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Abstract 

Artificial Intelligence (AI) is defined as a combination of human intelligence with computational algorithms 
that simulate technologies of convolutional neural networks (CNN) like machine learning (ML), deep 
learning, and artificial neural networks (ANN). It is primarily working on the development of the new 
methods and technologies that can solve the complexity of the formulation and processing in the 
pharmaceutical industry. AI devices are now developed that can help with their capacity to learn from 
experience and historical data, in analysing their immediate environment, carry out activities quickly, discern 
patterns, and recognise faces and things. Artificial intelligence is a procedure that uses a computational 
algorithm to mimic human intelligence. ANNs have number of applications in drug delivery research which 
consists of drug release prediction, pharmacokinetic modelling, targeted drug delivery, and formulation 
optimization. AI algorithms provide an understanding of drug delivery mechanisms, IV drug release profiles, 
and the knowledge of the current shelf life and deterioration of oral drugs. AI approach can be applied i.e., 
Convolutional neural network (CNN) that can ensure all the criteria required for automated analysis of the 
defects of tablet. Machine learning (ML), a branch of artificial intelligence, that provides a promising solution 
as its algorithms can "learn" from large datasets and can help in prediction of complex systems. AI simulated 
with computational algorithm is now widely accepted procedure to tackle these types of hurdles in the 
prediction of the PK parameter. Therefore, this needs to be developed in several areas to help the assessment 
and efficacy of the projects that are evolving in future. 

Keywords: Artificial Intelligence; Drug Discovery; Technologies of AI; Solid Dispersions; Long Acting 
Injectables 

1. INTRODUCTION 

Artificial intelligence (AI)-based formulation development has shown to be a successful technique for 
supporting the pharma product development process. AI, which mimics human intellect through 
computational algorithms, is a powerful tool with numerous methods that may be used to a variety of 
situations. With increasing demand for AI, its applications are developing, particularly in clinical assessment 
and training. Furthermore, AI is critical for handling and interpreting big datasets, opening up new avenues 
for in-depth research [1]. The ability to process large amounts of data reduces human workload while 
increasing quality of life. The usual AI pipeline includes four main steps: data collection and preparation, AI 
modeling, simulation, testing, and deployment [3]. AI-based drug development has grown widely adopted in 
the pharmaceutical business, and it is currently seen as a dominating and powerful alternative to traditional 
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approaches [4]. Pharmaceutical corporations are increasingly investing in artificial intelligence, often forming 
joint ventures with AI startups, in order to develop more effective medication treatments and medical device 
[5]. 

AI focuses on creating intelligent systems capable of executing activities that would normally need 
human intelligence and cognition. These systems can learn from experience and past data, evaluate their 
surroundings, complete jobs quickly, recognize patterns, and even recognize faces and things. Machine 
Learning (ML), a subject of AI, is often divided into three categories: supervised learning, unsupervised 
learning, and reinforcement learning (Figure 1). 

In supervised learning, algorithms expect target variables based on a set of input variables [6]. AI 
technology is expected to impact medication discovery and development as algorithms improve and clinical 
data is collected. AI is becoming increasingly important in all aspects of pharmacy, making it a necessary tool 
at every stage of developing new drugs. There are several methods for administering drugs, including 
transdermal, mucosal, oral solid dosages, and biologics, all with the goal of enhancing therapeutic 
effectiveness while decreasing side effects and taking into account patient demands. AI has shown promise in 
solving many medication delivery difficulties, including low dissolution, low permeability, increasing trial-
and-error research, and poor patient compatibility. 

2. TECHNIQUES OF ARTIFICIAL INTELLIGENCE 

Artificial intelligence proves its benefits in various applications by using its several techniques (Figure 
1Genetic algorithm provides its application in targeted drug delivery processes, for optimization the dosage 
of medicine for personal use, in drug delivery research, to understand the kinetics of drug release, aiding in 
modelling of PK models and in improving the patient and therapeutic compliance [7]. ANNs widely known 
technology referred as Artificial Neural Networks have number of applications in drug delivery research which 
consists of drug release prediction, pharmacokinetic modelling, targeted drug delivery, and formulation 
optimization. They also help in personalized drug dosing, quality control, and in silico screening of drug 
candidates. ANNs proved beneficial in increasing the process of drug delivery system development, in 
optimizing formulations that can provide efficient and targeted therapies. Support Vector Machines (SVM) 
are important because they can predict drug-target interactions, helps in improving formulations, simulate 
pharmacokinetics, and able for personalised medication delivery.  

