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Abstract: Tropical cyclones (TCs) are severe weather phenomena that can significantly affect human lives. These 

events can lead to calamities characterized by strong sustainable winds and enormous waves. We proposed an 

architecture based on convolutional neural networks (CNNs) to tackle this problem. This method makes use of cyclone 

infrared images. Using customized FCL architectures, we used transfer learning and fine-tuning on CNN architectures 

such as VGG16, VGG19, and ResNet50, both with and without data augmentation. Fine-tuning involved 4 layers 

of VGG16, 8 layers of VGG19, and 12 layers of ResNet50 to capture cyclone features effectively. The CNN models 

were used to these architectures to extract features, and the resulting feature maps were fed to various combinations 

of Fully Connected Networks (FCL). The most optimistic results were achieved with the VGG16 + FCL (128 x 64 

x 1) architecture through transfer learning, producing a Mean Absolute Error (MAE) of 7.51 kts, Root Mean Square 

Error (RMSE) of 9.63 kts, and an R2 Score of 0.92. Consequently, we identified this model as the foundational basis 

for Neural Architecture Search (NAS) to enhance the FCL architecture. The NAS process generated various 

architectures, among which the VGG16 + FCL (128 x 128 x 1) architecture stood out with notable performance, 

featuring a Mean Squared Error (MSE) of 6.77 kts, RMSE of 8.88kts, and an impressive R2-Score of 0.945. 

 Keywords: Cyclone Intensity Estimation, Transfer Learning, Neural Architecture Search, Infrared Images, CNNs  

 

INTRODUCTION 

Tropical cyclones are among extreme weather events for their profound impact on human life , capable 

of causing disasters such as intense winds and substantial waves. Accurate intensity forecasting of TCs is 

of paramount importance for social and economic reasons. The Dvorak Technique, which is a traditional 

method to estimate cyclone intensity used since 1970 [1], is very subjective and includes assumptions. 

Dvorak Technique is the popular technique that uses the satellite to estimate the sustained maximum 

wind speed of a tropical cyclone. It uses IR(Infrared) imagery and visible(VIS) imagery and also the cloud 

patterns to estimate the intensity of the tropical cyclone. Latitude, translation rate, intensity, size, and the 

12-hour intensity trend as indicated by the radius of the outer closed isobar are among the variables 

affecting the biases in DVT-based intensity assessments [2]. Due to complex conditions like the western 

North Pacific, the Dvorak Technique was modified by including two distinct calculation radii, leading to 

a parametric surface that connects intensity and TC axis symmetry [3]. Better alternatives like the 

advanced Dvorak techniques come into existence due to the very subjective character of the traditional 

Dvorak technique. advancements in the Advanced Dvorak Techniques 1)Intensity estimation using the 

microwave information from the satellite. 2)Advanced automated tropical cyclone centre fixing methods. 

3)using aircraft for the tropical cyclone intensity estimation. 4)modifications to intensity projections for 

TCs going through an extratropical transition and subtropical systems. 5)surface wind radii protection 

procedures [4]. This advanced Dvorak technique is been applied to the Indian Ocean region [5]. It 

performs very decently in this region for the T greater than 4.0 (VSCS to SuCS) cyclones [5]. We also 

have the statistical methods which consider various parameters for the cyclone intensity predictions [6]. 

The sea surface temperature, vertical wind shear, storm movement velocity, vorticity at 850 hPa, initial 

storm intensity, and divergence at 200 hPa are some of the variables that affect storm formation. The 

models like SHIPS(Statistical Hurricane Intensity Prediction System) [7] in the Atlantic basin the 

proposed system is also called the statistical–dynamical model. The constantly shifting conditions make 
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it challenging to forecast cyclone intensity, even with advances in modelling. To improve accuracy and 

reduce variability in intensity estimation, limitations still exist and continual advances in observational 

capabilities and Innovative model development are required. Several machine Learning techniques also 

evolved to estimate the cyclone intensity estimation with less time and fewer resources like the [8] use of 

satellite information like spatial and temporal relations data, essentially a Dvorak-based machine learning 

model. The alternative machine learning model proposed by [9] support vector regression model is built 

on the specific statistical factors taken from IR(Infrared) imagery of hurricanes. The findings indicate that 

a cyclone is stable over a wide temperature range. Another major development in the ML field is eXtreme 

