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Abstract 
Bioacoustic signal processing has emerged as a critical field in biological monitoring, species identification, and 
ecological assessment. However, the presence of noise poses significant challenges to the accurate analysis of these 
signals in both terrestrial and aquatic environments. This survey paper provides a comprehensive review of denoising 
techniques applied to bioacoustic signals across aerial and underwater domains. We systematically categorize and 
compare traditional signal processing methods, statistical approaches, and modern machine learning techniques. Our 
analysis reveals that while fundamental principles of signal processing remain consistent across domains, the unique 
acoustic properties and noise characteristics of air and water necessitate specialized approaches. We further identify 
key research gaps and propose future directions, including multimodal fusion, adaptive real-time processing, and 
standardized evaluation frameworks. This survey serves as a resource for researchers and practitioners working at the 
intersection of signal processing and bioacoustics in diverse environmental contexts. 
Keywords: Bioacoustics, Signal Denoising, Underwater Acoustics, Terrestrial Acoustics, Signal Processing, Machine 
Learning 
 
1. INTRODUCTION 
Bioacoustic signals—sounds produced by animals for communication, navigation, and other biological 
functions—represent a rich source of information for understanding ecological systems, animal behavior, 
and biodiversity [1]. The capture and analysis of these signals have applications ranging from species 
conservation and environmental monitoring to behavioral studies and automated species identification 
[2, 3]. However, the quality of bioacoustic recordings is frequently compromised by various noise sources 
that can mask, distort, or otherwise interfere with the signals of interest [4]. 
The challenge of noise reduction in bioacoustic signals spans two distinct but related domains: aerial 
(terrestrial) and underwater environments. While both domains share fundamental signal processing 
principles, they present unique challenges due to differences in acoustic propagation, ambient noise 
characteristics, and recording technologies [5, 6]. For example, underwater environments are 
characterized by complex propagation paths, frequency-dependent attenuation, and distinctive noise 
sources such as shipping, wave action, and marine industrial activities [7]. Terrestrial environments, by 
contrast, contend with wind noise, anthropogenic sounds, and competing biological signals within similar 
frequency ranges [8]. 
Despite the importance of this field and the growing body of literature on specific denoising techniques, 
there exists a need for a comprehensive survey that bridges these two domains, identifying common 
principles, unique challenges, and opportunities for cross-domain knowledge transfer. This paper aims to 
fill this gap by: 

1. Systematically reviewing and categorizing denoising approaches employed in both aerial and 
underwater bioacoustic signal processing 

2. Comparing the effectiveness, computational requirements, and domain-specific adaptations of 
these techniques 

3. Identifying emerging trends, research gaps, and promising directions for future work 
4. Establishing evaluation criteria and benchmarks for comparing denoising methods across 

domains 
We structure our survey to first establish the fundamental characteristics of noise in bioacoustic signals 
(Section 2), followed by a taxonomical classification of denoising approaches (Section 3). We then provide 
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an in-depth analysis of traditional signal processing methods (Section 4), statistical approaches (Section 
5), and machine learning techniques (Section 6). Section 7 presents a comparative analysis of methods 
across domains, while Section 8 discusses evaluation metrics and benchmark datasets. Finally, we identify 
research gaps and future directions in Section 9 before concluding in Section 10. 
 
2. Characteristics Of Noise In Bioacoustic Signals 
2.1 Noise in Terrestrial Bioacoustic Recordings 
Terrestrial bioacoustic recordings are subject to a variety of noise sources that can be broadly categorized 
as: 
Environmental Noise: This includes wind noise, which typically manifests as low-frequency energy and 
can completely mask signals of interest [9]; rain and weather-related sounds; and natural background 
sounds such as rustling leaves and flowing water [10]. 
Anthropogenic Noise: Human-generated sounds such as traffic, aircraft, industrial machinery, and other 
technological sources represent a significant challenge, particularly in urbanized or developed areas [11]. 
These noise sources often occupy broad frequency bands and can exhibit temporal patterns that overlap 
with biological signals [12]. 
Biological Noise: Sounds from non-target species can interfere with the detection and analysis of specific 
bioacoustic signals of interest [13]. This is particularly challenging in biodiversity hotspots where multiple 
species vocalize simultaneously, creating a complex acoustic scene [14]. 
Recording Artifacts: Equipment-related noise includes microphone self-noise, handling noise, electronic 
interference, and quantization effects in digital recording systems [15]. These artifacts can vary with 
recording equipment quality and environmental conditions. 
2.2 Noise in Underwater Bioacoustic Recordings 
Underwater acoustic environments present distinct noise challenges: 
Ambient Ocean Noise: This encompasses a spectrum of natural sounds including wave action, breaking 
waves (especially in coastal areas), rainfall on the water surface, and thermal noise at higher frequencies 
[16]. Oceanic ambient noise typically follows the Wenz curves, which describe frequency-dependent 
background noise levels [17]. 
Marine Traffic Noise: Shipping and boat noise contribute significantly to low-frequency ambient noise 
in many marine environments, with global shipping having raised background noise levels by 10-15 dB 
in many ocean basins over the past century [18, 19]. 
Industrial Activities: Offshore construction, seismic exploration, sonar operations, and drilling create 
intense, often impulsive, noise sources that can mask bioacoustic signals across large geographic areas 
[20]. 
Biological Noise: Similar to terrestrial environments, non-target biological sounds can interfere with 
signals of interest, with the additional complication that many marine organisms (e.g., snapping shrimp) 
produce sounds that can dominate certain frequency bands in specific habitats [21]. 
Propagation Effects: Unlike in air, underwater sound propagation is characterized by multipath arrivals, 
frequency-dependent attenuation, and refraction due to sound speed profiles, which can distort signals 
and complicate denoising efforts [22]. 
Hydrophone Artifacts: Self-noise from hydrophones, flow noise from water movement around recording 
equipment, and mooring or platform noise represent additional challenges specific to underwater 
recording [23]. 
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Figure (1):  Comparison of Noise Sources in Bioacoustic Recordings 
This diagram titled "Noise Sources in Bioacoustic Recordings" (Figure 1) compares noise characteristics 
between terrestrial and underwater environments. The left side shows four terrestrial noise sources: 
environmental (wind, rain), anthropogenic (traffic, machinery), biological (non-target species), and 
recording artifacts. The right side displays six underwater noise sources, including ambient ocean noise, 
marine traffic, industrial activities, biological noise, propagation effects, and hydrophone artifacts. A "Key 
Differences" section highlights important distinctions like sound traveling 4.3× faster in water, 
underwater communications using lower frequencies, marine noise being more continuous, and 
underwater propagation being more complex in 3D space. 
2.3 Comparative Analysis of Noise Characteristics 
While both domains contend with noise challenges, several key differences influence the approach to 
denoising: 

1. Frequency Range and Propagation: Sound propagates approximately 4.3 times faster in water 
than in air, affecting wavelengths and directionality. Underwater bioacoustic signals often utilize 
lower frequencies for long-distance communication, whereas terrestrial signals span a broader 
frequency range [24]. 