XGBoost aims mainly to estimate the area under curve (AUC) and for making accurate predictions by using 
pharmacokinetic (PK) datasets from individuals who had undergone kidney, liver, and heart transplants [8,9]. 
XGBoost is a very powerful machine learning algorithm that serves to finds applications in drug discovery 
and delivery. Its algorithm can also predict drug-target interactions, identifying potential drugs that mainly 
binds to their specific targets. Moreover, it imitates drug pharmacokinetics and pharmacodynamics, 
optimizing delivery strategies and dosage regimens. It is beneficial in prediction of toxic effects, in determining 
the selection of safe drug candidates. Additionally, it regulates drug formulations by considering such factors 
like solubility, stability, and bioavailability, leads for better delivery systems. It can predict individual responses 
to drugs, enabling personalized drug delivery by analysing patient data. Furthermore, it mimics drug release 
kinetics for sustained or controlled delivery from various systems.  
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Figure 1. This figure illustrates key techniques in Artificial Intelligence, including Artificial Neural Networks (ANN), Machine  Learning 
(ML), Genetic Algorithms, XGBoost, Support Vector Machines (SVM), Molecular Modelling, and Molecular Dynamics, showcasing their 
diverse applications in AI-driven problem solving. 

 
Formulating drugs with low aqueous solubility poses a significant obstacle in the pharmaceutical industry, falling 
under the challenging biopharmaceutical classification system (BCS) classes II and IV [10]. Surprisingly, about 
40% of commercial drug products and a staggering 90% of drugs in the developmental stage are plagued by poor 
water solubility [11]. Besides this, the formulation development process grapples with additional hurdles, such as 
poor powder flowability [12], a narrow therapeutic window [13], and susceptibility to chemical degradation during 
manufacturing [14].  
Confronting these difficulties demands scientists to embark on numerous experiments to bridge the knowledge 
gap. However, these experiments are both labour-intensive and time-consuming, adding further complexity to the 
development process. Thankfully, artificial intelligence (AI) comes to the rescue as it provides an efficient and 
effective solution. In recent years, AI has significantly improved in power and flexibility, making it a compelling 
approach to tackle the challenges faced in formulation development. By leveraging AI's capabilities, researchers 
can streamline their efforts, accelerate experimentation, and ultimately devise innovative and optimized drug 
formulations to meet the needs of patients and the pharmaceutical market [15]. AI plays a crucial role in 
rectification of the development of systems of delivery of drug, transdermal, parenteral, mucosal, in biologics 
products development, nanomedicine, medical devices, pharmacokinetic and pharmacodynamic parameters 
(PKPD) assessment etc. 

3. AI FOR SOLID ORAL DOSAGE FORM DEVELOPMENT 

Solid dosage forms like tablets, capsules, powders are most popular due to their ease of self-administration, 
patient compliance, good stability, correct dosing, and simplicity of production, oral solid dosage forms are 
regarded as the most suitable type of drug delivery. Tablets rule the market among all solid dosage forms. By 
2015, there will be a 100% rise in the use of AI for solving the issues stated above [16]. 

3.1 ROLES OF ARTIFICIAL INTELLIGENCE 
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AI predominantly helps in the product development phase, such as in predictions of drug behaviour, drug 
release through formulations, physical stability, detection of tablet defects, understanding the impact of QC 
parameters in the manufacturing of the product, and the manual resources used for trial-and-error 
experiments (Figure 2). AI algorithms provide an understanding of drug delivery mechanisms, IV drug release 
profiles, and the knowledge of the current shelf life and deterioration of oral drugs. It provides information 
on the detection of potential risks and challenges at an early stage [17]. 