Gradient BOOSTing for cyclone intensity in the northwestern Pacific region [10]. These ML approaches 

also have limitations [11] such as limited data for complex physical processes in cyclone intensity 

estimations, inaccurate voted initialization, and poor resolution limiting the models’ performance. The 

tropical cyclone strength as its output by taking into consideration the climatology and persistence factors, 

environmental situations, meteorological characteristics, intensity categories, and TC months as inputs. 

Another model that uses a multiple linear regression model [12] which considers seven major parameters 

that change over 12 hours of the forecast. Even the analysis contributes to the continuous efforts to 

enhance the TC’s (Tropical Cyclone) precision and accuracy. There are Machine Learning forecasting 

models for cyclone intensity estimation that use a TCP-NGBoost framework [13] it shows superior 

performance compared to the state-of-the-art statistic-dynamical model. These machine learning models 

excel in collecting forecast intervals, enabling the generation of dependable probabilistic forecasts—an 

important element in disaster warnings There are major Advancements in the deep-learning(DL) field for 

intensity estimations which uses Deep Convolutional Neural Network architecture [14] which uses 

Infrared Images, interpolating hurricane data, Augmenting additional images of the HURDAT2 dataset. 

Using DL (deep learning) and IR (infrared imagery) satellite imaging models, an analytical evaluation of 

TC (Tropical Storm) Strom intensity estimation was proposed [15]. Convolutional networks (CNNs) are 

used when combined with deep learning and multi-platform remote sensing utilizing environmental field 

data on the INSAT-3D IR dataset [16]. The deep Learning approach has evolved into the Hybrid 

approach, which The deep learning-based hybrid model proposes merging the CNN (convolution neural 

network) with satellite remote sensing [17]. Additional approaches were for estimating tropical cyclone 

intensity utilizing DCNN + ViT [18], estimating strength using CNN + LSTM [19], and detecting 

hurricanes utilizing imagery from satellites and YOLOV5 [20]. Furthermore, a hybrid deep learning 

method based on AlexNet was under consideration [21]. 

 

METHOD 

The research’s suggested methodology is divided into different stages, as shown. in the flowchart below. 

The entire procedure is provided in a very understandable manner. The MOSDAC ISRO database was 

the source of the dataset. Next, the pre-processing of the data involves interpolating missing intensity 

values, resizing. im-ages, ROI extraction, scaling pixel values and intensities, and data augmentation. 

utilizing model training techniques like neural architecture search, transfer learning, and layer-by-layer 

optimization. Mean Square Error (MSE), Root Mean Square Error (RMSE), and R2 Score are used in the 

evaluation of models. These evaluation metrics help us to select the best-performing model in cyclone 

intensity estimation. 

Figure 1. The entire methodology is visually represented in the flow chart. 

 

1.1 Data Acquisition 

The cyclone image data has been collected from MOSDAC, ISRO’s oceanographic data archive 

center. The data was collected from 2013 to 2023. The images gathered are from the INSAT-3D 

satellite. The images are 3 channeled IR images. The images are available with a duration of 30 mins 

intervals. The intensity values are provided by IMD (Indian Meteorological Department). The total 

images available are around 17112. The images captured enclosed the Indian-subcontinent region 
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along with Arabian sea, Indian ocean, and Bay of Bengal. The images are captured with a spatial 

resolution of 4 km ✕ 4 km. 

 

Figure 2. Sample Images included in the dataset. 

The Indian Ocean basin Imagery will be updated regularly in the MOSDAC database every 

thirty minutes. The Indian Meteorological Department, or IMD, provides the intensities. The dataset 

used in this study almost comprises 17112 images. The region of the Indian subcontinent, the Arabian 

Sea, the Indian Ocean, and the Bay of Bengal were all included in the imagery. A (4 km x 4 km) spatial 

resolution is used to capture the photos. 

