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Abstract— The lithological mapping is the key factor to explore the subsurface structure of the Earth which has traditionally 
been based on the manual interpretation of geophysical data, field surveys, and experience of experts. Nevertheless, the existing 
methods are rather slow and subject to human error. As deep learning technologies and especially convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs) are being developed, lithological mapping is taking a new and revolutionary turn. 
In this paper, the use of deep learning models to automatize and increase the accuracy of the lithological classification based on 
remote sensing data, hyperspectral imagery, and borehole logs is discussed. We introduce an entire process of data preprocessing, 
model training, and model verification of predictions on a test geological area. The inferences indicate substantial increase in the 
accuracy of classification and spatial adherence than the conventional machine learning applications. The suggested strategy suggests 
a paradigm change in the geological interpretation, which can enable scaleable, efficient, and more objective lithological mapping. 
Keywords— Lithological Mapping; Deep Learning; Convolutional Neural Networks (CNN); Hyperspectral Imaging; Geological 
Interpretation; Remote Sensing; Automated Classification. 
 
I. INTRODUCTION 
A geological tool Lithological mapping is a basic operation in geology, which is necessary to comprehend the 
composition, distribution and makeup of rock layers in different spatial windows. It gives significant information on 
the geological operations, mineral exploration, hydrological and environmental surveillance. Conventionally 
lithological maps are prepared by field surveys, interpretation of aerial or satellite photography by hand, and by analysis 
of geological cross sections. Despite being scientifically valid and having undergone trials, these processes are very 
labour intensive and time consuming not to mention, inconventiently restricted by the scope of the observation and 
the subjectivity of the human interpreters [16]. 

In recent decades, development of remote sensing and geospatial technologies has greatly enriched the possibility 
to gather the data about the Earth surface in high definition and on big scale. Satellites and airborne platforms with 
multispectral and hyperspectral imaging sensors are now able to deliver huge hyperspectral data sets with huge spectral 
content. Nevertheless, lithologic data mining of such massive data piles has been difficult especially in light of the 
heterogeneity of rock mixtures, inconsistency in the landscape surfaces as well as smears or bushes on imagery. This 
has resulted in sophistication-dependent demands of the computational method that can recognize weak trends in 
spectral and spatial data. 

Decision trees, support vector machines and random forests are examples of machine learning approaches that 
have been used in the moderate successful approach to automate the process involved in classification of lithologies 
[7]. The techniques are most applicable in cases whereby the data are clean and well labelled and also they should be 
statistically representative. Nevertheless, the problem with class imbalance, spatial autocorrelation and heterogeneity 
of the geological data are common. More to the point, classical machine learning algorithms are based on feature 
engineering, manual extraction and selection of informative features which are quite subjective and confined with a 
capacitation to capture complex interactions in the data. 
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Deep learning, is a subfield in artificial intelligence that takes cues in the neural layout of the human brain and 
has recently demonstrated to be revolutionary in the processing of complex and high-dimension data. Task such as 
image classification, natural language processing, and speech recognition tasks have become completely revolutionized 
through the use of convolutional neural networks (CNNs), recurrent neural networks (RNNs), and most recently 
through transformer-based models. These models can learn hierarchical feature representations automatically in raw 
data and do not rely on manual design of features, which add to their flexibility by being easily adaptable to the 
complexity of the data [2-4]. 

The use of deep learning in lithological mapping presents a different paradigm in interpretation of geological data. 
It is possible to build the systems that will have the ability to generalize to other terrains, sense small differences in 
spectra, and classify regions or even the whole world lighting-fast by first training the models on their own remote 
sensing image and its lithological labels. Deep learning models allow simultaneously learning ubiquitous spatial and 
spectral characteristics, and support processing noisy and imbalanced data, in contrast to conventional classification 
pipelines, and thus, they scale with data size. 

In spite of them, deep learning in one of the areas of geosciences is currently at its genesis, and it contains a number 
of particular issues. In remote or inaccessible areas geological data are usually sketchy or irregularly marked. The 
acquisition of ground truth, including either drilling or field surveys, has never been cheap and time consuming. Also, 
geological processes are by their nature 3D and time varying as opposed to the majority of deep learning applications, 
which deal with 2D images. Hence, one has to develop and adjust deep learning frameworks and training paradigms 
adjusted to the specifics of geological data [14]. 