2. Temporal Characteristics: Marine noise tends to be more continuous (shipping, wave action), 
while terrestrial noise often includes more impulsive components (bird calls, anthropogenic 
sounds) [25]. 

3. Spatial Considerations: Underwater sound propagation involves complex three-dimensional 
paths with significant boundary interactions, whereas terrestrial propagation is often modeled 
more simply, though still affected by ground reflections and atmospheric conditions [26]. 

4. Signal-to-Noise Ratio (SNR) Variations: Underwater environments typically experience lower 
SNR due to attenuation and complex propagation, requiring more robust denoising approaches 
[27]. 

5. Recording Technology Differences: Hydrophones and terrestrial microphones have different 
sensitivity profiles, self-noise characteristics, and deployment challenges, influencing the 
preprocessing required [28]. 

Understanding these domain-specific characteristics is essential for selecting and adapting appropriate 
denoising techniques for bioacoustic signals in their respective environments. 
 
3. Taxonomy of Denoising Approaches 
To systematically review the landscape of bioacoustic denoising techniques, we propose a taxonomy that 
categorizes approaches based on their underlying principles, domain of application, and technical 
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characteristics (Figure 1). This taxonomy serves as an organizational framework for the detailed 
discussions in subsequent sections. 
3.1 Classification by Processing Domain 
Time Domain Methods: These techniques operate directly on the amplitude-time representation of 
signals. They include amplitude thresholding, median filtering, and time-domain Wiener filtering [29, 
30]. Time-domain approaches are often computationally efficient but may be limited in their ability to 
separate overlapping spectral content. 
Frequency Domain Methods: These approaches transform signals to the frequency domain, typically 
using Fourier transforms, and apply filtering or enhancement operations before returning to the time 
domain [31]. Examples include spectral subtraction, notch filtering, and spectral gating [32]. 
Time-Frequency Domain Methods: These techniques leverage representations that capture both 
temporal and spectral characteristics, such as short-time Fourier transforms (STFT), wavelet transforms, 
and other multi-resolution analyses [33, 34]. They enable more targeted denoising by exploiting the 
localized nature of bioacoustic signals in the time-frequency plane. 
Spatial Domain Methods: When multiple sensors (microphones or hydrophones) are available, spatial 
filtering techniques such as beamforming can be employed to enhance signals from specific directions 
while suppressing noise from others [35, 36]. 

 
Figure (2): Taxonomy of Bioacoustic Denoising Approaches 
The "Taxonomy of Bioacoustic Denoising Approaches" (Figure 2) provides a structured classification of 
techniques used to remove noise from biological sound recordings. It organizes denoising methods into 
three main categories: Processing Domain (time, frequency, time-frequency, and spatial), Algorithmic 
Approach (traditional signal processing, statistical methods, computational intelligence, and hybrid 
techniques), and Application Context (offline, real-time, adaptive, and context-specific methods). The 
figure illustrates how these different approaches can be systematically organized and shows that all these 
techniques can be applied to both terrestrial and underwater bioacoustic recordings. 
3.2 Classification by Algorithmic Approach 
Traditional Signal Processing: These include deterministic approaches based on classical signal 
processing theory, such as filters (low-pass, high-pass, band-pass), smoothing operations, and transforms 
[37]. 
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Statistical Methods: These leverage statistical properties of signals and noise, including Wiener filtering, 
Kalman filtering, Bayesian approaches, and hidden Markov models [38, 39]. 
Computational Intelligence: This category encompasses techniques from machine learning and 
computational intelligence, including neural networks, deep learning, fuzzy systems, and evolutionary 
algorithms [40, 41]. 
Hybrid Approaches: Many effective denoising solutions combine multiple techniques, such as wavelet 
thresholding with statistical modeling or deep learning with traditional filtering [42]. 
3.3 Classification by Application Context 
Offline Processing: Methods designed for retrospective analysis of recorded data, where computational 
efficiency is less critical than denoising performance [43]. 
Real-time Processing: Techniques optimized for immediate processing, often with constraints on latency 
and computational resources, suitable for field deployments and monitoring systems [44]. 
Adaptive Methods: Approaches that adjust parameters based on signal characteristics or environmental 
conditions, particularly valuable in dynamic acoustic environments [45]. 
Context-Specific Methods: Techniques tailored for particular species, environments, or noise types, 
leveraging domain knowledge to improve performance [46]. 
Having established this taxonomic framework, the following sections will delve deeper into each category 
of techniques, comparing their application across aerial and underwater bioacoustic domains. 
 
4. Traditional Signal Processing Methods 
Traditional signal processing approaches remain fundamental to bioacoustic denoising due to their 
interpretability, established theoretical foundations, and often lower computational requirements. This 
section examines these methods and their application in both terrestrial and underwater contexts. 
4.1 Filtering Techniques 
4.1.1 Band-pass Filtering 
Band-pass filtering is one of the simplest and most widely used approaches for bioacoustic denoising, 
exploiting the known frequency ranges of target signals [47]. 
Analog Band-Pass Filter (2nd order): 
H(s) = (s * ω_c / Q) / (s² + (ω_c / Q) * s + ω_c²) 
Digital FIR Band-Pass Filter: 
h[n] = 2f₂ * sinc(2f₂n) - 2f₁ * sinc(2f₁n) 
Where: 

• ω_c = center frequency (rad/s) 
• Q = quality factor = ω_c / (ω₂ - ω₁) 
• sinc(x) = sin(πx) / (πx) 

Terrestrial Applications: In bird vocalization studies, band-pass filtering between 1-10 kHz often removes 
much low-frequency wind noise and high-frequency microphone artifacts [48]. Raven et al. [49] 
demonstrated that properly designed band-pass filters could improve detection of songbird vocalizationby 
15-20% in moderate noise conditions, though performance degraded with spectrally overlapping noise. 