Data Pre-Processing 

Preprocessing involves several procedures, such as scaling pixel values and intensities, ROI extraction, 

image resizing, data augmentation, and interpolating missing intensity values. The cyclone intensity best- 

track data is available at 6-hour intervals. As the images are available at 30-minute intervals, The missing 

intensity values are interpolated using time-series-based linear interpolation after the data has been 

preprocessed. The imagery includes the whole Indian basin, comprising the Bay of Bengal, the Arabian 

Sea, and the Indian Ocean. To estimate the intensity of a cyclone, we must extract the ROI (Region of 

Interest), which is a cyclone throughout the whole image. 

 

Figure 3. Region of Interest Extraction from the image. 

The images are adjusted to match the CNN model architecture’s input dimensions. The models are 

designed for 224 X 224-pixel dimensions. In addition, by dividing the pixel intensities by 255, the 

maximum intensity value, the intensities are normalized to a range of 0 to 1. The cyclone intensity values 

have also been scaled using the Min-Max scaler to make training easier and ensure their values fall between 

0 and 1. After processing the cyclone image dataset, the total dataset contains approximately 17,112 

images. These images are distributed among training, validation, and test sets, with the training set 

containing 80%, the validation set containing 10%, and the test set comprising the remaining 10% of 

the data items. Different data augmentations were used, including translation, rotation (approximately 

20%), horizontal flips, zoom (around 20%), and a shear range of about 20%. Moreover, to enhance model 

training, the pixel intensities of the cyclone images and the cyclone’s Maximum Sustained Wind (MSW) 

intensity values were normalized to a range of 0 to 1. The pixel values were divided by 255 (the maximum 

intensity value) to accomplish this scaling, while the MSW values underwent scaling using the Min-Max 

Scaler. 
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Figure 4. The sample images after data augmentation. 

1.2 CNN Model Design and Training 

Due to the technological advancement in Deep Learning and Machine Learning fields, the performance 

of Deep Learning models, particularly hybrid models, out-performs that of traditional Dvorak techniques 

presented in [15][18][32] and statis-tical models depending on the analysis of a limited set of parameters 

in evaluating Cyclone intensity in study [6] [7] [14]. This improvement allows for more accurate 

estimations in less time and at a lower cost. The CNN models have vast applications in classification, 

object detection, image analysis, etc. The present task falls under regression, given that the target variable 

is the Maximum Sustained Wind (MSW) of the cyclone, representing continuous numerical data. The 

proposed approach involves utilizing established CNN architectures trained on large datasets, such as 

ImageNet. Our research introduces three models based on Transfer Learning, Fine-Tuning, and Neural 

Architecture Search applied to transfer learning. Our goal is to leverage existing classification task 

architectures, incorporating custom fully connected (dense) layers and an output layer (single neuron) 

adjusted especially for the task of cyclone intensity. 

Transfer Learning 

This study aims to effectively utilize widely recognized CNN architectures developed for image 

classification tasks, such as VGG16, VGG19, and ResNet50 [21]. These networks have trained on vast 

ImageNet datasets, providing them with the knowledge to extract information about edges, texture, shape, 

and size of objects. This knowledge is later applied in the conventional layers of pre-existing models, 

transferring the extracted features to the custom-selected fully connected layers and output layer. We 

particularly train the weights of the Fully Connected Layers (FCL) and output layer for transfer learning 

in this study. The various setups for FCL set-ups used along with the above-mentioned architectures 

include 128 X 1, 128 X 64 X 1, 128 X 64 X 32 X 1. Each Fully Connected Layer (FCL) comprises the 

Rectified Linear Unit (ReLU) activation function, while the output layer utilizes a linear activation 

function. A dropout layer of 10% is added to the output layer to prevent over-fitting. These designs are 

consistently implemented across all classification architectures. The various models were trained 

separately on both augmented and non-augmented datasets. 

ReLU Activation: f(x) = max (0, x)Linear Activation: f(x) = x 

 

Figure 5. VGG16-128×64×32×1 architecture for Transfer Learning. 

Similarly, transfer learning is implemented for VGG19 and ResNet50 architectures with mentioned 

combinations of FCL setups.This study outlines the transfer learning process involving fully connected 

layers, convolution functions, and regression functions. The entire process is described, including the 

extraction of features, prediction, loss function, and optimization using the Adam optimizer. 