The paper is a deep learning approach to remote sensing imagery-based lithological mapping. Our goal is to develop 
and train convolutional neural network model that would be able to correctly sense rock types within a region of 
study, with hyperspectral satellite measurements and ground truth-determined lithology. The model is compared not 
only with recognized traditional machine learning classifiers but also its performance exemplified in the performance 
comparisons by measuring accurateness, the spatial consistency, and applicability. The suggested approach elevates 
the degree of classification in addition to showing the prospects of automating, increasing, and rational geological 
interpretation that requires a massive departure than traditional mapping processes. 
Novelty and Contribution  
This study is novel because it involves the use of deep convolutional neural networks in the lithological classification 
with the use of hyperspectral remote sensing data, which would not have been implemented extensively and consistent 
in geological practice. When compared with classical machine learning models which require manual feature 
engineering and extraction, our end-to-end deep learning model has the capability to learn spatial textures and spectral 
patterns in end-to-end training fashion on raw data. This enables the model to detect complex and subtle lithological 
transitions that other humans or other simpler algorithms would not detect [5]. 
Among the most important things this research accomplishes is it provides a practical approach of implementing deep 
learning to geological data that tends to be noisy, imbalanced, and spatially correlated. We use highly effective data 
preprocessing techniques that comprise a spectrum normalization, data augmentation, and patch training and make 
the model much more robust and generalizable. Moreover, we do not use the technique of transfer learning on pre-
trained networks, which is a typical constraint in terms of having little labeled geological data available, thus making 
our method more workable in the context of real-world use and lack of ground truth. 
The quantitative and spatial assessment of model results also constitutes another input. We do not only measure the 
goodness of accuracy (in terms of F1-score, Kappa coefficient), but also test the spatial coherence of the resulting data 
in terms of the predicted lithology maps compared to field-based geological maps. This two-tier evaluation system will 
make our model neither statistically, but also geologically, meaningful. 
Furthermore, this paper demonstrates a proof of concept that deep learning will be viable in mapping regions of 
interest such as lithologies and give the scope of future geological surveys, exploration targeting, and hazard evaluation 
in a short period. The results and methodology of this study are applicable in other areas and datasets already giving 
a replicable model that can be utilized in future investigations on geospatial AI in earth sciences [8-9]. 
To conclude, the originality of this work has been having an automated, data-driven way of analyzing lithology and 
the contributions to have been a reproduced deep learning pipeline, higher accuracy of the classification, and how 
useful AI can be useful in the study of geology, which has historically required manual expert knowledge and has not 
had the necessary tools to accomplish its goals [10]. 
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II. RELATED WORKS 

In 2024 C. Li et al., [1] introduced the area of lithological mapping has over the years experienced a progressive 
shift away to the more traditional field methods towards the more data and remote sensing-based methods. Use of 
remote sensing data has provided first time opportunity to carry out regional and global scale geological interpretation 
and especially in remote locations which are not easily reached. The traditional approaches to mapping depended 
mostly on manual delineation from the topographic maps, aerial photographs, and minimal ground truths. Although 
these methods formed a foundation to geological cartography, they were restrained by the subjectivity and low spatial 
details and the inability to re-do or update the maps.Due to the growth in the availability of multispectral and 
hyperspectral imagery utilizing satellite platforms, geological interpretation started to take advantage of the spectral 
signatures of surface materials. The remotely sensed data having detailed information in the spectrum of 
electromagnetic energies came in handy in mapping the lithological units through their mineral contents and the 
patterns of weathering. The first automated systems applied statistical techniques (of principal component analysis 
and of minimum distance classification). This was promptly accompanied by machine learning algorithms which 
offered more flexible and powerful capacity to classify.Because of their versatility in heterogeneous data and accuracy 
in modeling the non-linear relationships, supervised classification models such as decision trees, support vector 
machine and random forests, became common. However, such models mostly assumed manual feature extraction, 
thereby inducing domain-specific bias and prohibiting their ability to model complex dependencies in high-
dimensional data. In addition, their performance would also tend to become poor in the case of overlapping 
lithological signatures, spectral noise, or training labels that are scarce [11].As a way of solving these shortcomings, 
new studies have resorted to newer computational tools especially those which are provided by the concept of deep 
learning. The capability of deep learning models to automatically generate multi-level features out of raw data poses a 
real benefit to geological uses. As another example, convolutional neural network (CNN) has demonstrated much 
potential in image classification applications and is especially efficient in finding spatially independent patterns in 
geospatial data. These models are able to encode local textures and global structures and thus they are very useful 
when used in separating rocks of different types which exhibit similar responses in the spectral but vary in their spatial 
morphology. In 2022 E. L. Faria et al., [6] proposed the use of deep learning in geosciences is no longer limited to 
pure classification problems; it is used now to solve segmentation, object detection and even time-series prediction 
problems. CNNs have been used in the context of lithological mapping where CNNs are utilized in identifying rock 
units based on hyperspectral and multispectral data and sometimes depict more accuracy and superior generalization 
than general machine learning modeling. Other papers have focused on using fully convolutional networks and U-
Net-based models to perform pixel-wise mapping, with the effect of greater accuracy in classification results with 
respect to boundaries, and less noise in the result. Autonencoders, Generative adversarial networks and other 
neurotypologies which are alternatives to neural networks have been utilized to learn features and augment data in 
geological data. They are especially applicable to those situations in which labeled data are limited, and where a model 
can learn hidden data structures in an unsupervised or semi-supervised way. Alternatively, recurrent neural networks 
and their extensions have been offered to process sequential geophysical data, e.g. well logs or time-series seismic 
profiles, further bringing applicability of deep learning to the subsurface interpretation field.Notwithstanding the 
benefits, deep learning strategies of geological interpretation continue to exhibit a number of pertinent pitfalls. The 
quality and the availability of labelled sets is one of the primary issues. In contrast to other fields, including facial 
recognition or medical imaging, it can be said that geologic datasets usually lack large-scale annotated databases. The 
most typical issues that impede the application of deep models training are label noise, spatial misalignment, and class 
imbalance. Moreover, it is an open question as to whether the results of deep learning may be interpreted. The actions 
of geology need to be open and accountable particularly in mining and hazard prevention. Work is in progress to 
create explainable AI systems that would help give an insight into why a region was classified as a certain type of 
lithology by a model. 

