ISSN: 2229-7359 Vol. 11 No.11s, 2025

https://theaspd.com/index.php/ijes

The Synergy Of 5G And Artificial Intelligence (AI) In Modern Healthcare

Tanu Tyagi¹, Latika Sharma², Nisha Sharma³, N. G. Raghavendra Rao⁴, Abhay Bhardwaj⁵, and Anuj Pathak^{*6}
^{1,3} PG Research Scholar, KIET School of Pharmacy, KIET Group of Institutions, NCR-Delhi, NH-58,
Muradnagar, Ghaziabad-201206, Uttar Pradesh, India.

- ² Department of CSIT, KIET Group of Institutions, NCR-Delhi, NH-58, Muradnagar, Ghaziabad-201206, Uttar Pradesh, India
- ^{4,5,6} KIET School of Pharmacy, KIET Group of Institutions, NCR-Delhi, NH-58, Muradnagar, Ghaziabad-201206, Uttar Pradesh, India
- *Corresponding author: Anuj Pathak, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad; E-mail: anuj.pathak@kiet.edu

Abstract

The convergence of 5G (Fifth Generation) technology and Artificial Intelligence (AI) has the potential to revolutionize the healthcare industry, leading to improved patient care, more efficient operations, and advanced medical research. It is set to transform how medical services are delivered, enabling faster, more accurate diagnoses, personalized treatment plans, and innovative therapies. 5G, with its high-speed, lowlatency capabilities, offers a significant upgrade in data transfer rates, responsiveness, and connectivity compared to previous generations. The ultra- reliable and low-latency communication (URLLC) feature of 5G ensures that medical data can be transmitted instantaneously, allowing doctors and specialists to collaborate seamlessly across distances. AI, on the other hand, brings advanced data analysis, pattern recognition, and predictive capabilities to healthcare. Machine learning algorithms can process vast amounts of medical data, such as patient records, and genomic information, to identify trends and predict potential health risks. Secondly, the integration of AI in healthcare harnesses the power of machine learning algorithms to analyze complex data sets, identifying patterns, predicting disease outcomes, and customizing treatment plans for individual patients. Furthermore, the collaborative potential of 5G and AI is showcased in telemedicine, where patients in remote or underserved areas gain access to expert medical consultations via high-quality video conferencing and augmented reality. This paper concludes by highlighting the immense potential of 5G and AI in transforming healthcare delivery, providing precise and personalized treatments, and optimizing resource utilization. It is evident that their collective impact promises a brighter future for healthcare worldwide, enhancing patient experiences and shaping a healthier society.

Keywords: 5g, Artificial intelligence, Machine learning, Wearable devices, Health monitoring

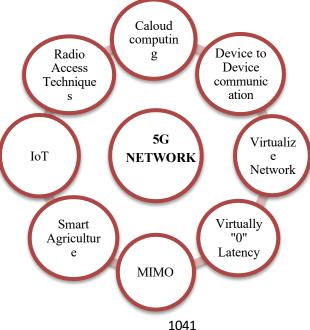
1. INTRODUCTION

The increasing popularity of various information and communication technologies nowadays is changing the world drastically and generating a remarkable ecosystem for new opportunities at a rate never seen before. The digital revolution has affected every field and business, including healthcare. Modern technologies are evolving nowadays that will cater the health of patients by providing the better healthcare services with lower cost of expenditure. It is just the starting of this new phase that involves technologies like artificial intelligence, cloud computing, IoT, and big data. Machine learning, deep learning are the most commonly used techniques that will help in the evolution of the healthcare professionals [1].

ISSN: 2229-7359 Vol. 11 No.11s, 2025

https://theaspd.com/index.php/ijes

The level of information technology advancement means that the medical industry is becoming more and more informative. As the information technology constantly progressed in their precision of providing correct information is constantly become complex about the: - [2]


- 1. Medical field
- Business related
- Data gathered in HospitalsCommunication network data
- Demands of Healthcare and interconnected network.

2. OVERVIEW OF 5G IN HEALTHCARE

The fifth generation of wireless networking is known as 5G. Like the previous fourth-generation, speed is the main focus of 5G. Wireless networks becoming noticeably faster and more powerful with each subsequent generation. First-generation cellular networks, or 1G and 2G, launched in order to significantly improve speech quality on phones and introduce the idea of sending and receiving text messages. 1G network were largely focused on improving sound quality. Fourth generation, or 4G, pushed data sharing to another level with much quicker wireless internet connectivity. Third generation, or 3G, improved call and texting experience and also brought the internet to our cell phones. With its incredibly fast connectivity, extremely low latency, and extensive coverage, 5G offers yet advancement. [3].