Transfer Learning Process 
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Let θfc be the weights of the fully connected layers, trainable by backpropagation. Let ϕ be the convolution 

function that extracts features from image I, freg be the regression function implemented by fully 

connected layers, and F be the features extracted from convolution. The overall transfer learning process 

is as follows: 

F = ϕ(I) 

Ypred = Freg (F, θf c) 
 

Figure 6. VGG16-128×1 architecture for Fine-Tuning (4 trainable layers). 

Let Yactual be the actual intensity and Ypred be the predicted intensity. The loss function is given as: 

Lreg = Loss (Ypred, Yactual) 

The loss function is the Mean Squared Error. The optimization is done using the Adam optimizer with 

a learning rate of 0.0001, as follows for the transfer learning task: 

θ ∗ 
fc = argmin θfc Lreg 

θ ∗ 
fc represents the updated weights of the fully connected layers. 

The training has been carried out using early stopping with a patience of 5, monitoring the validation 

loss. 

Fine Tuning 

Within transfer learning techniques, the convolution layers of CNN architectures remain consistent, with 

only the Fully Connected Layers (FCL) being trained on specific data. In fine-tuning, selective layers of 

the convolution network are trained on specific data for a given task, focusing particularly on the last few 

layers. The motivation behind fine-tuning the last layers lies in their ability to extract high-level and task- 

specific features. Limiting the fine-tuning to these last layers helps in showing the early layers to extract 

features based on pre-trained data, thereby preventing overfitting due to the limited size of task-specific 

data. For VGG16, the last 4 layers, VGG19, the last 8 layers and ResNet50, the last 12 layers were fine- 

tuned. 
 

Figure 7. VGG19-128×1 architecture for Fine-Tuning (8 trainable layers). 

The FCL layers utilize the same Rectified Linear Unit (ReLU) activation function, while the output layer 

uses a linear activation function. This pattern is maintained. across other architectures, and models with 

various FCL designs are trained both with data augmentation and without augmented data.Consider θfc 
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fc 

as the trainable weights for the fully connected layers, which can be adjustable through backpropagation. 

Let θ represent the weights for the convolution layers, which can be fine-tuned. Further, let ϕ denote the 

convolution function responsible for extracting features from image I, freg represents the regression 

function implemented by the fully connected layers, and F represents the features extracted through 

convolution. 

The complete process of transfer learning is as follows: 

F1 = ϕ(I) 

F2 = ϕ (θ, F1) 
Ypred = freg (F2, θfc) 

Let Yactual be the actual intensity, and Ypred be the predicted intensity. The loss function is given as: 

Lreg = Loss (Ypred, Yactual) 

The loss function is the Mean Squared Error. 

The optimization is done using the Adam optimizer with a learning rate of 0.0001, which is as follows for 

the transfer learning task: 

θ *fc, θ* = argmin θfc, θ Lreg 
* are the updated weights of the fully connected layers 

• θ∗ are the updated weights of the trainable convolution layers. 

The training has been carried out using the early stopping with a patience of 5 with a monitor on 

validation loss. 

Transfer Learning with Neural Architecture Search 

A Neural Architecture Search (NAS) based on Hyperband and successive halving is achieved using the 

VGG16 transfer learning model. NAS is especially applied to VGG16 as the base model in the context 

of transfer learning, without including any. data augmentation. The reason behind the decision lies in 

the findings presented in the subsequent section, indicating the better performance of VGG16 compared 

to others. architectures, particularly in the absence of data augmentation.In this Neural Architecture 

Search (NAS) technique, VGG16 helps as the base model, and within the search space, no modifications 

were made to the convolution layers, they maintained the pre-trained weights from the ImageNet dataset. 

NAS is exclusively employed to identify the optimal Fully Connected Layer (FCL) arrangement for the 

VGG16 architecture. Among various available search strategies, we selected for the hyperband-based 

successive halving approach due to its efficient distribution of resources to various sampled architectures. 