Moreover, trained models are not necessarily generalizable in various geographical areas. The geological variability 
caused by tectonic history, weathering, vegetation cover and surface conditions can give considerably impact on the 
spectral response of lithologies. Thus, models that are trained based on a region cannot deliver accurate outcomes 
when applied to a different region unless the necessary domain adaptation measures are adopted. To solve this 
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drawback, transfer learning, domain adaptation and data normalization methods are increasingly being used to ensure 
better cross-region applicability. 

In 2025 J. Wang et al., [15] suggested the evolution of the body of literature around the concept of the study of 
lithological mapping has been consistently developing, shifting away in its application to manual and rule-based 
systems to advanced models of machine learning, and then to deep learning. The recent research highlights the power 
of deep learning as the game-changing technology in the process of automatisation of geological mapping in the 
context of very accurate mapping and consistent spatiality. Nevertheless, issues concerning the quality of the data, 
interpretability of the model, and its generalizability still precondition the existing research agenda. This paper extends 
these developments to suggest a deep learning architecture that is specifically tailored to the problem of lithological 
classification based on hyperspectral remote sensing data to further extend the state of automated geologic 
interpretation. 

III. PROPOSED METHODOLOGY 

This study adopts a deep learning-based approach for automated lithological classification using hyperspectral remote 
sensing data. The core architecture leverages convolutional neural networks (CNNs) trained on labeled spectral-spatial 
input patches to distinguish between different rock units. The methodology is divided into five components: data 
preprocessing, feature extraction, model construction, training optimization, and post-classification enhancement 
[12]. The input dataset consists of hyperspectral image cubes 𝐻(𝑥, 𝑦, 𝜆), where 𝑥, 𝑦 are spatial coordinates and 𝜆 
denotes the spectral bands. Each pixel is represented by a spectral vector 𝐬 = [𝒔1, 𝒔2, … , 𝒔𝑛] ∈ ℝ𝑛, where 𝑛 is the 
number of bands. 

To normalize spectral variability, each input vector is standardized using: 

𝑠𝑖
′ =

𝑠𝑖 − 𝜇𝑖
𝜎𝑖

 

where 𝜇𝑖 and 𝜎𝑖 represent the mean and standard deviation of the 𝑖-th band. 

Spectral smoothing is applied using a 1D Gaussian kernel: 

𝐺(𝑠) =
1

√2𝜋𝜎
exp⁡ (−

(𝑠 − 𝜇)2

2𝜎2
) 

Patch-based input generation extracts local neighborhoods around each pixel for spatial learning. If the input patch 
size is 𝑝 × 𝑝, the resulting tensor has dimensions 𝑝 × 𝑝 × 𝑛. 