 

Figure 2. The roles of Artificial Intelligence in pharmaceutical product development, including the detection of tablet defects, predictions of drug 
behavior, improvement of physical stability, and enhancement of the bioavailability of poorly water-soluble drugs. 

 

1.1. BIOAVAILABILITY OF POORLY WATER-SOLUBLE DRUGS  
                       Artificial Intelligence (AI) has significant promise in improving the oral bioavailability of poorly water-

soluble drugs using supersaturating drug delivery systems (SDDS) [18-21]. AI can optimize SDDS formulation 
parameters, like carrier materials and release rates, to enhance drug solubility and availability. AI-based predictive 
models can also identify suitable precipitation inhibitors ("parachutes") [22]. They help in sustaining the 
supersaturated state in the gastrointestinal tract, leading to improved drug absorption and effectiveness when taken 
orally [23].   

 
1.1.1. MACHINE LEARNING IN SOLID DISPERSIONS  

                 Amorphous solid dispersion (SD) has gathered major beneficial interest for its potential to enhance drug 
solubility. Major challenge for economization is due to the physical stability of solid dispersions. The current stability 
testing process is time-consuming and unpredictable, that lacks the progress. The specified mechanism of Solid 
dispersions stability still poorly understood. Many theoretical models have been established, but they require extensive 
physicochemical data and expertise of professional results in limiting their predictive capabilities. 
Machine learning (ML), a branch of artificial intelligence, that provides a promising solution as its algorithms can 
"learn" from large datasets and can help in prediction of complex systems. In pharmaceutical research, ML has shown 
success in areas such as quantitative structure-activity relationship (QSAR), drug-drug interaction, drug discovery, and 
pharmacogenomics [24-29]. In development of formulation the models of ML have been developed that possess high 
accuracy for prediction of disintegration time, dissolution curves, and binding free energy of drug complexes [30]. By 

Product 
development 

phase 

Detection 
of tablet 
defects 

AI 

Predictions 
of drug 

behaviour 

Improving 
physical 
stability 

Enhancing the 
bioavailabilty of 

poorly water 
soluble drugs



International Journal of Environmental Sciences 

ISSN: 2229-7359 
Vol. 11 No. 11s, 2025 

https://theaspd.com/index.php/ijes 

1026 

 

 

using the techniques of ML, ability to insights into the physical stability of solid dispersions and help in the 
development of stable drug delivery systems for pharmaceutical applications can improved. The result is evaluated by 
comparing the true values with predictive value for each considered datasets - training set, validation set and testing 
set by ANN and DNN.  Most accurate neural technology will be considered for prediction of further datasets [31]. 
Two crucial steps were followed in ML:  

1. Data extraction: Solid dispersions-related data were gathered using the keywords "solid dispersions" and 
"physical stability" from the databases of the Web of Science. 

2. Dataset classification: The dataset was split into three subsets via using machine learning techniques training 
set, validation set and testing set [31]. 

As compared with previous data selection methods maximum dissimilarity algorithm (MD-FIS) in R language is the 
best choice. Both Artificial neural network (ANN) and deep neural networks (DNN) are the most widely used neural 
network technologies. In comparison of ANN, DNN provides information with more accuracy and detect minute 
variation with complicated parameters of network [32]. Data were taken from internal Merck data by Junshui Ma et 
al. and comprised on-target and absorption, distribution, metabolism, and excretion (ADME), with each molecular 
characteristic being defined as serious. Deep neural networks were utilised to analyse QSAR in the end, and the 
outcome was superior to that of the widely used random forest [33]. Each layer of network consists of several epochs 
that indicates how many times a dataset is used for training. The are many primary distinctions between Artificial 
Neural Networks (ANN) and Deep Neural Networks (DNN), some of them are summarized in the Table 1: 

Artificial Neural Network Deep Neural Network 
It is defined as Artificial neural network. It is defined as Deep neural network. 

 
ANN consists of one or two hidden layers of 
neural networks  

DNN consist of multiple hidden layers of neural 
network. 

ANN is commonly used for basic tasks such as 
regression and classification problems. 

DNN is used for more complex tasks, such as 
identification of image, natural language analysis, and 
other tasks that require understanding complex 
relationships in the data. 

