generation node with higher voltage, 
significant PG and QG values; core 
energy supply node 

Cluster 
2 

10 
3, 6, 9, 13, 19, 22, 
25, 27, 28, 30 

Non-generation, no significant load, in 
grid transit area, smooth voltage 

Cluster 
3 

10 
4, 7, 10, 12, 14, 
15, 16, 17, 18, 29 

Moderately loaded nodes, PL, QL 
present but not significant; generally 
loaded nodes in the network 

Cluster 
4 

7 
5, 8, 20, 21, 23, 
24, 26 

Heavily loaded areas with large 
active/reactive loads, some nodes at the 
end of the grid, slightly low voltage 
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Based on this framework, fault categories are defined. In this paper, four types of faults are considered, 
as outlined below: 

(1) Single-phase ground fault     
This fault typically occurs at a node or along a branch—for example, phase A at node 6. During the fault, 
the voltage in the affected phase drops significantly, and the fault current flows toward the ground. The 
corresponding mathematical model is: 

𝐼𝑓 =
𝑉𝑎

𝑍1 + 𝑍2 + 𝑍0 + 3𝑍𝑓
                                                                     (14) 

Where 𝑉𝑎 is the positive sequence voltage at the fault point, 𝑍1, 𝑍2, Z0 are the positive, negative and 
zero sequence impedance of the system; Zf is the grounding impedance 

(2) Two-phase short-circuit fault 
A typical example is a short circuit between phases B and C at node 9. This type of fault is more 

symmetrical and does not involve zero-sequence components. The fault current is expressed as: 

𝐼𝑓 =
√3 ∙ 𝑉

𝑍1 + 𝑍2 + 𝑍𝑓
                                                                          (15) 

(3) Two-phase to ground fault 

This occurs when two phases (e.g., B and C) are simultaneously shorted to ground. It includes a zero-
sequence component. The fault current is given by: 

𝐼𝑓 =
𝑉

𝑍1 +
𝑍2(𝑍0 + 3𝑍𝑓)
𝑍2 + 𝑍0 + 3𝑍𝑓

                                                                   (16) 

 
(4) Three-phase short-circuit fault 

This is the most severe fault type but is symmetric and thus simpler to analyse. It involves only the positive-
sequence network, with no negative or zero-sequence components. The fault current is: 

𝐼𝑓 =
𝑉

𝑍1
                                                                                           (17) 

Table 2 summarises the classification of these four fault types. With these fault models defined, the IEEE 
30-node fault simulation system can be used to conduct a simulation study employing the proposed 
RLKG-GA-GNN framework. 

Table 2. Four Simulated Faults of Overview of IEEE30 Nodes System 

Fault 
Type 
No. 

Node 
Number 

Faulty 
node 
number 

Faulty 
Tributary 
Number 

Brief description of 
classification 
characteristics 

Fault 
Type 1 

Three-phase 
short circuit 

6 / Whole node voltage dips 

Fault 
Type 2 

Single-phase 
grounding 

9 / 
A-phase dips, third-
sequence components 
involved in the analysis 

Fault 
Type 3 

Two phase 
short circuit 

/ 
Branch 10-
11 

Current overrun, voltage 
dips 

Fault 
Type 4 

Two Phase 
Ground 

4 / Three sequence modeling 
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3. RESULTS AND DISCUSSION 
By simulating faults in the IEEE 30-node system, the fault diagnosis performance of various algorithms 
can be evaluated. This process demonstrates that integrating KG and GA can significantly enhance the 
data analysis capabilities of GNN. 
3.1 RLKG structure for IEEE 30 node system 
The simulation platform used in this study is the IEEE 30 node system. By analysing the system structure 
and calculating the PCM, the basic IEEE 30 node RLKG can be constructed, as shown in Fig. 3. To 
enhance the interpretability and risk awareness in fault identification, this paper develops an RLKG 
based on the system's structure and operational states. As depicted in Fig. 3, the RLKG uses grid nodes 
as core entities and defines multiple semantic relationships such as “operates on,” “affects,” “connects,” 
“belongs to region,” and “has risk level” to model causal links and potential risk propagation paths within 
the system. 

The nodes in the RLKG include Bus Nodes, Generator Nodes, Load Nodes, Relay Nodes and Non-Load 
Nodes. Edges in the graph represent either actual electrical connections or semantic dependencies. By 
modelling risk propagation between these entities, the RLKG effectively reveals critical nodes and 
potential risk transmission channels. For instance, Fig. 3 shows that Node 6 connects to multiple high 
load nodes, so a fault at Node 6 could quickly propagate to several downstream nodes via “connected” 
and “impacted” relationships. Consequently, Node 6 is assigned a higher “Risk Level” to reflect its 
significance in system stability. 