The CNN model uses a feature extraction layer defined as: 

𝑓𝑖𝑗
(𝑘)

= 𝜎(∑  

𝑛

𝑚=1

 ∑  

𝑘

𝑎=1

 ∑  

𝑘

𝑏=1

 𝑤𝑎𝑏𝑚
(𝑘)

⋅ 𝑥𝑖+𝑎,𝑗+𝑏
(𝑚)

+ 𝑏(𝑘)) 

Here, 𝑓𝑖𝑗
(𝑘) is the activation at location (𝑖, 𝑗) in the 𝑘-th feature map, 𝑤 are the weights, and 𝜎 is the ReLU activation 

function 𝜎(𝑧) = max(0, 𝑧). 

Pooling is performed to reduce dimensionality: 

𝑃𝑖,𝑗
(𝑘)

= max
(𝑎,𝑏)∈𝑅

 𝑓𝑖+𝑎,𝑗+𝑏
(𝑘)  

The fully connected layer takes the flattened vector 𝐳 and performs the following transformation: 
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𝑦 = 𝜎(𝑊 ⋅ 𝐳 + 𝐛) 

The output layer uses a Softmax activation to generate class probabilities: 

𝑦̂𝑖 =
𝑒𝑧𝑖

∑  𝐶
𝑗=1   𝑒

𝑧𝑗
 

The model is trained using a categorical cross-entropy loss function: 

ℒ = −∑  

𝐶

𝑖=1

𝑦𝑖log⁡(𝑦̂𝑖) 

where 𝐶 is the number of lithological classes and 𝑦𝑖 is the ground truth one-hot label. 

To reduce overfitting, dropout regularization is applied during training: 

𝑧̃𝑖 = 𝑧𝑖 ⋅ 𝑟𝑖, 𝑟𝑖 ∼ Bernoulli(𝑝) 

where 𝑝 is the probability of keeping a neuron active. 

The model is optimized using the Adam algorithm: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂 ⋅
𝑚̂𝑡

√𝑣̂𝑡 + 𝜖
 

where 𝑚̂𝑡 and 𝑣̂𝑡 are bias-corrected first and second moment estimates. 

The entire pipeline is illustrated in the flowchart (see Figure 1) showing input data ingestion, patch extraction, CNN 
processing, classification, and map generation. 
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Figure 1: Flowchart of Deep Learning-Based Lithological Classification Process 

Post-classification smoothing is conducted using a majority filter to remove salt-and-pepper noise and enhance spatial 
coherence of the lithological map. 

Model performance is assessed using accuracy, precision, recall, F1-score, and Kappa coefficient. In addition, spectral 
separability is evaluated using the Jeffries-Matusita distance: 

𝐽𝑀 = 2(1 − 𝑒−𝐵), 𝐵 =
1

8
(𝜇1 − 𝜇2)

𝑇Σ−1(𝜇1 − 𝜇2) +
1

2
ln⁡ (

|Σ|

√|Σ1||Σ2|
) 

where 𝜇1, 𝜇2 and Σ1, Σ2 represent means and covariances of two classes. 

Thus, the methodology integrates deep learning's automatic feature learning capabilities with rigorous geospatial data 
preparation and validation, establishing a scalable pipeline for lithological interpretation. 

IV. RESULT & DISCUSSIONS 
The processed hyperspectral dataset was extracted in one of the geologically diverse test sites and this was used to train 
the deep learning model. The CNN model attained the validation accuracy of 91.4% after 50 epochs of training, a 
high score that surpassed the traditional classifiers. The classification map produced by the CNN had clear lithological 
contrasts, a high regional integrity and a good correlation with the known geological structures as confirmed by field 
data and log boreholes. As you can see in the visual analysis, CNN-based result showed very little salt-and-pepper noise 
and still captured small lithological details that would be smeared or misclassified in the traditional implementation 
[13]. 
Indeed, according to Figure 2, the deep learning model results in the lithological classification map that is quite 
consistent with the reference geological map. It does exhibit clear boundaries amongst sandstone, granite, shale and 
basalt formations and has only minor anomalies. The achievement shows the precision of deep CNNs to extract such 
complicated geographical characteristics, even within portions where there is an overlap of spectra with one another 
because of weathered surfaces or vegetation objections. The spatial smoothness of the estimated rock units means that 
the learning algorithm acquired contextual spatial regularities, besides the spectral attributes. 

 

FIGURE 2: LITHOLOGICAL CLASS DISTRIBUTION IN MAPPED AREA 

Five performance metrics were used in quantitatively rating five rock classes. The weighted average precision and 
recall of the classes were above 90% which proved that the classifier is robust. As indicated in Table 1: Performance 
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Comparison of Classification Models, the proposed CNN model performed a classification of 91.4%, which is higher 
than 85.7 and 83.2 recorded by Random Forest and Support Vector Machine models respectively. The F1-score and 
the Kappa coefficient also testified to the excellence of the deep learning method in the field. Of note, CNN model 
performed with dramatic improvement in the separation of shale and limestone two lithologies whose spectral 
signature is not so different but differ greatly in space texture. 