Table 1: Comparison between Artificial Neural Network (ANN) and Deep Neural Network (DNN), highlighting 
differences in their structure, applications, and complexity. 

 
1.1.2. AI IN TABLET DEFECTS 

              UNet is a convolutional neural network (CNN), that is based on the image segmentation analysis. The "U" 
in U-Net refers to the shape of the network architecture. It was previously used for image segmentation of cell and 
tissue in biomedical. It is known as UNet because of its U-shaped form, which consists of an encoder element and a 
decoder part. Mainly two convolutional neural networks were used UNetA and UNetB. Current application of UNet 
is detection of tablet defects, requires a images dataset which includes both defective and non-defective tablets, 
simultaneously with the truth that masks indication of the regions of defects. AI is trained by a large dataset of labelled 
images of previous collection of defects of images to produce the result. The process of detecting the tablet defects via 
UNet is consisit of several steps that are shown in Figure 3. 

Tablet defects can arise during manufacturing or storage that results into impure products that may have cracks, chips, 
and capping like defects that leads to deterioration of structure.  Defects like lamination, hardness variation, and weak 
bonding can cause defects in appearance and functional parameters. Content non-uniformity defects effects 
consistency of dosage. Major defects like Sticking, mottling, swelling, double impression, and softening can result 
potential reduction in quality. So, QC measures are important to produce safe and effective tablets. Traditional 
methods like X-ray microcomputed tomography (XRCT) mainly used for identification of analysis of the internal 
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image and for identification of damage [34]. The use of XRCT to automatically determine internal tablet faults has 
been hold back due to its inability to accurately measure the internal cracks of tablet. But an AI approach can be 
applied i.e., Convolutional neural network (CNN) that can ensure all the criteria required for automated analysis of 
the defects of tablet.  
Mainly two convolutional neural networks were used UNetA and UNetB. 

The process of detecting the tablet defects via UNet 
 

 
Figure 3. Workflow for Detecting Tablet Defects Using U-Net: This process involves data collection, preprocessing, model architecture design, training, 
validation/testing, post-processing, and deployment. Each step is essential to ensure the accurate identification of defects, utilizing U-Net’s encoder-decoder 
structure for segmentation. 

 
1.1.3. AI in parenteral drug delivery  

Artificial Intelligence (AI) is defined as a combination of human intelligence with computational algorithms that 
simulate technologies of convolutional neural networks (CNN) like machine learning (ML), deep learning, and 
artificial neural networks (ANN). The usefulness of AI is well seen in every aspect of the pharmaceutical field, mainly 
in the development and manufacturing of sterile preparations such as parenteral and biologic products (vaccine, sera, 
antibodies, immunomodulators, etc.). Parenterals are considered the most widely used form of drug delivery after oral 
dosage forms as they provide several advantages [35]. Parenteral route of drug administration generally includes:  
Intravenous (IV), Subcutaneous (SC), Intramuscular (IM) and Intradermal. Parenteral drug delivery is the process of 
injecting drugs or other chemicals straight into the circulation or other body tissues, eliminating the need for the 
digestive system. So, sterility and stability are crucial to determine before administering them into the patient's body.  

It offers several advantages, like being suitable for patients who are unable to take oral drugs, offering a rapid start to 
action and accurate dose control, avoiding the first-pass effect, and providing 100% bioavailability. As far as the 
benefits, parenteral hold several limitations, such as the fact that the presence of any other particles can cause capillary 
emboli, skilled or trained professionals are required for administration, and there is the possibility of tissue irritation 
or a blood coagulation cascade. Automation actually makes it possible to increase safety, lessen exposure to dangerous 
drugs, guarantee excellent repeatability, and establish tracking of each step in the manufacturing process. Because it 
provides a secure alternative for manual labour [35]. The evolving importance of AI in the manufacturing and 
development of injectables is increasing rapidly, as it plays a quite significant role in the determination of physical 
stability, small particle detection, long-acting injectables (LAI) in vitro release of drug, quality, efficiency, and variability 
of parenteral products. Therefore, based on this neural network, it is necessary to decrease down on the time spent 
on manufacturing preparations and to enhance work dynamics.  