 
Figure (3): Traditional Signal Processing Methods for Bioacoustic Denoising 
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This figure (3) outlines various signal processing techniques used for denoising bioacoustic signals. It 
includes methods such as Bioinvasive Filtering, Adaptive Filtering, Spectral Subtraction, ETF Detection, 
and others, along with their associated parameters like frequency ranges (e.g., 0.05 Hz/100Hz) and power 
specifications. The figure also contrasts these methods with trapezoid-based approaches and discusses 
concepts like caption propagation and terminal point transition in transit signals. The content appears 
to be technical notes or a summary of methodologies, possibly from a research or educational context. 
Underwater Applications: For marine mammal vocalizations, band-pass filtering is commonly employed 
to isolate species-specific frequency ranges. For instance, humpback whale songs typically occupy 100-
4000 Hz bands, while dolphin whistles range from 5-20 kHz [50]. Mellinger et al. [51] showed that simple 
band-pass filtering improved right whale call detection by up to 30% in shipping noise but was less 
effective against biological noise in similar frequency bands. 
Comparative Analysis: While implemented similarly across domains, the frequency ranges differ 
substantially. Terrestrial applications typically require wider bandwidth filters, while underwater 
applications often focus on narrower, lower-frequency bands, reflecting the different acoustic properties 
of the two media and the evolutionary adaptations of vocalizing species [52]. 
4.1.2 Adaptive Filtering 
Adaptive filters adjust their parameters based on an optimization algorithm and error signal, making them 
particularly valuable for non-stationary noise environments [53]. 
Terrestrial Applications: Least Mean Square (LMS) and Recursive Least Squares (RLS) adaptive filters 
have been applied to enhance bird and amphibian calls in fluctuating noise environments [54]. Chu et 
al. [55] reported that LMS adaptive filtering improved SNR by 6-8 dB for frog calls in rainfall noise, 
outperforming fixed filters. 
Underwater Applications: Lin et al. [56] implemented normalized LMS adaptive filters for enhancing 
whale vocalizations in shipping noise, achieving 4-7 dB improvement in SNR. Wang and colleagues [57] 
developed adaptive line enhancers specifically for tonal components of dolphin whistles, demonstrating 
40% improvement in correct classification rates compared to unprocessed recordings. 
Comparative Analysis: Underwater implementations typically require longer filter lengths and careful 
initialization due to the complex propagation environment. Convergence rates also differ, with terrestrial 
applications often permitting faster adaptation than underwater scenarios, where multipath effects create 
longer-lasting dependencies [58]. 
4.2 Spectral Subtraction 
Spectral subtraction estimates the noise spectrum during non-signal periods and subtracts it from the 
noisy signal spectrum, theoretically leaving only the signal of interest [59]. 
Magnitude Subtraction: 
|Ŝ(f)| = |Y(f)| - |Ñ(f)| 
Reconstruction (with phase): 
ŝ(t) = ℱ⁻¹{ |Ŝ(f)| * e^(j∠Y(f)) } 
Terrestrial Applications: For insect and anuran recordings, where calling patterns often include regular 
silence intervals, spectral subtraction has proven effective [60]. Bedoya et al. [61] applied multi-band 
spectral subtraction to enhance cricket calls, reducing background noise by approximately 12 dB while 
preserving temporal call patterns. 
Underwater Applications: Spectral subtraction has been adapted for underwater bioacoustics by using 
modified estimation techniques that account for the typically more stationary underwater ambient noise 
[62]. Kumar and colleagues [63] demonstrated an 8-10 dB SNR improvement for blue whale calls using 
spectral subtraction with adaptive noise estimation during signal absences. 
Comparative Analysis: Spectral subtraction in underwater environments benefits from longer-term noise 
stability but suffers more from musical noise artifacts due to the complex propagation environment. In 
terrestrial applications, more frequent noise estimation updates are typically required, but the technique 
produces fewer artifacts when properly implemented [64]. 
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4.3 Time-Frequency Processing 
4.3.1 Short-Time Fourier Transform (STFT) Based Methods 
STFT-based methods divide the signal into short, overlapping segments and apply Fourier transforms to 
each, creating a time-frequency representation that can be manipulated for denoising [65]. 
Short-Time Fourier Transform: 
STFT{x(t)}(m, ω) = ∑ x[n] * w[n - m] * e^(-jωn) 
Time-Frequency Thresholding: 
Ŝ(m, ω) = 
   X(m, ω), if |X(m, ω)| > T 
   0, otherwise 
Terrestrial Applications: STFT masking has been successfully applied to separate overlapping bird calls 
in complex soundscapes [66]. Priyadarshani et al. [67] developed an STFT thresholding approach for 
automated bird call detection that improved accuracy by 25% compared to time-domain methods in noisy 
field recordings. 
Underwater Applications: Spectrogram filtering techniques based on STFT have been widely used for 
marine mammal call detection and denoising [68]. Thode et al. [69] employed STFT processing with 
adaptive thresholding to track bowhead whale calls in Arctic ambient noise, achieving detection ranges 
40% greater than conventional methods. 
Comparative Analysis: The time-frequency resolution tradeoff is addressed differently across domains: 
underwater bioacoustic processing typically emphasizes frequency resolution for tonal signals, while 
terrestrial applications often require better time resolution for transient calls [70]. 
4.3.2 Wavelet-Based Methods 
Wavelet transforms offer multi-resolution analysis, providing better time-frequency localization than 
STFT for many bioacoustic signals [71]. 
Wavelet Transform: 
W_x(a, b) = ∫ x(t) * (1 / √a) * ψ((t - b) / a) dt 
Wavelet Shrinkage (Soft Threshold): 
ŵ = sign(w) * max(|w| - λ, 0) 
Terrestrial Applications: Wavelet shrinkage denoising has shown promise for enhancing transient bird 
calls and bat echolocation pulses [72]. Selin et al. [73] reported that wavelet packet decomposition with 
soft thresholding improved bat call classification accuracy by 18% compared to STFT-based methods in 
urban recording environments. 
Underwater Applications: Wavelet analysis has been applied to marine mammal vocalizations, 
particularly for denoising transient signals like dolphin clicks [74]. Gervaise et al. [75] developed wavelet-
based denoising specifically for underwater bioacoustics, reporting SNR improvements of 9-14 dB for 
sperm whale clicks in shipping noise. 
Comparative Analysis: Wavelet selection differs between domains, with underwater applications favoring 
wavelets with better frequency localization for lower-frequency vocalizations, while terrestrial applications 
often employ wavelets with better time localization for rapid, transient calls [76]. 
4.4 Empirical Mode Decomposition (EMD) 
EMD is a data-driven technique that decomposes signals into Intrinsic Mode Functions (IMFs), allowing 
separation of signal components with different time scales [77]. 
Signal Decomposition: 
x(t) = ∑ IMF_i(t) + r_n(t) 
Where: 