This technique facilitates the early termination of poorly performing architectures and reallocates 

resources to more successful architectures. Such a technique promotes effective resource utilization. 

The search space contains: 

• The number of Fully Connected Layer (FCL) layers ranges from a minimum of 1 to a maximum 

of 3. 

• Each FCL layer is sampled with neurons ranging from a minimum of 32 to a maximum of 256, 

with a step of 32 in each iteration. 

• A dropout layer at the output is also sampled, varying from 1. 

• The search is performed with a maximum allowed number of trials set at 20 and a maximum of 

10 epochs for each architecture. 

• All FCL neurons utilize ReLU as the activation function in each sampling. 

• The activation function at the output neuron is always linear in each sampling. 

• The primary goal is to minimize the loss function, specifically the mean-squared error loss. 

• θ 
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Figure 8. The best-performing architecture was NAS with VGG16 and no data augmentation. (VGG16- 

128×128×1). 

Based on the above-mentioned search, the top 5 performing architectures were chosen for additional 

training with an extended number of epochs using a transfer learning approach without data 

augmentation, as detailed in the previous section. These architectures experienced training with an early 

stopping measure, where the patience was set at 5, and the validation loss function monitored was the 

mean-squared error.The best-preforming architecture derived from the previously mentioned Neural 

Architecture Search (NAS) involving VGG16, conducted without data augmentation and thereafter 

trained for extra epochs, is the VGG19-128×128×1 configuration, featuring a 3% dropout at the output 

layer. 

 

FINDINGS AND DISCUSSIONS 

Evaluation Metrics 

We used a wide range of evaluation metrics to evaluate our deep learning models’ performance. The 

selection of evaluation measures is essential in evaluating the precision and effectiveness of our models 

in forecasting the intensity levels of cyclones. We used Mean Absolute Error (MAE), Root Mean Square 

Error (RMSE), and R2 Square (R-squared) as the metrics in our study. 

3.1.1 Mean Absolute Error (MAE) 

Mean Absolute Error (MAE) is a measurement of the average of absolute differences between 

forecasted and actual values. It is calculated by taking the average of the absolute differences between the 

predicted and observed values. 

The formula for MAE is as follows: 
 

3.1.2 RMSE – Root Mean Square Error 

RMSE is another parameter that accounts for both the magnitude and direction of errors. It is calculated 

by carrying the square root of the average of the square differences between predicted and observed 

values. The formula for RMSE is as follows: 
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3.1.3 R2-Score 

The coefficient of determination, or R2 Square, measures the percentage of the variance in the predicted 

intensity values that of our deep learning model. It pro-vides insight into the quality of fit, or how 

effectively the variability in the observed intensity levels is reflected by the models. An increased R2 Square 

value indicates that our models have a better fit and more accurate predictions for estimating cy-clone 

intensity The R-squared (coefficient of determination) is calculated using the formula: 
 

3.2 RESULTS 

3.2.1 Transfer Learning and Fine Tuning without Data Augmentation 

Table 1: Results of the Transfer Learning Architecture sets that were trained without data augmentation. 

 

Transfer Learning without Data-Augmentation 

 

CNN Model 

 

FCL 

MAE RMSE 
 

R2-Score Train Val Test Train Val Test 

VGG-16 128×1 8.88 9.32 8.58 19.01 12.31 11.12 0.89 

VGG-16 128×64×1 7.37 7.51 7.56 9.83 9.63 10.02 0.92 

VGG-16 128×64×32×1 8.98 8.976 7.19 8.98 11.71 9.68 0.92 

VGG-19 128×1 9.293 12.12 7.913 9.293 14.814 10.087 0.915 

VGG-19 128×64×1 9.0387 9.162 7.805 11.455 11.726 9.998 0.916 

VGG-19 128×64×32×1 10.109 8.106 8.455 13.778 10.188 10.881 0.9 

ResNet50 128×1 28.71 29.46 28.89 28.71 37.54 36.52 -0.2114 

ResNet50 128×64×1 13.003 14.083 12.604 13.003 17.762 16.573 0.76 

ResNet50 128×64×32×1 16.753 20.937 16.257 16.753 24.796 20.558 0.62555 

From the above-mentioned results of the transfer learning technique, it is obvious that VGG16 has 

exceeded the performance in all other architecture designs. The most performed architecture is VGG16- 