Parenterals drug delivery is classified into various groups given below: 
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Figure 4. Types of Parenteral Drug Delivery Systems: This figure illustrates various parenteral drug delivery methods, including injectables (solutions, colloidal 
dispersions, and microparticles), implants (solid implants and in situ depot forming implants), and infusions (osmotic pump, vapor pressure pump, and battery-
powered pump). 

1.1.4. USE OF ML IN LONG ACTING INJECTABLES (LAI) 
                             Machine learning algorithm is most widely used in long acting injectables (LAI) for improving the rate 

of drug delivery. LAI are considered beneficial as they improve patient’s compliance of not administering the 
medication again and again as they release their cargo number of medications over an extended period of time and 
improve therapeutic outcomes [36]. Neural networks simulation helps in predictions of in vitro drug release via 
collection of data by tree-based method and instance-based methods. The data is then proceeded for testing, 
development of models, validation and in last for training them for future predictions [37].  

 
2. TECHNIQUES USED BY AI TO REMOVE THE ISSUES 
4.1 PARTICLE TRACKING ALGORITHM:  

                   Particle tracking algorithm is used for the determination of the small molecules that floats in the parenteral 
formulation and cause a limitation in the drug delivery. It works with the of image subtraction or imaging data 
obtained via previous analysis. These algorithms use innovative computer vision techniques to efficiently and precisely 
analyse microscopic images by automatically recognising and tracking particles. It helps in checking and analysing 
through AI-based tracking that may improve the effectiveness of QA and procedures used in production of 
pharmaceutical. Particle tracking algorithm involves several steps in the process that are illustrated in the Figure 5. AI 
significantly reduces the need for human involvement in key areas of pharmaceutical research and production. It is 
instrumental in particle detection and tracking analysis, streamlining the process and boosting efficiency. By utilizing 
AI, the likelihood of errors is greatly diminished, as the technology can reliably execute tasks with high precision. 
Additionally, AI improves the reproducibility of results, ensuring that experiments and processes produce consistent 
outcomes each time, which minimizes variability and enhances the overall reliability of the data. This results in more 
accurate and efficient processes, leading to higher-quality products and improved decision-making in drug 
development. 

                As the measurement of the particles, bubbles, minute contamination can affect the quality index of the 
parenteral and the route of administration, drug delivery processes are also affected. Particle tracking algorithm with 
the use of AI provides the acceptable quality level (AQL) simulated with the previous record. If the presence of these 
adherent molecule is below than the AQL then the products are considered safe and effective [38]. 
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2.1.1. Process of particle tracking algorithm: 

 
Figure 5. Process Flow of Particle Analysis in Pharmaceutical Research: This figure illustrates the steps involved in particle analysis, starting from image pre-
processing, through particle detection, localization, and tracking, followed by trajectory analysis, classification, and segmentation. It also includes data fusion and 

visualization, validation and quality control, and concludes with adaptive learning to improve accuracy and efficiency over time. 

 
 
4.2 CONVOLUTIONAL NEURAL NETWORKS (CNNS) 

CNNs is a most widely used method of deep learning algorithm which provides understanding of finding and 
differentiating between chemical molecules that are composed in parenteral products by the use picture analysis. This 
technique combines the knowledge of collection of large amounts of labelled microscopic pictures that represents 
molecules that are highlighted in between molecules these materials. The data is then forwarded for preprocessing 
confirmation to improve the efficacy of the collected data. 

The data is processed randomly from images that are already uploaded by collecting data from sites like ‘web of science’ 
by the use of these CNN layers. By this way they extract out the most suitable methods for learning the algorithm and 
then the model is trained by previous data to rewind the patterns of molecules from dataset. 
4.3 LIGHT GRADIENT BOOSTING MACHINE (LGBM) 

LightGBM is one of the mostly used algorithms of AI for analysis of fractional drug release by the use of random 
search. it is used for the identification of potential features like PDI prediction and analysis of size by properly 
assessing, refining and optimization. LightGBM and related algorithms proved to be very useful like its technique of 
prediction of modelling used for various purposes like to calculate the drug release kinetics, absorption profiles, 
pharmacokinetic data for long-acting parenteral formulations, and enhancing drug delivery methods for therapeutic 
effects are critical aspects of drug development (Figure 6). 