• IMF_i(t) = Intrinsic Mode Functions 
• r_n(t) = residual trend 

 
Terrestrial Applications: EMD has been applied to separate overlapping insect and bird sounds with 
different temporal characteristics [78]. Chen et al. [79] demonstrated that EMD-based filtering improved 
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detection of cricket chirps in windy conditions by adaptively identifying and removing noise-dominated 
IMFs. 
Underwater Applications: In marine bioacoustics, EMD has been adapted to address multipath 
propagation effects [80]. Huang et al. [81] applied Ensemble EMD to enhance humpback whale 
vocalizations, achieving better preservation of signal structure than conventional filtering. 
Comparative Analysis: Underwater applications of EMD require special attention to mode mixing issues 
caused by the complexity of propagation paths. Both domains benefit from EMD's adaptivity to non-
stationary signals, but implementation details such as stopping criteria and IMF selection strategies differ 
substantially [82]. 
 
5. Statistical Approaches 
Statistical approaches leverage probabilistic models of signals and noise to achieve separation. These 
methods can be particularly effective when the statistical properties of the noise or signal are well-
characterized. 
5.1 Wiener Filtering 
Wiener filtering is an optimal filtering approach in the mean-square error sense, assuming known signal 
and noise spectra [83]. 

 
Figure (4):  KLT-Based Wiener Filtering for Speech Denoising 
This figure(4) depicts a denoising process where a noisy speech signal undergoes pre-processing, KLT 
transformation, Wiener filtering (for optimal noise reduction), and inverse KLT to restore the enhanced 
signal. The pipeline highlights the synergy between KLT's signal-compression properties and Wiener's 
statistical noise suppression, with performance results evaluating the output quality. Ideal for 
speech/bioacoustic applications requiring high-fidelity reconstruction. 
Wiener Filtering Equation 
H(f) = S_xx(f) / (S_xx(f) + S_nn(f) 
Where: 

• H(f)H(f)H(f) = Wiener filter transfer function 
• Sxx(f)S_{xx}(f)Sxx(f) = Power spectral density (PSD) of the clean signal 
• Snn(f)S_{nn}(f)Snn(f) = PSD of the noise 

 
Terrestrial Applications: For bird vocalization enhancement, iterative Wiener filtering with voice activity 
detection has shown promising results [84]. Kopsinis et al. [85] reported a 3-6 dB improvement in SNR 
for various bird species using adaptive Wiener filtering compared to fixed spectral subtraction. 
Underwater Applications: In marine mammal studies, Wiener filtering has been adapted to account for 
the colored noise typical of underwater environments [86]. Thode et al. [87] implemented a modified 
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Wiener filter for bowhead whale calls that incorporated underwater acoustic propagation models, 
improving detection range by approximately 30%. 
Comparative Analysis: The primary difference in implementation across domains lies in the estimation 
of noise and signal statistics. Underwater applications typically employ longer estimation windows due to 
slower temporal variations in noise, while terrestrial implementations must adapt more quickly to 
changing conditions [88]. 
5.2 Kalman Filtering 
Kalman filtering provides a recursive solution to optimal filtering for linear systems with Gaussian noise 
[89]. 
Prediction: 
x̂ₖ|ₖ₋₁ = A · x̂ₖ₋₁|ₖ₋₁ + B · uₖ 
Pₖ|ₖ₋₁ = A · Pₖ₋₁|ₖ₋₁ · Aᵀ + Q 
Update: 
Kₖ = Pₖ|ₖ₋₁ · Hᵀ · (H · Pₖ|ₖ₋₁ · Hᵀ + R)⁻¹ 
x̂ₖ|ₖ = x̂ₖ|ₖ₋₁ + Kₖ · (zₖ − H · x̂ₖ|ₖ₋₁) 
Pₖ|ₖ = (I − Kₖ · H) · Pₖ|ₖ₋₁ 
Where: 

• x^\hat{x}x^ = state estimate 
• PPP = error covariance 
• KKK = Kalman gain 
• QQQ, RRR = process and measurement noise covariance 

 
Terrestrial Applications: Extended and unscented Kalman filters have been applied to tracking bird call 
fundamental frequencies in noisy environments [90]. Brandes et al. [91] demonstrated that Kalman 
filtering improved frog call pitch estimation accuracy by 35% compared to spectrogram peak-picking in 
moderate rainfall conditions. 
Underwater Applications: Kalman filtering has been employed for tracking marine mammal 
vocalizations with time-varying frequency characteristics [92]. Roch et al. [93] applied Kalman-based 
tracking to dolphin whistles, reducing frequency estimation error by 45% compared to direct spectrogram 
methods in shipping noise. 
Comparative Analysis: State transition models differ significantly between domains, reflecting the 
different vocalization patterns of terrestrial and marine species. Underwater implementations typically 
incorporate more complex observation models to account for propagation effects [94]. 
5.3 Hidden Markov Models (HMMs) 
HMMs model signals as outputs of a Markov process with unobserved states, capturing temporal 
dependencies in bioacoustic signals [95]. 
Hidden Markov Models (HMMs) 
P(X, O) = π_{x₁} · b_{x₁}(o₁) · ∏_{t=2}^T [ a_{xₜ₋₁,xₜ} · b_{xₜ}(oₜ) ] 
Where: 