128×64×1. This observation implies that, for our dataset, less complex feature extraction is more effective, 

given that VGG16’s feature extraction is less complex compared to that of VGG19 and ResNet50. In 

transfer learning, pre-trained models are employed, having been trained on vast and various datasets to 

extract generic features useful to a wide collection of tasks. The generalized features extracted from our 

cyclone data played a crucial role in the efficient training of the Fully Connected Layer (FCL) network.As 

previously described, the models trained with an early stopping criterion, monitoring the validation loss. 

This resulted in the VGG16-128×64×1 model being trained for 24 epochs. The maximum Mean Absolute 

Error (MAE) and Root Mean Squared Error (RMSE) values achieved through transfer learning, 

generalized to the test set, are 7.56 knots and 10.02 knots, respectively. 

The selection of the best-performing models was based on two criteria: 

• Their capability to manage overfitting (indicated by a small difference be-tween training and 

validation metrics) 

• Their capability to strike a balance between lower and higher intensity values. 
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Figure 9. Comparison between MAE and RMSE of models in Transfer Learning without data 

augmentation. 

This balance was evaluated by comparing the differences in Mean Absolute Error (MAE) and Root Mean 

Squared Error (RMSE) values over the training, validation, and test sets. For a more in-depth 

understanding, refer to the following graphs for detailed insights: 

In the above model, the VGG16-128×64×1 points are closely clustered, implying its compliance with the 

selected requirements for being the best model. The calculation of the R2 score is performed on the test 

data, it is calculated only for the test data as it is used to represent the ability of the model towards 

generalization. 

Table 2: Results of the Fine-tuning architecture sets trained without data augmentation. 
 

Fine Tuning without Data-Augmentation 

 

CNN Model 

 

FCL 

MAE RMSE 
 

R2-Score Train Val Test Train Val Test 

VGG-16 128×1 6.681 11.619 10.693 8.543 14.902 14.038 0.83 

VGG-16 128×64×1 6.03 11.073 9.766 7.853 14.591 13.297 0.85 

VGG-16 128×64×32×1 7.869 11.037 10.774 10.477 14.703 14.146 0.82 

VGG-19 128×1 28.72 26.67 28.13 33.19 33.07 33.2 0.06 

VGG-19 128×64×1 29.67 29.099 29.21 34.569 33.146 33.305 -0.00436 

VGG-19 128×64×32×1 25.993 23.213 23.752 31.562 29.38 29.459 0.217 

ResNet50 128×1 20.25 56.19 26.47 27.29 83.05 31.14 0.12 

ResNet50 128×64×1 22.67 29.13 25.41 27.71 34.39 31.11 0.13 

ResNet50 128×64×32×1 15.3 21.14 17.85 18.95 24.9 22.11 0.57 

The poor performance of fine-tuning becomes obvious, even when attempting to train the high-level 

feature extraction layers of the model. This can be attributed to the fact that the chosen architectures, the 

reason for this is, were initially trained on extensive and various datasets. However, our cyclone task- 

specific dataset, despite comprising over 17,000 data items, proves to be relatively small in comparison to 

the scale of these extensive architectures. Additionally, our observations indicate that as network 

complexity increases, performance tends to decline in transfer learning designs.This indicates that our 

data is most consistent with simpler network architectures. In the process of fine-tuning, the models tend 

to display overfitting due to the limited qualities of the task-specific data. This overfitting becomes 
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apparent when comparing the metrics of the training sets and validation sets. The significant difference 

in metrics between these two sets highlights the drawbacks associated with utilizing a small dataset in the 

fine-tuning process. 