2.1 RELEVANCE OF 5G IN HEALTHCARE

5G technology has significant relevance in the healthcare sector, promising to transform how medical services are delivered and experienced. One key benefit is its ability to facilitate faster data transfer, offering higher speeds and lower latency. This translates to real-time communication and swift access to critical medical data, such as high-resolution images and records of patient. Nowadays, one of the major challenges in the healthcare system is the quick transmission of vast amount of patient's data such as videos, images, patient records, device records, or any data recorded through wearable devices. For the currently available networks, e.g., 4G or 3G, it can be overwhelming to handle and transfer such large data sets of patients. On the other hand, 5G has greater

ISSN: 2229-7359 Vol. 11 No.11s, 2025

https://theaspd.com/index.php/ijes

capacity to support the transmission of huge data, and also this could be a reality soon for the hospitals and healthcare providers that have wired up facilities of 5G network. [4].

Figure 1. 5G Network uses in Healthcare.

3. HEALTHCARE INDUSTRY TRENDS DRIVING THE ADOPTION OF 5G

3.1 BIG DATA ANALYTICS

Big data analytics are about to undergo a revolution because to 5G's fast data transport and low latency capabilities. It facilitates seamless IoT data analysis and speeds up real-time data processing for sectors like banking and healthcare. Reduced latency favors edge computing, while real-time HD video processing benefits video analytics. The accuracy of predictive analytics increases, data-intensive jobs are completed faster and remote monitoring in industries like healthcare gets better. Supply chains are also impacted by 5G, which improves decision- making and consumer satisfaction [5].

3.2 5G's Impact on Internet of Medical Things (IoMT)

The adoption of 5G in the Internet of Medical Things (IoMT) was a promising trend that held significant potential for healthcare applications. The convergence of 5G technology and the IoMT has the potential to revolutionize healthcare in several ways:

3.3 High speed connectivity

In comparison to its forerunners (4G/LTE), 5G enables significantly higher data transfer rates, enabling real-time communication between medical devices. This is especially useful in scenarios like remote patient monitoring, telemedicine, and surgical support where quick data interchange is essential.

3.4 Security and privacy

Although not specifically a 5G feature, this is an important factor for IoMT. As more devices become connected as a result of the rising use of 5G, there may be a greater emphasis placed on protecting the security and privacy of patient data.

4. REMOTE MONITORING SYSTEMS IN HOSPITALS AND EHEALTH

With its cutting-edge capabilities, 5G technology is set to transform remote monitoring in hospitals and eHealth. Real-time transmission of crucial medical data is made possible by its blazingly fast speed and extremely low latency, allowing healthcare personnel to keep an eye on patients' situations from a distance and take quick choices. With the use of wearable technology that monitors vital signs, virtual doctor consultations, and even remote procedures, 5G enables medical personnel to work outside the walls of conventional facilities. This technology guarantees seamless connectivity as well as strong data protection [6].

4.1 ADVANCEMENT IN TELEMEDICINE

The emergence of 5G technologies is revolutionizing telemedicine, propelling it to new heights of effectiveness and accessibility. With its rapid speed, minimal delay, and dependable connectivity, 5G is poised to enhance telemedicine's capabilities significantly. It enables high- definition video consultations, real-time patient monitoring through wearable devices, and seamless collaboration among specialists across distances. The technology's potential to transmit complex medical imaging and facilitate virtual reality applications holds promise for more accurate diagnoses and immersive medical training. [7]

ISSN: 2229-7359 Vol. 11 No.11s, 2025

https://theaspd.com/index.php/ijes

4.2 PRE-HOSPITAL EMERGENCY CARE

Pre-hospital emergency treatment is about to undergo a transformation because to 5G technology's quick speeds and low latency. Real-time patient data transmission, including medical records, pictures, and diagnostics, is made possible by 5G by enabling seamless communication between emergency responders and medical specialists. Informed decision- making and coordinated response efforts are made possible as a result, resulting in actions that are speedier and more efficient. Furthermore, 5G-enabled wearable technology and remotemonitoring systems can quickly communicate patient vital signs and condition data, assisting in early triage and treatment. [8]