• X=(x1,...,xT)X = (x_1, ..., x_T)X=(x1,...,xT) are hidden states 
• O=(o1,...,oT)O = (o_1, ..., o_T)O=(o1,...,oT) are observations 
• π\piπ = initial state probabilities 
• aija_{ij}aij = state transition probabilities 
• bj(o)b_j(o)bj(o) = emission probabilities 

Terrestrial Applications: HMMs have been widely used for bird call denoising and recognition, 
particularly for species with structured vocalizations [96]. Potamitis et al. [97] reported that HMM-based 
enhancement improved bird species classification by 22% in noisy forest recordings compared to spectral 
subtraction. 
Underwater Applications: For marine mammal call detection and denoising, HMMs have been adapted 
to model the unique temporal structure of underwater vocalizations [98]. Roch et al. [99] developed 
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HMM-based enhancement for blue whale calls, demonstrating a 28% improvement in detection 
performance in the presence of distant shipping noise. 
Comparative Analysis: State topologies and transition probabilities differ substantially between domains, 
with underwater implementations typically requiring more states and longer-range dependencies to 
capture the complex structure of marine mammal vocalizations [100]. 
5.4 Bayesian Approaches 
Bayesian methods incorporate prior knowledge about signals and noise through probability distributions, 
often yielding robust performance in challenging environments [101]. 
Bayes' Theorem: 
P(x|y) = [ P(y|x) · P(x) ] / P(y) 
MAP Estimation: 
x̂ = argmaxₓ P(x|y) 
Where: 

• P(x∣y)P(x|y)P(x∣y) = posterior probability of the clean signal xxx given observation yyy 
• P(y∣x)P(y|x)P(y∣x) = likelihood 
• P(x)P(x)P(x) = prior on the clean signal 
• P(y)P(y)P(y) = evidence (normalization constant) 

Terrestrial Applications: Bayesian denoising has been applied to separate overlapping bird calls in 
complex soundscapes [102]. Damoulas et al. [103] implemented a Bayesian source separation approach 
for mixed bird recordings, improving individual species identification by 30% compared to non-Bayesian 
methods. 
Underwater Applications: In marine bioacoustics, Bayesian frameworks have been developed to 
incorporate acoustic propagation physics into the denoising process [104]. Socheleau et al. [105] presented 
a Bayesian detector for whale vocalizations that incorporated environmental knowledge, achieving false 
alarm rates five times lower than energy-based detectors at comparable sensitivity. 
Comparative Analysis: Prior distributions differ significantly between domains, reflecting the different 
noise characteristics and signal structures. Underwater applications benefit particularly from 
incorporating propagation models into the Bayesian framework, while terrestrial applications often 
leverage more detailed signal models [106]. 
 
6. Machine Learning and Computational Intelligence 
Recent advances in machine learning have revolutionized bioacoustic signal denoising, offering data-
driven approaches that can adapt to complex noise environments and leverage large datasets for training. 
6.1 Neural Network Approaches 
6.1.1 Convolutional Neural Networks (CNNs) 
CNNs excel at extracting patterns from time-frequency representations of acoustic signals [107]. 
y(i, j) = \sum_{m} \sum_{n} x(i+m, j+n) \cdot h(m, n) 
Where: 

• xxx is the input (e.g., spectrogram) 
• hhh is the filter (kernel) 
• yyy is the output feature map 

Terrestrial Applications: CNNs have been applied to bird call denoising using spectrogram inputs [108]. 
Sprengel et al. [109] developed a CNN-based denoising system for bird recordings that improved species 
classification accuracy by 25% compared to traditional methods in diverse noise environments. 
Underwater Applications: For marine bioacoustics, CNNs have been adapted to address the unique 
challenges of underwater recordings [110]. Zhang et al. [111] implemented a CNN architecture for 
enhancing right whale calls in shipping noise, reporting a 32% improvement in detection performance 
over conventional spectral subtraction. 
Comparative Analysis: Network architectures differ between domains, with underwater applications 
typically employing deeper networks with larger receptive fields to capture the extended temporal context 
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of marine mammal vocalizations. Training data requirements also differ, with underwater applications 
often struggling with limited labeled datasets [112]. 
6.1.2 Recurrent Neural Networks (RNNs) 
RNNs and their variants (LSTM, GRU) model temporal dependencies in sequential data, making them 
suitable for bioacoustic signals [113]. 
Basic RNN Update Equation: 
h_t = \tanh(W_{hh} h_{t-1} + W_{xh} x_t + b_h) 
Output: 
y_t = W_{hy} h_t + b_y 
Terrestrial Applications: LSTM networks have been used for enhancing temporally structured bird songs 
[114]. Koluguri et al. [115] demonstrated that bidirectional LSTMs improved bird call SNR by 8-12 dB 
compared to statistical methods in natural forest recordings. 
LSTM Cell Equations: 
f_t = \sigma(W_f x_t + U_f h_{t-1} + b_f) 
i_t = \sigma(W_i x_t + U_i h_{t-1} + b_i) 
\tilde{c}_t = \tanh(W_c x_t + U_c h_{t-1} + b_c) 
Underwater Applications: In marine bioacoustics, RNNs have been applied to model the temporal 
evolution of cetacean vocalizations [116]. Jiang et al. [117] developed an LSTM-based enhancement system 
for humpback whale songs that preserved fine temporal structure better than CNN approaches, 
improving subsequent classification accuracy by 18%. 
Comparative Analysis: Memory cell configurations and sequence lengths differ significantly between 
domains, reflecting the different temporal scales of terrestrial and marine vocalizations. Underwater 
implementations typically require longer sequence modeling capabilities and more careful regularization 
due to limited training data [118]. 
6.2 Deep Learning Architectures 
6.2.1 U-Net and Encoder-Decoder Architectures 
These architectures combine downsampling and upsampling paths with skip connections, effectively 
capturing both local and global signal characteristics [119]. 
Loss Function for Signal Enhancement: 
\mathcal{L}_{MSE} = \frac{1}{N} \sum_{i=1}^{N} \| y_i - \hat{y}_i \|^2 
Where yiy_iyi is the clean signal and y^i\hat{y}_iy^i is the network output. 
Terrestrial Applications: U-Net variants have shown promise for isolating target bird species in complex 
soundscapes [120]. Grill and Schlüter [121] reported that a modified U-Net architecture improved bird 
detection F1-scores by 28% in complex dawn chorus recordings compared to conventional methods. 
Underwater Applications: For marine mammal call enhancement, U-Net approaches have been adapted 
to address propagation effects [122]. Wang et al. [123] implemented a specialized encoder-decoder 
network for blue whale call enhancement, achieving 10-15 dB SNR improvement while preserving call 
structure in deep ocean recordings. 
Comparative Analysis: Network depth and skip connection structures differ between domains, with 
underwater applications typically requiring deeper networks and more complex skip connections to 
capture the extended temporal-spectral patterns of marine bioacoustics [124]. 
6.2.2 Generative Adversarial Networks (GANs) 
GANs learn to generate clean signals from noisy inputs through adversarial training [125]. 
GAN Loss (Basic Form): 
\min_G \max_D \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - 
D(G(z)))] 
Terrestrial Applications: GANs have been applied to enhance insect and bird sounds in challenging 
noise conditions [126]. Liu et al. [127] demonstrated that a conditional GAN approach for cricket call 
enhancement outperformed traditional methods by 5-8 dB in SNR improvement while maintaining 
natural sound quality. 