3.2.2 Transfer Learning and Fine Tuning with Data Augmentation 

The delivered results highlight that data augmentation did not produce any improvement in the overall 

model performance across both methods and all architectures. This highlights a challenge previously 

discussed in the study by [18], which correlates to issues associated with data imbalance. The phenomena 

connected to cyclone life and its intensity may clarify these results. The data makes it obvious that cyclones 

had a lengthy lifespan in these lower intensity values and that their levels of intensity were low in the 

initial phases of the cyclone. The cyclone’s lifetime reduces when it reaches higher intensity levels because 

it reaches the coast sooner. This suggests that any data we collect for cyclones is highly skewed to the lower 

intensity values. This can also be seen in the difference between MAE and RMSE values. As there are 

more low intensity values in the data the RMSE values are quite high compared to MAE values as models 

tend to fit towards skewed data. As RMSE by squaring gives weightage to high errors while MAE averages 

errors with equal preference, high RMSE shows the existence of these high-intensity values as outliers in 

data distribution. Since even the instances of higher intensities are fair data points, they cannot be 

discarded similarly to the handling of outliers in other scenarios. The application of data augmentation 

to this skewed data distribution adds complexity, making it challenging for the models to effectively learn 

from the fine data. 

Table 3: Results of the Transfer Learning architecture sets trained with data augmentation. 
 

Transfer Learning with Data-Augmentation 

 

CNN Model 

 

FCL 

MAE RMSE 
 

R2-Score Train Val Test Train Val Test 

VGG-16 128×1 14.87 13.39 11.69 19.26 17.99 14.36 0.82 

VGG-16 128×64×1 15.44 14.98 11.77 19.53 19.15 14.96 0.81 

VGG-16 128×64×32×1 15.31 15.31 12.29 15.32 19.27 15.64 0.79 

VGG-19 128×1 21.45 20.93 20.502 21.45 25.06 25.77 0.4 

VGG-19 128×64×1 16.07 15.74 15.63 16.07 20.037 19.124 0.68 

VGG-19 128×64×32×1 16.945 16.85 15.71 16.94 20.44 19.39 0.67 

ResNet50 128×1 30.677 30.677 26.33 30.677 36.702 30.601 0.155 

ResNet50 128×64×1 30.915 30.915 25.34 30.92 30.63 28.76 0.26 

ResNet50 128×64×32×1 28.44 26.77 27.92 28.44 31.04 31.6 0.097 

Table 4: Results of the Fine-Tuning architecture sets trained with data augmentation. 
 

Fine Tuning with Data-Augmentation 

 

 

CNN Model 

 

 

FCL 

MAE RMSE  

 

R2-Score Train Val Test Train Val Test 

VGG-16 128×1 25.886 23.578 25.785 31.284 29.692 30.633 0.233 

VGG-16 128×64×1 26.811 26.2415 27.283 32.37 29.696 32.785 0.119 

VGG-16 128×64×32×1 26.241 25.342 26.078 31.666 38.573 32.805 0.119 

VGG-19 128×1 23.892 19.948 22.72 29.087 24.604 28.398 0.343 

VGG-19 128×64×1 22.172 20.47 24.947 26.828 25.038 30.506 0.239 
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VGG-19 128×64×32×1 23.375 25.226 21.972 28.761 29.261 27.41 0.39 

ResNet50 128×1 29.73 29.34 31.37 35.8 39.8 40.77 -0.37 

ResNet50 128×64×1 30.22 43.8 26.7 36.69 50.33 32.84 0.12 

ResNet50 128×64×32×1 27.07 29.272 27.96 32.04 39.54 32.73 0.12 

3.2.3 Neural Architecture Search on Transfer Learning without Data Augmentation 

Based on the produced results, VGG16 consistently showed dependable performance across all 

methods and Fully Connected Layer (FCL) configurations. Therefore, Neural Architecture Search is 

implemented for VGG16 as the foundational model. 

Table 5: The Top 5 architectures from NAS. 