4.3 REMOTE MONITORING OF PATIENTS

Patients remote monitoring is seen as a serious driver in order to get more effective and practical delivery in the management of chronic illness. The different characteristics can be collected and analysed by the help of some sensors, wearable, and health devices, and it increase the patient's compliance by avoiding travel to primary care facilities and face to face appointment to their medical experts. 5G will help to enable remote monitoring of patients to happen at scale. It has great connectivity solution in compared to other networks through the promises like;

- Best reliability and security of the service
- Increases the no. of connected devices in a given area
- Flexibility in home connectivity solutions like Wi-Fi [9].

5. ROLE OF AI IN HEALTHCARE

The most innovative technology nowadays is artificial intelligence providing the most essential benefits in healthcare and improving the way of diagnose, treat and monitor patients.it helps us in developing the personalized treatment on the basis of pharmacogenetics and provide us the best fit results that can make the diagnose and treatment of the health complicated process efficient. Its ability to analyse the previous health record and developed the radiological markers helps in analysing the huge number of reports and records. Also aids in the prediction of the chronic health complications. By applying these machine learning, artificial intelligence in clinics and hospitals helps the healthcare system to produce better results, cost saving treatment, time saving procedure etc. [10].

5.1 Different types of Artificial intelligence and their impact on healthcare industry

5.1.1 Machine learning

It is the most precise form of artificial intelligence that based upon the learning of machine by involving few to no human use. Machine are learned with the help of pre-determined set of data that are feed into the computer or machine than the results are predicted on the basis of already set data sets by allowing them to draw their own conclusions. Although ML is a developed field in the area of research in precision and personalized medicine with vary potential applications because the data of patient is more easily and readily available, machine learning in healthcare will results into providing many important benefits to healthcare professionals and health systems for extracting meaning from medical information [11].

5.1.2 AI for clinical trials:

A clinical trial is a procedure in which recently manufactured treatments are given to people in order to test

ISSN: 2229-7359 Vol. 11 No.11s, 2025

https://theaspd.com/index.php/ijes

how well they work. This has taken a important amount of time and money. Even after investing the money and time still the achievement rate, still is quite low. In conclusion, clinical trial mechanization has proven to be a benefit for AI and the healthcare business. Additionally, Artificial Intelligence and healthcare support in the elimination of time-consuming data monitoring procedures. [12]

5.1.3 Ai in Patient Care

In order to improve diagnosis, treatment, and overall healthcare quality, AI is being progressively incorporated into patient care. AI can help clinicians make accurate diagnoses, anticipate illness risks, and customize treatment approaches for specific patients by analyzing medical data. Healthcare practitioners can uncover patterns and trends that could be missed by human analysis alone with the use of machine learning algorithms, which can process enormous volumes of data from medical records, pictures, and wearable devices. [13]

5.1.4 Computer vision for diagnosis and surgery

Artificial Intelligence (AI) integrated with computer vision has emerged as a transformative tool in the fields of medical diagnosis and surgery. In medical diagnosis, AI-powered computer vision systems analyze medical images such as X-rays, MRIs, and CT scans, aiding in the accurate detection of anomalies and diseases [14].

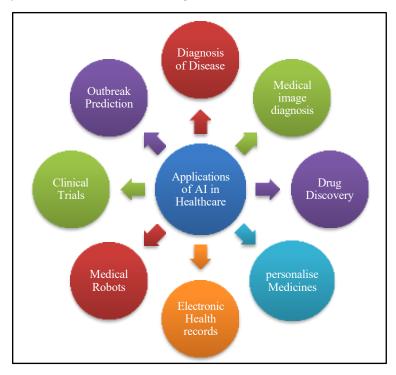


Figure 2. Applications of AI in Healthcare

6 Applications of various realties in healthcare space like augmented and virtual

Augmented reality and virtual reality can be combined at every stage of a healthcare system. (AR) and (VR) have found numerous applications in the healthcare sector, transforming the way medical professionals train, diagnose, and treat patients: [15]

6.1 In patient education and exploration

Healthcare professionals visualize complex medical issues and treatment alternatives using AR and VR.