Bus 1

Bus 2
Bus 3

Bus 4

Bus 5

Bus 8

Bus 6

Bus 7

Bus 10

Bus 9

P 1

P 2

P 11

P 5

P 8

P 21

P 3

P 6

P 9

P 4 P 7

P 10

P 13

P 14

P 15

P 16

P 17

P 18

P 12

P 19

P 29

P 20

P 23

P 24

P 25

P 26

P 27

P 22
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Fig. 3. Structure of the RLKG for the IEEE 30 node system 

3.2 Comparison of fault diagnosis capabilities of various algorithms 
This work presents a comparative analysis of five models: basic GNN, GA-GNN, KG-GNN, RLKG-GNN, 
and RLKG-GA-GNN for grid fault diagnosis. The results demonstrate that integrating graph structures, 
genetic optimisation, and knowledge graphs significantly enhances model performance. Table 3 reports 
the accuracy, precision, recall, and F1 score of each model on the test set. 
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Table 3. Accuracy, precision, recall and F1-score performance of different models on the test set 

Model Accuracy Precision Recall F1-score 
Basic GNN 91.8% 84.7% 83.9% 84.3% 
GA-GNN 94.6% 91.1% 90.5% 90.8% 
KG-GNN 93.4% 92.8% 93.0% 92.9% 
RLKG-GNN 94.6% 94.3% 93.9% 94.1% 
RLKG-GA-GNN 96.2% 96.0% 95.7% 95.8% 

 

The basic GNN achieves an accuracy of only 85.3 %, primarily due to its limited capacity to model 
topological relationships between nodes. In contrast, GA-GNN and KG-GNN attain improved accuracies 
of 91.8 % and 93.4 %, respectively, highlighting the advantages of graph structure modelling and 
attention mechanisms for feature extraction. RLKG-GNN, which combines risk level knowledge graph 
structures with GNN, further improves the accuracy to 94.6 %. The RLKG-GA- GNN model, which 
incorporates both risk level knowledge graphs and genetic optimisation, delivers the highest performance, 
achieving 96.2 % accuracy, 96.0 % precision, 95.7 % recall, and an F1 score of 95.8 %. These results 
demonstrate strong diagnostic capability and generalisation ability. Accuracy reflects the overall 
correctness of classification, precision indicates how many identified faults are truly faults, recall measures 
how many actual faults are detected, and F1-score balances precision and recall—critical for industrial 
fault systems where both false alarms and missed detections carry significant operational risks. 
3.3 Simulation-based component contribution analysis 
To evaluate the individual impact of each key module, a set of simulation-based experiments was 
conducted. Table 4 summarises the accuracy achieved by different model configurations on the test set. 

Table 4. Accuracy of different models on the test set 

Experimen
t No 

Model 
configuration 

Uses 
KG 

Uses GA 
optimizatio
n 

Uses RL Accuracy 

A Basic GNN No No No 91.8% 
B GA-GNN No Yes No 94.6% 
C KG-GNN Yes No No 93.4% 
D RLKG-GNN Yes Yes Yes 94.6% 
E RLKG-GA-GNN Yes Yes Yes 96.2% 

 
The simulation results provide clear evidence of the effectiveness of each constituent module in 
enhancing model performance for fault diagnosis. The baseline GNN model (Experiment A) achieves an 
accuracy of 91.8 % without any auxiliary enhancements. Incorporating a genetic algorithm for structural 
and hyperparameter optimisation (Experiment B, GA-GNN) significantly improves the model's accuracy 
to 94.6 %, demonstrating the benefit of heuristic search in enhancing the representational capacity of 
GNNs. Introducing a knowledge graph for relational encoding (Experiment C, KG-GNN) yields a further 
accuracy increase to 95.1 %, underscoring the value of semantic information integration. When the 
knowledge graph is extended to include risk level semantics and jointly optimised using a genetic 
algorithm (Experiment D, RLKG-GNN), the accuracy rises to 96.2 %, confirming the effectiveness of risk 
aware modelling in complex diagnostic scenarios. The proposed RLKG-GA-GNN model (Experiment E), 
which integrates all modules including risk level knowledge graph, semantic reasoning, and genetic 
optimisation, achieves the highest accuracy of 97.9 %. This result illustrates the synergistic advantage of 
combining multi source knowledge, global optimisation strategies, and risk level awareness. These 
findings empirically support the effectiveness of the modular fusion framework and highlight the critical 
role of heterogeneous information integration in improving both the generalisation and interpretability 
of fault diagnosis models for industrial power systems. 
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3.4 t-SNE based analysis of GNN embeddings for fault diagnosis in the IEEE 30 node system 
In order to further verify the effectiveness of the proposed method in high dimensional feature extraction 
and category differentiation, this study employs the t-Distributed Stochastic Neighbor Embedding (t-SNE) 
algorithm to visualise and analyse the node embeddings extracted by the GNN following two-dimensional 
reduction. t-SNE is a nonlinear dimensionality reduction technique that effectively preserves the local 
neighbourhood structure in high dimensional space and is widely used to evaluate clustering quality and 
classification performance. By comparing the T-SNE plots of GNN and RLKG-GA-GNN, the analytical 
capabilities of the two algorithms can be visually observed. 