TABLE 1: PERFORMANCE COMPARISON OF CLASSIFICATION MODELS 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) Kappa 
Convolutional 
Neural Network 

91.4 92.2 91.6 91.9 0.89 

Random Forest 85.7 86.5 84.8 85.6 0.81 
Support Vector 
Machine 

83.2 84.1 82.5 83.3 0.78 

Class-wise detail showed that sandstone and granite were ranked most confidently and recall levels were high going 
above 94%. Shale was a little less confident, because it overlapped other sedimentary classes. The visual analysis of the 
wrongly classified areas in the map, most errors were found in the transitional boundaries of the maps where there 
was interbedding and incomplete weathering. These are areas in which there are ambiguous results even with the 
traditional field mapping. The use of spatial context by CNN architecture was of great assistance in reducing 
misclassification within these zones. Figure 3 contains the confusion matrices of the CNN model compared to 
Random Forest model. In the CNN matrix, there are very few off-diagonal terms indicating that there is less 
misclassification to all the classes of lithologies. Although competently, the Random Forest model confused granite 
and basalt probably because of similarity in their spectra that had no distinguishing power as identified through use 
of spatial characteristics. This visual evidence also corroborates to the hypothesis that deep learning with its associative 
feature learning can give better discrimination ability. 

 

FIGURE 3: MISCLASSIFICATION RATE (%) BY MODEL 

Another aspect where the proposed model proved to be significantly improved is time and resources efficiency. Overall 
the CNN model took 42-minutes to both train and infer on a GPU-enabled system. Relative to this, another model, 
baseline Random Forest, with optimised parameters took 57 minutes to run and its inference was slower. The results 
in Table 2: Resource Utilization and Scalability of Methods summarize the analysis of the computational cost and 
scalability that can be given. As shown in this table, the CNN model is orders of magnitude more scalable to large 
datasets at the expense of even starting training being resource-demanding by conventional standards. 
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TABLE 2: RESOURCE UTILIZATION AND SCALABILITY OF METHODS 

Model Training Time Inference Speed GPU Support 
Scalability (Large 
Dataset) 

Convolutional 
Neural Network 

42 mins Fast Yes High 

Random Forest 57 mins Moderate No Medium 
Support Vector 
Machine 

63 mins Slow No Low 

In order to evaluate the spatial precision of the predicted maps a map of the predicted lithological map with 
spatial accuracy over the field-validated GPS points was overlaid. Alignment accuracy was more than 90 percent on 
important areas of testing showing that the model predictions are not only described statistically, but also spatially 
reliable. A comparison of lithologies using the spatial overlay was demonstrated in figure 4 where prediction of 
lithologies is performed with the validation points depicted and correct prediction areas marked. The overlay affirms 
the skillfulness of this approach in practicing geological mapping in real world projects. 

 

FIGURE 4: SPATIAL ACCURACY COMPARISON AT VALIDATION POINTS 

Also, the effectiveness of CNN model in learning complex geological interfaces could also be reflected in the model 
dealing with lithological transitions. As an example, components of the region with gradual changes of the facies, 
which are often problematic to conventional classifier, were successfully simulated because of the possibility to encode 
gradual differences deeper in the network. The model did not result in sudden switches of labels at the expense of 
continuity of geological formations as they can be observed in the field. Considering the findings, it is possible to say 
that the deep learning models integration into the geospatial geological workflows should be encouraged. The first 
phase consumes a lot of computing time but the payoffs in terms of the accuracy of classification, spatial accuracy, 
and elimination of human error are high. These are the reasons why deep learning could be used in national and 
regional geological surveys, mineral exploration projects and the geological research being carried out by academic 
institutions. 

V. CONCLUSION 
This research paper shows that the possibility to use deep learning, specifically convolutional neural networks, as an 
effective alternative to conventional methods of carrying out lithological mapping exists. The highest classification 
accuracy was registered using the proposed model and the model had the capacity to perform well when generalizing 
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on complex geological terrains. The method permits objective and scale-able mapping, which is vital with 
contemporary geological interpretation in the exploration of resources, environmental evaluation and geotechnical 
engineering. 

Future research will involve including 3D geological data, and making it easier to interpret the model and semi-
automatic mapping in the data-scant areas using techniques of unsupervised deep learning. This paradigm movement 
towards AI-guided results in geological interpretation has much potential, and it opens the door to the new era of 
earth sciences. 
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