ISSN: 2229-7359 Vol. 11 No.11s, 2025

https://theaspd.com/index.php/ijes

Patients are more likely to adhere to treatment and have better results when they can actively participate in their healthcare decisions, examine interactive models of their own anatomy, and understand the details of treatments. Traditionally various concepts are indulged in the education system for school to be taught so that they will never be experience them in real life. Some gaming technologies like AR and VR improve the learning experience for disciplines related to future medical and health. [16].

6.2 In case of Surgical Planning

Surgeons use AR and VR to superimpose 3D reconstructions from medical imaging onto their perspective to visualize the anatomy specific to a patient. This permits accurate surgical planning, assisting in the identification of key structures, ideal entry locations, and probable difficulties, ultimately resulting in safer and more successful operations. [17].

6.3 Experiences of patient

Conventional ability can be enormously helpful for the patients who have experienced unbearable conditions that can affect their programme or for the persons who experiences pain and anxiety that can be either due to chronic illness or side effect of any treatment. Recently in a study, they are looking at the effect of immervise VR for the patients who suffered from the chronic stroke and this technology found positively very useful to the patient's state. At the time of VR experience, the patients are questioned to take a virtual ball and then throw it back into the virtual space. [18]

6.4 Applications in case of diagnosis and treatment

Since 1970s AI has been focus on the diagnosis and treatment of disease, MYCIN was firstly developed for analyzing blood-borne infections at Stanford [19].

They were not considerably better than human diagnosticians, and they were unwell combined with medical record systems and clinician workflows. Recently, IBM's Watson has received a lot of media consideration for its effort on precision medicine, particularly for treatment and diagnosis of cancer. Watson uses a combination of machine learning and NLP skills [20].

6.5 Dermatology

Generally dermatology is majorly depends on imaging in the healthcare sector. Image processing has widely helped in deep learning. There are majorly several types of imaging in dermatology which are micro images, contextual images, and macro images. These each type of images showed a great progress in deep learning. [(21)]

6.6 AI applications in stroke

Stroke is a very common and also most occurring disease that affects exactly estimate of approximately 500 million people all over the world. It is one of the most significant causes of death in China and in North America. Stroke estimates about US\$689 billion cost and medical expenses worldwide, that will lead to in initiating the heavy burden to various countries and families. [22] In recent years, therefore various studies that aids in research for prevention and treatment the stroke has great significance and various AI techniques like machine learning, deep learning have been used. There are many significant AI techniques and some of the techniques in the three main areas of stroke care:

ISSN: 2229-7359 Vol. 11 No.11s, 2025

https://theaspd.com/index.php/ijes

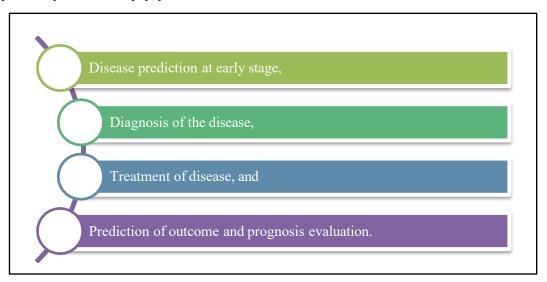


Figure 3. Application of AI in Stroke

6.7 Detection and diagnosis at early stage

Techniques like Magnetic resonance imaging [MRIs] and CT scans with simulation of artificial intelligence algorithm help in diagnoses, detection and analysis of the stroke.

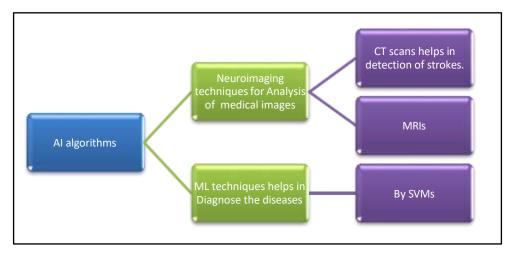


Figure 4.AI Algorithms

6.8 Treatment

As we discussed machine learning proves very helpful in forecasting and examining how the treatment of stroke and its performance helps in determining its efficiency. Although considering as an important base of measurement of emergency, the outcome of intravenous thrombolysis (tPA) proves to have a very powerful association with the prognosis and survival rate. [23]. Various computational algorithm can help the healthcare providers and clinicians to make valuable decisions about the treatment and frequency, dosage regimen, patient compliance for stroke patients like what type of treatment is best suited for stroke patients and how well they respond to that treatment. They can analyse the data of patient, including the medical history of the patient, results of imaging, and clinical data, to recommend the most appropriate interventions. [24]