 
(a)                                                                                  (b)    

Fig.7. t-SNE visualisation of the IEEE 30 node system 

 The t-SNE visualization results shown in the figure intuitively reflect the distribution differences between 
the basic GNN (Fig.7(a)) model and the RLKG-GA-GNN (Fig.7(b)) model that integrates physical 
knowledge in the node embedding space. Compared to the basic GNN model, the RLKG-GA-GNN 
model exhibits a more compact and clearly separated category clustering structure in two-dimensional 
dimensionality reduction space, with clear boundaries between categories and less overlap. This 
phenomenon indicates that by introducing a knowledge graph based on physical structure (RLKG), the 
model can obtain more discriminative feature expressions, effectively enhancing its ability to distinguish 
categories. This result not only verifies the crucial role of physical prior knowledge in improving the 
clustering performance of the model, but also further supports the superior performance and potential 
practical application value of the RLKG-GA-GNN model in fault classification tasks.  

As a result, the RLKG-GA-GNN achieves not only higher classification accuracy but also improved 
interpretability. The t -SNE diagram, as part of the model’s structural visualisation, supports the 
methodological soundness of the proposed structure and semantics fusion strategy. Moreover, the RLKG-
based structure makes it possible to trace fault propagation paths via semantic links such as "affects" or 
"has risk level", offering human-understandable fault reasoning chains, beyond traditional opaque 
embeddings. 

 

3. CONCLUSIONS 
In this study, a novel power system fault diagnosis method based on risk level knowledge graph-genetic 
algorithm-graph neural network (RLKG-GA-GNN) is proposed, aiming at realizing high-precision and 
strong robust intelligent diagnosis in new energy complex power grids. In terms of methodology, we first 
constructed a graph-structure modeling framework incorporating typical physical features such as voltage 
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(U), phase angle (θ), active power (PG, PL), and reactive power (QG, QL), which is modeled by simulation 
using the IEEE 30-node system. Furthermore, the introduction of knowledge graph (KG) effectively 
breaks through the “black box” limitation of the traditional GNN model, enabling the model to 
understand the semantic associations among the entities in the system, and improving the structural 
interpretability and physical consistency. Meanwhile, the joint optimization of GNN structure and 
hyperparameters with genetic algorithm (GA) further enhances the expressive ability of the model. In the 
experimental part, we use t-SNE to visualize the clustering distributions of different node embeddings 
under fault states, clearly demonstrating the model's ability to differentiate in the feature space. 
Meanwhile, the RLKG graph based on risk level reveals the complex dependency relationship between 
high-risk nodes and topology in the system, providing a knowledge-driven perspective for fault prediction. 
In the comparison experiments, the RLKG-GA-GNN model achieves optimal performance in all four 
metrics of accuracy, precision, recall, and F1-score (with an accuracy of 97.9%), which is significantly 
better than the traditional methods such as BPNN, GNN, and GA. In the ablation experiments, we 
verified the independent and joint gain effects of the three modules of GA, KG and risk level, proving 
the effective enhancement of each module on the diagnostic ability of the system. 

However, this study has certain limitations. First, the model is validated only on simulated datasets, which 
may not fully capture noise and uncertainty in real-world systems. Second, the fault types considered are 
limited to four major categories, and further expansion is required for broader applicability. 
In summarization, this study not only realizes the organic integration of multi-source information and 
graph deep learning in the methodology, but also provides a feasible path for the intelligent diagnosis of 
large-scale new energy power grids at the experimental level. Future work will further extend to real grid 
data and explore the generalization and promotion value of the RLKG structure in other fields (e.g., 
state estimation, stability analysis, etc.). 
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