An experiment performed to evaluate the accuracy of various learning methods along with LGBM by formation of 
nanocrystals by three different methods BMW, HPS, ASP of three hydrophobic drugs – CEL, GLP and DOC were 
selected. Over various applied machine learning methods LGBM shows higher efficacy, superior predictive 
performance for predicting the size of nanocrystal and shows least mean absolute error (MAE) [39]. 
4.3.1 ADDITIONAL EXTENDED USES OF LGBM: 
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Figure 6. Applications of Light Gradient Boosting Machine (LGBM) in Pharmaceutical Research: This figure outlines the uses of LGBM in 
pharmaceutical development, including predictive modelling for drug release kinetics, formulation optimization, release profile customization, drug 
stability predictions, accelerating drug development, and optimizing in-vitro studies. 

 
4.5 ROLE OF AI IN PK AND PD 

         Artificial intelligence (AI) serves role in advancement in almost every field such as drug discovery, drug 
development, drug delivery, predicts PK parameters (study of the effect of what body does to the drug after 
administration (ADME), drug release, absorption parameters, metabolism, excretion and PD-pharmacodynamic 
parameters (study of what body does to the drug). 

5. AI BASED COMPUTATIONAL METHODS FOR PHYSIOLOGICAL BASED 
PHARMACOKINETIC MODELS (PBPK). 

           PBPK refers to Physiological based pharmacokinetic and simulation modelling in which preclinical data from 
animal testing is used to analyse the pharmacokinetic behaviour of drugs in humans. It also provides a brief 
information about the effects of factors like age, diversity, sex, disease status and contribute in the determination of 
the dosing regimen, optimal dose to produce effect and risk associated to the drug [40]. These models were designed 
on the basis of hypothetical compartments that consider body’s organs and tissues. Body can be divided into one, two 
or various departments depends on the perfusion rate limited and permeability rate limited. 
Models which have the basis of AI are capable of recognizing the major hazards which may be sourced by results of 
improper interactions between the enzyme and substrate, inappropriate knowledge of the kinetics of drugs, enzymes 
and the rate of metabolism. Collectively every hazard mentioned above can be detected beforehand with the help of 
AI generated models by the means of the datasets and reports of clearance of the drug and its efficacy by thoroughly 
analysing and calculating the factors such as levels of enzyme expression, genetic variations, and drug- drug interactions 
[41]. AI generated models provide benefits such as reduction in timeline, saving cost.  
The growth of these kinds of models are a little compounded which needs a huge amount of data and statistical 
sources but on the other hand AI based statistical algorithm practice can make the processes and all the issues which 
are connected to these kinds of model easier. Several methods are employed to design these models via AI based 
technologies: 

a. Bayesian/WinBUGS: This approach uses probability distributions to define parameters of the model and 
estimates to convey uncertainty. It is typically used to deal with data below the limit of quantification [42].   

b. Support Vector Machine/Least Square (SVM): SVM is employed to analyse drug concentration in a sample 
based on the profile of a certain patient [43].  
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c. Random Sample Consensus and Support Vector Machine (SVM)/Drug Administration Decision 
Support System (DADSS) RANSAC: It is used to estimate medication concentration, determine the ideal 
dose, and improve the intervals between doses for a new patient [44]. 

d. Support Vector Model Combined with Random Forest Model: Its goal is to identify pharmacodynamic 
medication interactions based on targeted protein connectedness (TPC), chemical resemblance and side-
effect homology (SES). It precisely forecasts PDI with an AUC value of 79.96% and a certainty of 89.93%. 
and safeguarding time, cash, and other assets that would otherwise be used for experimentation and failure 
experiments [45]. Understanding drug delivery processes, IV drug dispersion profiles, plus the durability of 
oral solid intake versions are all made possible by AI algorithms. It offers details on how to identify potential 
hazards and difficulties at an early stage. 