6.9 Prediction of outcome and prognosis evaluation

There are many factors that can affect prognosis of stroke and disease mortality. After Compared with the

ISSN: 2229-7359 Vol. 11 No.11s, 2025

https://theaspd.com/index.php/ijes

conventional methods, it found that ML methods have advantages in improving prediction performance of the stroke. To significantly support this clinical decision-making process, Zhang et al proposed a model for forecasting treatment for 3-month outcome by analyzing the physiological parameters during 48 hours after stroke using logistic regression [25]. The authors analyzed the data through ANN and SVM, and obtained accuracy of prediction above 70%. At the same time, they also used ML techniques to recognize factors manipulating outcome in brain arteriovenous abnormality treated with endovascular embolization [26].

7 AI in Health: Future Directions

7.1 Personalized Medicine:

AI will enable more precise and personalized treatment approaches by analyzing huge amounts of patient data, which includes genetics, medical history, and lifestyle factors of the person. This will lead to personalized treatments that are more operative and have fewer side effects. [27]

7.2 Integrative Analysis:

The future of AI in integrative analysis holds great promise for advancing our understanding of complex systems, whether in scientific research, healthcare, economics, or other fields. The next generation of scientists will "grow inspired new methods for identifying, measuring, and analyzing a wide range of biomedical information – it will include molecular, genetic, cellular, clinical, behavioral, physiological, and environmental parameters." Data from different manner can describe a health problem from different features, and by centralizing withdrawal of those heterogeneous data, rounded and comprehensive insights into health can be obtained. [28]

7.3 Model Security

Traditionally, we emphasize the significance of protective the security and confidentiality of health data, mainly that which narrates to particular patients. We should be aware of the possible security risk modelled by these models as the use of AI is increasing in healthcare. As a graphic, Sitawarin et al [29] Presented that slight modifications of lab values in a patient's EHR can completely change the mortality prediction made by what is otherwise a well-trained predictor. Finlayson et al. Discuss in greater detail any potential issues with the "incentives for more refined adversarial attacks" in the healthcare industry.

7.4 Federated Learning

The future of AI in federated learning is poised to bring about transformative changes in how machine learning models are trained, enabling a new paradigm that prioritizes privacy, scalability, and collaboration. Federated learning can contribute with this challenge. According to Konecny et al. [30] Federated Learning is a ML situation and to train a high-quality centralized model using training data distributed over a large number of clients is the main goal". These clients frequently have unpredictable and moderately slow network connections. Developing federated health AI technologies is important and highly demanding at the same time. Lee et al. [31]. Advanced a privacy-preserving federated patient similarity learning approach and evaluated it on MIMIC III data. [32]

8 Here's a glimpse of what the future holds for AI in federated learning:

8.1 Advanced Privacy-Preserving Techniques:

Research will lead to the development of more sophisticated privacy-preserving techniques in federated learning. Differential privacy, secure aggregation, and encrypted computations will become even more robust, ensuring that sensitive data remains confidential throughout the training process.

8.2 Cross-Domain Collaboration:

Federated learning will make it possible to collaborate across domains without transferring raw data. While

ISSN: 2229-7359 Vol. 11 No.11s, 2025

https://theaspd.com/index.php/ijes

upholding data security and compliance, sectors like healthcare, finance, and manufacturing will work together to train models to draw insights from a variety of datasets.

8.3 Hybrid Approaches:

Hybrid models that combine federated learning with centralized techniques will emerge to address complex scenarios where some data can be shared while preserving privacy for sensitive portions. This will strike a balance between data aggregation and local learning.

8.4 Data Bias

Models of AI required the sampling training data size should not be large enough and the sample size of population should be small that comprises all the variations that occur in the patients and complexities they face. The data that is recorded into the model vary from patients to patients like the data of one hypertension patients can be different from the data of another hypertension patients even though they suffer from the same disease but the genetics of all individuals are different. These variations create biasness in the collection and reporting of data in AI and healthcare that will results into worsening of health condition as pointed out by Khullar. [33] There are ways by which the biasness in the data can be minimized that includes projects like OHDSI. [34] The national clinical research network PCORnet that is developed by Patient- Centered Outcomes Research Institute (PCORI) [35].