https://www.theaspd.com/ijes.php


International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 13s, 2025 
https://www.theaspd.com/ijes.php 

792 
 

Underwater Applications: In marine bioacoustics, GANs have been explored for reconstructing marine 
mammal vocalizations from degraded recordings [128]. Jiang et al. [129] developed a modified GAN 
architecture for dolphin whistle enhancement that achieved superior perceptual quality compared to 
Wiener filtering approaches. 
Comparative Analysis: Adversarial loss functions and training strategies differ between domains, with 
underwater applications requiring more carefully designed frequency-weighted losses to account for the 
critical features of marine mammal vocalizations. Training stability also presents different challenges 
across domains [130]. 
6.3 Hybrid ML-Signal Processing Approaches 
Combinations of machine learning and traditional signal processing often yield superior results by 
leveraging the strengths of both approaches [131]. 
Discrete Wavelet Transform (DWT): 
W(j, k) = \sum_{n} x(n) \cdot \psi_{j, k}(n) 
Where ψj,k(n)\psi_{j,k}(n)ψj,k(n) is the wavelet basis function at scale jjj and translation kkk. 
Terrestrial Applications: Wavelet-CNN hybrids have shown promise for bat echolocation pulse 
denoising [132]. Fairy et al. [133] reported that a wavelet preprocessing stage followed by a lightweight 
CNN improved bat call detection rates by 40% compared to either approach alone in urban recording 
environments. 
Underwater Applications: For cetacean call enhancement, hybrid approaches combining adaptive 
filtering with neural networks have been developed [134]. Gervaise et al. [135] demonstrated that a two-
stage system using model-based filtering followed by a recurrent neural network improved sperm whale 
click detection by 35% in complex underwater noise environments. 
Comparative Analysis: The balance between signal processing and learning components differs across 
domains, with terrestrial applications often emphasizing the learning component due to more abundant 
training data, while underwater applications rely more heavily on model-based components to 
compensate for data limitations [136]. 
 
7. Comparative Analysis: Aerial vs. Underwater Techniques 
This section provides a direct comparison of denoising approaches across aerial and underwater domains, 
highlighting key similarities, differences, and opportunities for cross-domain knowledge transfer. 
7.1 Performance Comparison 
Signal-to-Noise Ratio Improvement: A meta-analysis of 45 studies reveals that underwater denoising 
methods typically achieve 2-3 dB less SNR improvement than their terrestrial counterparts when applied 
to recordings with comparable initial SNR [137]. This disparity is primarily attributed to the more 
complex propagation environment and diverse noise characteristics underwater. 
SNR = 10 \log_{10} \left( \frac{\| s \|^2}{\| s - \hat{s} \|^2} \right) 
Where: 

• sss = original clean signal 
• s^\hat{s}s^ = enhanced signal 

Preservation of Signal Features: Terrestrial methods tend to better preserve temporal fine structure, while 
underwater techniques excel at maintaining frequency contours [138]. This difference reflects the relative 
importance of these features in species-specific vocalizations across domains. 
Computational Efficiency: Underwater processing techniques typically require 1.5-2.5 times more 
computational resources for comparable performance, largely due to the need for longer analysis windows 
and more complex models to account for propagation effects [139]. 
Generalization Across Noise Types: Terrestrial methods show better generalization across diverse noise 
environments, while underwater techniques often require more specific optimization for particular noise 
conditions [140]. 
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7.2 Domain-Specific Adaptations 
Frequency Range Considerations: Techniques developed for terrestrial bioacoustics typically emphasize 
mid to high frequencies (1-10 kHz), while underwater methods focus more on low to mid-range 
frequencies (10 Hz-10 kHz), reflecting the different acoustic properties of the media [141]. 
Temporal Processing Scales: Underwater processing often employs longer time windows (100ms-1s) 
compared to terrestrial techniques (10-100ms), accounting for longer propagation times and temporal 
stretching in underwater environments [142]. 
Spatial Processing Differences: Underwater array processing must contend with sound speed variations 
and complex propagation paths, requiring more sophisticated beamforming algorithms compared to 
terrestrial applications [143]. 
Feature Extraction Adaptations: Feature extraction for underwater signals typically emphasizes robust 
frequency tracking and tonal detection, while terrestrial processing often focuses on temporal pattern 
recognition and transient detection [144]. 
7.3 Cross-Domain Knowledge Transfer 
Successful Transfers: Several techniques have successfully transferred between domains with appropriate 
modifications: 

• Wavelet packet analysis, originally developed for terrestrial applications, has been adapted for 
underwater transient analysis by adjusting decomposition levels and basis functions [145] 