e. Linear Regressions (LASSO)/Gradient Boosting Machines/ XGBoost/Random Forest: These algorithmic 
combinations are used to predict plasma concentration variation over time and the region underneath the 
concentration relative time curve (AUC) from 0 to 24 h following repeated drug dosage. It provides time-
efficient analytical benefits and enhances the covariate selection approach [46].  

f. Drug Target Interaction Convolutional Neural Network (DTICNN): Primarily used for predicting new 
drug compounds and identifying drug-target interactions [47]. 

g. Deep Long Short-Term Memory (DeepLSTM): This technique uses computers to verify how medications 
interact with their intended recipients [48]. 
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An integrated 
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Format 
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2015 
 
 
 
 
 
  

 https://doi.org/10.1021/acs.jcim.9b00295 
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Pred-binding 
 
 
 
 
 
 
 
 
 
 
 
 
  

Large-scale 
protein–
ligand 
binding 
afnity 
prediction 
 
 
 
 
 
 
 
 
  

Support vector 
machine and 
random forest 
 
 
 
 
 
 
 
 
 
 
 
  

589 molecular 
descriptors and 
1080 protein 
descriptors in 
9948 ligand–
protein pairs 
predicted DTIs 
that were 
quantifed by Ki 
values. The 
cross-validation 
coefcient of 
determination 
of 0.6079 for 
SVM and 
0.6267 for RF 
was obtained, 
respectively 
  

2016 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

https://doi.org/10.3109/14756366.2016. 
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ChemSAR 
 
 
 
  

An online 
pipelining 
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molecular 
SAR 
modeling 

An online 
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for molecular SAR 
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Generating SAR 
classifcation 
models that will 
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biomedical users 

2017 
 
 
 
  

ChemSAR 
 
 
 
  

https://jcheminf.biomedcentral.com/articles/10.1186/s13321-015-0109-z
https://www.tandfonline.com/doi/full/10.3109/14756366.2016.1144594
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-017-0215-1
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ligand 
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ligand molecules 
 
 
 
  

2018 
 
 
 
 
 
 
  

https://doi.org/10.1093/bioinformatics/bty081 
 
 
 
 
 
  

5 
 
 
 
  

DLIGAND2 
 
 
  

Improved 
knowledge-
based energy 
function for 
protein– 
ligand 
interactions. 

Distance-scaled 
 
 
 
 
  

Best 
performance as 
a parameter-free 
statistical 
potential and 
among the best 
in all 
performance 
measures  

2019 
 
 
 
  

 https://doi.org/10.1186/s13321-019-0373-4 
 
 
  

6 

StackCBPred 

A stacking-
based 
prediction of 
protein-
carbohydrate 
binding sites 
from the 
sequence. 

Machine learning 

Predicted 
structural 
properties of 
amino acids to 
efectively train a 
Stacking-based 
machine 
learning method 
for the accurate 
prediction of 
protein-
carbohydrate 
binding sites 

2019 https://doi.org/10.1016/j.carres.2019.107857  

7 

AutoGrow4 

De novo drug 
design and 
lead 
optimization. 

Genetic algorithm 

The predicted 
binding modes 
of the 
AutoGrow4 
compounds 
mimic those of 
the known 
inhibitors, even 
when 
AutoGrow4 is 
seeded with 
random small 
molecules 

2020 https://doi.org/10.1186/s13321-020-00429-4 

8 

LigGrep 

A tool for 
fltering 
docked poses 
to improve 
virtual-
screening hit 
rates. 

Machine learning 

It can improve 
the hit rates of 
test VS targeting 
H. sapiens 
poly(ADPribose) 
polymerase 1 
(HsPARP1), H. 
sapiens peptidyl-
prolyl cis–trans 
isomerase 
NIMA-
interacting 1 
(HsPin1p), and 
S. cerevisiae 

2021 https://doi.org/10.1093/bib/bbaa321  

9 
ChemDes 

An integrated 
web-based 
platform for 

Pybel, CDK, 
RDKit, BlueDesc, 
Chemopy, PaDEL, 

Format 
converting, 
MOPAC 

2015 https://doi.org/10.1021/acs.jcim.9b00295 

https://academic.oup.com/bioinformatics/article/34/13/2209/4860363
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0373-4
https://www.sciencedirect.com/science/article/abs/pii/S0008621519303908?via%3Dihub
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00429-4
https://academic.oup.com/bib/article/22/4/bbaa321/6032614
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molecular 
descriptor 
and 
fingerprint 
computation 

and 
jCompoundMapper 

optimization, 
and fingerprint 
similarity 
calculation 

10 

Pred-binding 

Large-scale 
protein–
ligand 
binding 
affinity 
prediction 

Support vector 
machine and 
random forest 

589 molecular 
descriptors and 
1080 protein 
descriptors, Ki 
values, SVM 
and RF models 

2016 https://doi.org/10.3109/14756366.2016. 