8.5 Model Transparency

AI nowadays serves various technologies like deep learning; machine learning provides a greater performance but than the traditional methods of AI that were considered as good for interpretability. Geoff Hinton, a pioneer in DL, express their views on that people should not require to describe the mechanism of each and every step as they will not be able to give enough explanations about how the algorithm really works, so there is no need to tell all the steps of the process this can be going on in the descriptive model. Poursabzi-Sangdeh et al [36] supervises an experiment of controlled randomized to examine how the interpretability of the models affects the understanding of the users. Moreover, the ability of the people is hinder as how and where the model is going wrong or not working in an efficient manner but with the help of the black box model it simulates the decision-making process of human [37]. Although there were several articles that states that the interpretability doesn't much affect the process and importance of interpretability mainly where the AI already proffer that it can demonstrate the result with proper accuracy. For example, a similar performance was observed in readmission tasks of hospital that imply the use of EHRs via using logistic regression and deep learning technology [38]. As we discussed earlier that the collection the dataset of the medical image obtained from the one radiological centre can't be submitted as reference for the other radiological center, also it is so hard to provide the justification for this. In conclusions, artificial intelligence is just for learning and assisting because the overall decision is still in the hands of human clinicians. [39]

9 Challenges of AI in Healthcare

Even though promising potential of AI in healthcare, there are still little actual AI-enabled solution adoption in clinical practice. In accumulation to privacy issues, there are some additional methodological and technical flaws in AI technology. There are some main issues facing AI in healthcare:

9.1 Lack of Quality Medical Data

The absence of high-quality medical data presents significant obstacles for the advancement and practical implementation of AI within healthcare. The quantity and diversity of data are crucial for training effective AI algorithms, especially deep learning models, but the shortage of such data can impede their accurate and reliable performance. Lastly, meeting regulatory standards is challenging, necessitating the demonstration of AI safety and effectiveness, which is complicated by the lack of robust medical data. Addressing these challenges demands collaboration among stakeholders, including healthcare providers, researchers, data scientists, and policymakers, and could involve refining data collection, improving sharing mechanisms,

ISSN: 2229-7359 Vol. 11 No.11s, 2025

https://theaspd.com/index.php/ijes

enhancing labelling techniques, and investing in research to mitigate the limitations posed by inadequate medical data. [40]

9.2 Transparency and safety in AI

There are major challenges that AI is facing currently is in the healthcare sector. IBM Watson for Oncology [41] imply the information of AI from the diverse diseased patients that eventually help in finding and categorized the various treatments for cancer patients, Alzheimer disease etc. Also, it is already discussed under the criticism by reportedly giving "unsafe and incorrect" suggesting for cancer treatments [42]. The problem seems to be in the training of Watson for Oncology: despite of providing the real human clinical data of cancer a few of synthetic cases were submitted in the software for referencing by doctors at the Memorial Sloan Kettering (MSK) Cancer Centre. MSK resulted that no improper or unsuitable treatment is given to cancer patients on the basis of synthetic case studies [43]. The data sets that are used in the model should be conformed and reliable. The process of "garbage in, garbage out" applies to AI in this area. It depends in us how well the training data (labelled data) is included in the model, the better will be performance of AI but also some additional finishing are required for obtaining the best results. [44]

9.3 Interdisciplinary Collaboration

The challenges of integrating AI into healthcare underscore the importance of interdisciplinary collaboration to develop comprehensive and responsible solutions. Addressing these challenges necessitates the collective expertise of various stakeholders, including healthcare professionals, data scientists, ethicists, policy makers, and regulators. By combining their various skills, stakeholders can collectively determine how AI is used, ensuring that new developments adhere to moral principles, legal requirements, and the overriding objective of improving patient care and wellbeing. [45]

Table: - 1. Advantages and Disadvantages of AI in Healthcare

Advantages of AI in Healthcare	Disadvantages of AI in Healthcare
1. Personalised Treatment Plans	Data Privacy and Security Concerns
2. Faster Diagnosis	Integration With Existing System
3. Enhanced Monitoring	Ethical Consideration And Biasness
4. Medical Information	Lack Of Standardization
5. Appointment Scheduling Efficiently	Legal And Regulatory Compliance
6. Remote Healthcare services	Limited Understanding and Acceptance
7. Gene Editing	High Initial Cost
8. AI Robot-Assisted Surgery	Human Workforce Adaption
9. Empowered Patient Engagement	Patient Resistance and Trust Issues
10. Cost Effective Healthcare, and many more.	Algorithm Reliability and Transparency, and many more.