NAS Suggested Top Architectures 

 

CNN Model 

 

FCL 

 

Dropout Output Layer 

 

Val Loss 

MAE RMSE 

Train Val Train Val 

VGG-16 32×32×1 3% 0.0042 3.86 6.36 4.93 8.49 

VGG-16 32×160×32×1 3% 0.0056 5.1 7.28 6.58 9.7 

VGG-16 160×32×1 3% 0.0058 4.86 7.54 6.18 9.83 

VGG-16 96×1 3% 0.0064 5.15 7.81 6.62 10.41 

VGG-16 128×128×1 3% 0.0064 5.85 7.99 7.58 10.47 

Employing Neural Architecture Search, as discussed earlier, with VGG16 as the foundational model in a 

transfer learning setting, we aim to identify the best Fully Connected Layer (FCL) format for the typical 

task of cyclone intensity estimation. Following NAS, where each architecture experienced a maximum of 

20 trials and a maximum of 10 epochs, we selected the top 5 performing FCL architectures based on their 

validation loss, especially the mean-squared error. 

Table 6: Results of the Transfer Learning on Top NAS Architectures without Data-Augmentation. 
 

Transfer Learning on Top NAS Architectures without Data-Augmentation 

 

CNN Model 

 

FCL 

 

Dropout 

MAE RMSE 
 

R2-Score Train Val Test Train Val Test 

VGG-16 32×32×1 3% 5.44 7.24 7.38 7.64 9.54 9.44 0.93 

VGG-16 32×160×32×1 3% 5.01 5.83 7.81 9.14 7.85 9.83 0.92 

VGG-16 160×32×1 3% 3.17 7.12 6.93 9.49 9.20 9.10 0.93 

VGG-16 96×1 3% 5.8 6.60 6.80 9.80 8.80 8.68 0.94 

VGG-16 128×128×1 3% 5.67 6.77 6.525 7.25 8.88 8.26 0.945 

Upon vast training of the architectures suggested by Neural Architecture Search (NAS) with an extended 

number of epochs, we noted an improvement in performance of few models. Few architectures 

outperformed the earlier results from the transfer learning-based VGG16-128×64×1 without any data 

augmentation. The selection of the best-performing model is still based on the earlier mentioned 

conditions of ability towards handling overfitting and performance of metrics over training, validation, 

and test data sets. The performance of NAS suggested architectures is summarized in Table-6.The below 

graph shows how near the metrics of the model VGG16-128×128×1 is distributed in comparison to other 

models. This also shows the model’s ability to handle overfitting. The final generalized (on the test set) 

MAE and RMSE values achieved through NAS on VGG16-based transfer learning are 6.25 kts and 8.26 

kts respectively. 
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Figure 10. Comparison of MAE and RMSE of NAS models with Transfer Learning without data 

augmentation. 

3.3 Limitations and Future Scope 

3.3.1 Limitations 

The proposed methodology utilizes complex architectures such as VGG16, VGG19, and ResNet50, 

which come with pre-trained knowledge from large datasets like ImageNet. However, the findings and 

comparisons above indicate that simpler architectures outperformed their more complex networks. 

Overfitting is also evident in some of the architectural designs. Therefore, a less complex architecture 

trained from scratch on cyclone data has the potential to be more advantageous. Due to the skewed data 

still, there is a considerable difference between MAE and RMSE. Working on making balanced data 

through the augmentation of samples selectively might be beneficial. 

Future Scope 

Expanding Neural Architecture Search could involve integrating the convolution layers into the search 

space to identify the optimal architecture for this problem. Given the signs from the results preferring a 

less complex architecture, this study could contribute to defining the search space for convolution layers. 

Most of the research primarily focuses on Infrared (IR) images. However, Microwave/Brightness 

Temperature (BT) images have also proved certain unique cyclone features. Therefore, models based on 

fusion, which combine multiple images or integrate features from various images, can be advantageous 

by providing additional data. An approach involving fusion models, improving feature sets through the 

combination of features from IR images and Microwave/BT images can be beneficial. 

 

CONCLUSION 

The neural architecture search with transfer learning-suggested VGG16-128×128×1 architecture has 

proven to be the most effective among the techniques and architectures that have been deployed. Current 

study has shown characteristics of the architecture design, such as the use of FCL and Convolution layers 

that are simpler. The need for a better data augmentation method for cyclone data is further emphasized 

by this study. In addition, by combining the Fusion models with infrared and microwave/brightness 

temperature images, we can enhance the work that is already being done in this field. It is also more 

appropriate to use a NAS with full search (Conv + FCL) to identify a high-performing model. 
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