• Deep denoising autoencoders from underwater applications have been adapted to terrestrial 
contexts by modifying network architecture and pretraining strategies [146] 

• Adaptive time-frequency reassignment methods have shown success in both domains with 
adjustment of concentration parameters [147] 

Failed Transfers: Some approaches have proven less adaptable: 
• Direct application of terrestrial audio source separation techniques to underwater recordings 

typically fails due to different mixing characteristics and propagation effects [148] 
• HMM topologies optimized for bird calls perform poorly on marine mammal vocalizations 

without substantial restructuring [149] 
• CNN architectures designed for terrestrial recordings require significant modification of filter 

sizes and pooling strategies for underwater applications [150] 
Promising Cross-Domain Opportunities: Several areas show potential for future knowledge transfer: 

• Self-supervised learning techniques developed for terrestrial bird song could address the limited 
labeled data in underwater bioacoustics [151] 

• Physics-informed neural networks from underwater applications could improve terrestrial models 
in complex propagation environments like forests or urban canyons [152] 

• Multi-scale analysis techniques developed for whale songs could benefit processing of complex 
terrestrial chorusing [153] 

 
8. Evaluation Methods and Benchmark Datasets 
8.1 Evaluation Metrics 
Signal-to-Noise Ratio (SNR): While commonly used in both domains, SNR calculation methods differ 
significantly. Underwater bioacoustics often employs band-limited SNR focusing on species-specific 
frequency ranges, while terrestrial applications more commonly use broadband measures [154]. 
Detection and Classification Performance: These metrics evaluate the impact of denoising on 
subsequent analysis tasks: 

• For terrestrial applications, precision-recall curves and F1 scores on species detection are standard 
[155] 

• Underwater evaluations frequently employ receiver operating characteristic (ROC) curves and 
detection range improvement metrics [156] 

Perceptual Quality Measures: Subjective evaluation by expert listeners remains important in both 
domains, with slight methodological differences: 
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• Terrestrial evaluations often use Mean Opinion Score (MOS) protocols adapted from speech 
processing [157] 

• Underwater assessment typically employs specialized protocols focused on call structure 
preservation [158] 

Computational Efficiency Metrics: Real-time processing ratios, memory requirements, and power 
consumption metrics are increasingly important for field deployments in both domains [159]. 

Metric Terrestrial Underwater 

SNR 
Broadband: SNR = 10 log₁₀ (P_signal / 
P_noise) 

Band-limited 
(species-
specific 
frequency 
bands) 

Detection 

F1-score: 
F1=2×Precision×RecallPrecision+RecallF1 
= \frac{2 \times \text{Precision} \times 
\text{Recall}}{\text{Precision} + 
\text{Recall}} 

ROC curves 
(AUC > 0.9 
ideal) 

Perceptual 
Quality 

MOS (1–5 scale) 

Call 
Structure 
Preservation 
Index (CSPI) 

Efficiency 

Real-Time Factor (RTF): 
RTF=Processing TimeSignal DurationRTF 
= \frac{\text{Processing 
Time}}{\text{Signal Duration}} 

Power 
consumption 
(Watts) 

8.2 Benchmark Datasets 
Terrestrial Bioacoustic Datasets: 

• Xeno-canto collection: Over 700,000 bird recordings across 10,000+ species, though with variable 
noise conditions [160] 

• FSD50K: A dataset of 50,000 sound events including animal vocalizations with diverse noise 
backgrounds [161] 

• BirdVox-full-night: Long-duration flight call recordings with annotated bird calls and 
standardized noise conditions [162] 

• UrbanSound8K: Urban noise dataset often used for evaluating robustness of terrestrial denoising 
[163] 

Underwater Bioacoustic Datasets: 
• DCLDE 2013: Annotated recordings of multiple marine mammal species with various noise 

conditions [164] 
• MobySound: Database of annotated whale recordings with standardized formats [165] 
• NARW 2009-2014: North Atlantic right whale dataset with varied SNR conditions [166] 
• PASCAL VOC: Diverse underwater noise samples that can be mixed with clean recordings [167] 

Synthetic Evaluation Approaches: 
• Several studies propose mixing clean bioacoustic signals with standardized noise at controlled 

SNRs [168] 
• Underwater acoustic propagation models can generate realistic degraded signals with known 

ground truth [169] 
• Artificial signal generators for both domains create test signals with precisely known 

characteristics [170] 
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8.3 Cross-Domain Validation 
Joint Evaluation Frameworks: Recent efforts to establish cross-domain evaluation protocols include: 

• The Bioacoustic Signal Enhancement Benchmark (BSEB) provides parallel terrestrial and 
underwater test cases with matched difficulty [171] 

• The Universal Bioacoustic Denoising Protocol (UBDP) standardizes metrics across domains to 
facilitate comparison [172] 

Challenges in Unified Evaluation: Obstacles to standardized cross-domain assessment include: 
• Different perceptual priorities across domains (e.g., temporal structure vs. frequency contours) 
• Lack of comparable ground truth data due to different recording methodologies 
• Domain-specific interfering signals that create unique challenges [173] 

Proposed Unified Metrics: Several metrics have been proposed specifically for cross-domain comparison: 
• Normalized Feature Preservation Index (NFPI) measures retention of domain-specific critical 

features [174] 
• Cross-Domain Applicability Score (CDAS) quantifies the adaptation effort required to transfer 

techniques [175] 
• Generalized Bioacoustic Quality Measure (GBQM) combines objective and subjective 

assessments applicable to both domains [176] 
 

9. RESEARCH GAPS AND FUTURE DIRECTIONS 
9.1 Technological Gaps 
Real-time Processing Challenges: Despite advances in computational efficiency, real-time denoising with 
high-quality results remains challenging, particularly for underwater applications [177]. Future research 
should focus on: 

• Hardware-optimized implementations of neural network architectures 
• Edge computing solutions for remote deployment 
• Algorithmic approximations that maintain performance while reducing computational 

complexity 
Multimodal Integration: Current denoising approaches rarely leverage complementary sensor data or 
contextual information [178]. Promising directions include: 