10 Conclusion

The chapter on "5G and AI in Healthcare" showcases how the fusion of 5G technology and artificial

ISSN: 2229-7359 Vol. 11 No.11s, 2025

https://theaspd.com/index.php/ijes

intelligence is reshaping healthcare. 5G's fast connectivity enables real-time data transfer, while AI processes this data for accurate diagnostics and personalized treatments. This combination has the potential to overcome distance barriers through telemedicine and enhance patient care. However, ethical concerns like data security and biases must be addressed for a responsible implementation. Overall, this convergence promises a future of improved healthcare accessibility and effectiveness.

Conflict of interest

The authors declare no conflict of interest, financial or otherwise

REFERENCES

- 1. Ting DSW, Lin H, Ruamviboonsuk P, Wong TY, Sim DA. Artificial intelligence, the internet of things, and virtual clinics: ophthalmology at the digital translation forefront. The Lancet Digital Health. 2020;2(1):e8–e9
- 2. Gupta R, Tanwar S, Tyagi S, Kumar N. Tactile internet and its applications in 5G era: a comprehensive review. Int J Commun Syst. (2019) 32:e3981. doi: 10.1002/dac.3981
- 3. Andrews J.G., Buzzi S., Choi W., Hanly S.V., Lozano A., Soong A.C., Zhang J.C. What will 5G be? IEEE J. Sel. Areas Commun. 2014;32:1065–1082. doi: 10.1109/JSAC.2014.2328098
- 4. Guo Caixia, and Hong Li. "Application of 5G network combined with AI robots in personalized nursing in China: A literature review." Frontiers in Public Health 10 (2022): 948303.
- 5. Nejkovic, Valentina, et al. "Big data in 5G distributed applications." High-Performance Modelling and Simulation for Big Data Applications: Selected Results of the COST Action IC1406 cHiPSet (2019): 138-162.
- 6. Georgiou, Konstantinos E., Evangelos Georgiou, and Richard M. Satava. "5G use in healthcare: the future is present." JSLS: Journal of the Society of Laparoscopic & Robotic Surgeons 25.4 (2021).
- 7. Sujan, Mark, et al. "Human factors challenges for the safe use of artificial intelligence in patient care." BMJ health & care informatics 26.1 (2019).
- 8. Georgiou, Konstantinos E., Evangelos Georgiou, and Richard M. Satava. "5G use in healthcare: the future is present." JSLS: Journal of the Society of Laparoscopic & Robotic Surgeons 25.4 (2021).
- 9. Oleshchuk, Vladimir, and Rune Fensli. "Remote patient monitoring within a future 5G infrastructure." Wireless Personal Communications 57 (2011): 431-439.
- 10. Secinaro, Silvana, et al. "The role of artificial intelligence in healthcare: a structured literature review." BMC medical informatics and decision making 21 (2021): 1-23.
- 11. Callahan, Alison, and Nigam H. Shah. "Machine learning in healthcare." Key advances in clinical informatics. Academic Press, 2017. 279-291.
- 12. Shaheen, Mohammed Yousef. "Applications of Artificial Intelligence (AI) in healthcare: A review." ScienceOpen Preprints (2021).
- 13. Sujan, Mark, et al. "Human factors challenges for the safe use of artificial intelligence in patient care." BMJ health & care informatics 26.1 (2019).
- 14. Hashimoto, Daniel A., et al. "Artificial intelligence in surgery: promises and perils." Annals of surgery 268.1 (2018): 70.
- 15. Venkatesan, Mythreye, et al. "Virtual and augmented reality for biomedical applications." Cell reports medicine 2.7 (2021).
- 16. Chien, Chien-Huan, Chien-Hsu Chen, and Tay-Sheng Jeng. "An interactive augmented reality system for learning anatomy structure." proceedings of the international multiconference of engineers and computer scientists. Vol. 1. Hong Kong, China: International Association of Engineers, 2010.
- 17. Mangano, Francesco Guido, et al. "Artificial intelligence and augmented reality for guided implant surgery planning: a proof of concept." Journal of Dentistry 133 (2023): 104485.

ISSN: 2229-7359 Vol. 11 No.11s, 2025

https://theaspd.com/index.php/ijes

- 18. Lee, Seung Hak, et al. "Upper extremity rehabilitation using fully immersive virtual reality games with a head mount display: a feasibility study." Pm&r 12.3 (2020): 257-262.
- 19. Rezaei, Mehdi, et al. "Role of artificial intelligence in the diagnosis and treatment of diseases." Kindle 3.1 (2023): 1-160.
- Buchanan, Bruce G., and Edward H. Shortliffe. Rule based expert systems: the mycin experiments of the stanford heuristic programming project (the Addison-Wesley series in artificial intelligence). Addison-Wesley Longman Publishing Co., Inc., 1984.
- 21. Wang, Fei, and Anita Preininger. "AI in health: state of the art, challenges, and future directions." Yearbook of medical informatics 28.01 (2019): 016-026.
- 22. Saenger, Amy K., and Robert H. Christenson. "Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treatment." Clinical chemistry 56.1 (2010): 21-33.
- 23. Bentley, Paul, et al. "Prediction of stroke thrombolysis outcome using CT brain machine learning." NeuroImage: Clinical 4 (2014): 635-640.
- 24. Ye, H., H. Shen, and Y. Dong. "Using Evidence-Based medicine through Advanced Data Analytics to work toward a National Standard for Hospital-based acute ischemic Stroke treatment." Mainland China 65 (2017)
- 25. Zhang, Qing, et al. "Acute ischaemic stroke prediction from physiological time series patterns." The Australasian medical journal 6.5 (2013): 280.
- 26. Birkner, Merrill D., et al. "Creating diagnostic scores using data-adaptive regression: An application to prediction of 30-day mortality among stroke victims in a rural hospital in India." Therapeutics and clinical risk management 3.3 (2007): 475-484.
- 27. Awwalu, Jamilu, et al. "Artificial intelligence in personalized medicine application of AI algorithms in solving personalized medicine problems." International Journal of Computer Theory and Engineering 7.6 (2015): 439.
- 28. Park, Youngjun, Dominik Heider, and Anne-Christin Hauschild. "Integrative analysis of next-generation sequencing for next-generation cancer research toward artificial intelligence." Cancers 13.13 (2021): 3148.
- 29. Sitawarin C, Bhagoji AN, Mosenia A, Chiang M, Mittal P. Darts: Deceiving autonomous cars with toxic signs. arXiv preprint arXiv:1802.06430: 2018
- 30. Konecny J, McMahan HB, Yu FX, Richtarik P, Suresh AT, Bacon D. Federated learning: Strategies for improving communication efficiency ArXiv preprint. arXiv(1610.05492); 2016: p.18
- 31. Lee J, Sun J, Wang F, Wang S, Jun CH, Jiang X. Privacy-Preserving Patient Similarity Learning in a Federated Environment: Development and Analysis. JMIR Med Inform 2018; 6 (02) e20
- 32. Johnson AE, Pollard TJ, Shen L, Li-wei HL, Feng M, Ghassemi M., et al. MIMIC-III, a freely accessible critical care database. Sci Data 2016; 3: 160035
- 33. Khullar D. A.I. could worsen health disparities. The New York Times. Jan. 31, 2019. https://www.nytimes.com/2019/01/31/opinion/ai-bias-healthcare.html
- 34. Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ., et al. Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers. Stud Health Technol Inform 2015; 216: 574-8
- 35. PCORI: Patient-Centered Outcomes Research Institute. https://www.pcori.org/
- 36. Poursabzi-Sangdeh F, Goldstein DG, Hofman JM, Wortman Vaughan J, Wallach H. Manipulating and measuring model interpretability. arXiv preprint arXiv:1802.07810;2018
- 37. Holm EA. In Defense of the Black Box. Science 2019; 364 (6435): 26-7
- 38. Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M., et al. Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine 2018; 1 (01) 18.
- 39. Wang, Fei, Lawrence Peter Casalino, and Dhruv Khullar. "Deep learning in medicine— promise, progress, and challenges." JAMA internal medicine 179.3 (2019): 293-294.

ISSN: 2229-7359 Vol. 11 No.11s, 2025

https://theaspd.com/index.php/ijes

40. Iliashenko, Oksana, Zilia Bikkulova, and Alissa Dubgorn. "Opportunities and challenges of artificial intelligence in healthcare." E3S Web of Conferences. Vol. 110. EDP Sciences, 2019.