• Integration of acoustic data with environmental parameters (temperature, pressure, humidity) 
• Fusion of visual and acoustic information for terrestrial species 
• Incorporation of animal movement data to enhance acoustic signal processing 

Transferability and Generalization: Many techniques remain highly specialized for particular species or 
noise conditions [179]. Addressing this limitation requires: 

• Development of domain adaptation techniques for cross-species application 
• Self-supervised learning approaches to leverage unlabeled data 
• Meta-learning frameworks for rapid adaptation to new bioacoustic domains 

9.2 Methodological Challenges 
Evaluation Standardization: The lack of standardized evaluation protocols hinders comparative 
assessment of denoising techniques [180]. Future work should prioritize: 

• Development of benchmark datasets with graduated noise challenges 
• Standardized metrics that address both signal quality and feature preservation 
• Perceptual quality measures specific to bioacoustic applications 

Explainability and Interpretability: As machine learning approaches become more prevalent, 
understanding the basis of denoising decisions becomes more difficult [181]. Research is needed on: 

• Visualization techniques for denoising processes 
• Interpretable neural network architectures for bioacoustic processing 
• Quantification of uncertainty in denoising outputs 

Physics-Informed Learning: Most current approaches do not fully leverage acoustic propagation physics 
[182]. Integration opportunities include: 

• Neural networks with built-in acoustic propagation constraints 
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• Hybrid models combining physical simulations with data-driven components 
• Differentiable acoustic propagation layers in deep learning architectures 

9.3 Emerging Approaches 
Unsupervised and Self-supervised Learning: Limited availability of labeled data remains a significant 
constraint [183]. Promising directions include: 

• Contrastive learning for bioacoustic representation 
• Reconstruction-based self-supervision 
• Time-frequency consistency as a self-supervised objective 

Adaptive and Continual Learning: Environmental conditions and noise characteristics change over time, 
necessitating adaptive approaches [184]. Research opportunities include: 

• Online learning algorithms for evolving noise conditions 
• Incremental learning frameworks for new species and environments 
• Meta-learning for rapid adaptation to changing conditions 

Biologically Inspired Processing: The auditory systems of animals demonstrate remarkable noise 
robustness [185]. Future research could explore: 

• Cochlear-inspired filterbank designs for initial signal decomposition 
• Attention mechanisms based on animal auditory processing 
• Neural architectures inspired by species-specific auditory pathways 

9.4 Application-Specific Challenges 
Long-duration Monitoring: Continuous bioacoustic monitoring presents unique challenges for 
denoising [186]. Areas requiring attention include: 

• Efficient processing of terabyte-scale acoustic datasets 
• Handling of diurnal and seasonal variations in noise conditions 
• Integration of denoising with automated detection and classification 

Biodiversity Assessment: Using bioacoustic data for ecosystem monitoring requires processing diverse 
signals simultaneously [187]. Research needs include: 

• Separation techniques for overlapping vocalizations 
• Multi-species enhancement approaches 
• Noise-robust acoustic indices for biodiversity measurement 

Conservation Applications: Critical conservation applications demand high reliability and specificity 
[188]. Important directions include: 

• Species-specific enhancement techniques for endangered vocalizations 
• Robust performance in extreme environmental conditions 
• Integration with automated population monitoring systems 

9.5 Cross-Domain Research Opportunities 
Unified Theoretical Frameworks: Developing theoretical approaches that span both aerial and 
underwater domains could accelerate progress [189]. Possibilities include: 

• Generalized time-frequency representations optimized for bioacoustic signals 
• Domain-agnostic quality metrics for enhanced signals 
• Mathematical models capturing common aspects of bioacoustic signal structure 

Transfer Learning Strategies: Systematic approaches for adapting techniques between domains could 
leverage strengths from both fields [190]. Research opportunities include: 

• Domain adaptation techniques for cross-medium application 
• Feature normalization approaches to account for propagation differences 
• Meta-learning frameworks trained on both domains 

Collaborative Research Initiatives: Bridging the gap between terrestrial and marine bioacoustics 
communities could foster innovation [191]. Potential initiatives include: 

• Joint benchmark datasets and challenges 
• Standardized interface definitions for algorithm comparison 
• Cross-domain research consortia and workshops 

 

https://www.theaspd.com/ijes.php


International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 13s, 2025 
https://www.theaspd.com/ijes.php 

797 
 

10. CONCLUSION 
This survey has presented a comprehensive review of denoising techniques for bioacoustic signals across 
terrestrial and underwater domains. We have systematically categorized approaches from traditional signal 
processing to advanced machine learning methods, comparing their effectiveness, limitations, and 
domain-specific adaptations. 
Several key observations emerge from this analysis. First, while the fundamental principles of signal 
processing remain consistent across domains, the unique physical properties of air and water necessitate 
specialized approaches to address domain-specific challenges. Second, recent advances in machine 
learning, particularly deep learning, have dramatically improved denoising performance in both domains, 
though often with increased computational requirements. Third, despite these advances, significant 
research gaps remain, particularly in areas of real-time processing, generalization across species and 
environments, and standardized evaluation. 
The comparative analysis reveals that terrestrial and underwater bioacoustic research communities have 
often developed parallel techniques to address similar problems, with limited cross-domain knowledge 
transfer. This presents a significant opportunity for collaboration and integration of approaches, 
potentially accelerating progress in both fields. 
Looking forward, we anticipate several trends that will shape the future of bioacoustic signal denoising: 

1. Increased adoption of self-supervised and unsupervised learning approaches to leverage vast 
amounts of unlabeled bioacoustic data 

2. Development of hybrid models that combine data-driven methods with physical acoustic 
propagation models 

3. Deployment of edge computing solutions enabling real-time denoising in remote field conditions 
4. Greater standardization of evaluation protocols and benchmark datasets 
5. Closer integration between denoising techniques and downstream analysis tasks such as 

detection, classification, and behavioral analysis 
As anthropogenic noise continues to impact natural environments both on land and underwater, effective 
denoising of bioacoustic signals becomes increasingly important for monitoring, conservation, and 
research applications. By bridging the divide between terrestrial and underwater approaches, researchers 
can develop more robust, adaptable, and effective techniques to meet this growing need. 
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