11 

ChemSAR 

An online 
pipelining 
platform for 
molecular 
SAR 
modeling 

SAR modeling 
pipeline 

Generates SAR 
classification 
models for 
cheminformatics 
and biomedical 
users 

2017 ChemSAR 

12 

LS-align 

An atom-
level, flexible 
ligand 
structural 
alignment 
algorithm for 
high-
throughput 
virtual 
screening 

Machine learning 

Accurate atom-
level structural 
alignments of 
ligand molecules 

2018 https://doi.org/10.1093/bioinformatics/bty081 

13 

DLIGAND2 

Improved 
knowledge-
based energy 
function for 
protein–
ligand 
interactions 

Distance-scaled 

Parameter-free 
statistical 
potential for 
protein-ligand 
interactions 

2019 https://doi.org/10.1186/s13321-019-0373-4 

14 

StackCBPred 

A stacking-
based 
prediction of 
protein-
carbohydrate 
binding sites 
from the 
sequence 

Machine learning 

Predicts 
structural 
properties of 
amino acids for 
protein-
carbohydrate 
binding site 
prediction 

2019 https://doi.org/10.1016/j.carres.2019.107857 

15 

AutoGrow4 

De novo drug 
design and 
lead 
optimization 

Genetic algorithm 

Predicts binding 
modes of 
compounds and 
optimizes lead 
structures 

2020 https://doi.org/10.1186/s13321-020-00429-4 

16 

LigGrep 

A tool for 
filtering 
docked poses 
to improve 
virtual-
screening hit 
rates 

Machine learning 

Improves hit 
rates in virtual 
screening 
targeting specific 
proteins 

2021 https://doi.org/10.1093/bib/bbaa321 



International Journal of Environmental Sciences 

ISSN: 2229-7359 
Vol. 11 No. 11s, 2025 

https://theaspd.com/index.php/ijes 

1034 

 

 

17 

DeepDock 

A deep 
learning-
based 
molecular 
docking 
approach 

Deep learning 
Predicts binding 
affinity and 
docking poses 

2021 https://doi.org/10.1093/bib/bbab230 

18 

ChemProp 

A graph 
convolutional 
neural 
network for 
molecular 
property 
prediction 

Graph neural 
network 

Predicts 
molecular 
properties and 
bioactivity 

2021 https://doi.org/10.1016/j.jmgm.2020.07.012 

19 

AlphaFold 

DeepMind's 
AI system for 
protein 
structure 
prediction 

Deep learning 

Predicts 3D 
protein 
structures with 
high accuracy 

2020 https://doi.org/10.1126/science.abj8754 

20 

DeepChem 

A deep 
learning 
library for 
drug 
discovery 

Deep learning 

Supports 
bioinformatics 
and 
cheminformatics 
tasks 

2019 https://doi.org/10.1021/acs.jcim.9b00719 

Table 2. List of Tools and Software for Pharmaceutical Research and Drug Discovery: This table provides an overview of various tools and software used 
in drug discovery and development, including molecular descriptor calculation, protein-ligand binding prediction, virtual screening, SAR modeling, and 
de novo drug design. It also includes methods, features, year of release, and corresponding references for each tool or software used in pharmaceutical 
research. 

6. ROLE OF AI IN PK PD MODELLING 

Pharmacokinetic -PK parameters are known to be the most crucial parameters for optimizing any 
drug during its development and discovery phase. These parameters are used to understand that what body 
does to the drug after its administration into the human system, it comprises mostly of four parameters: 
absorption, distribution, metabolism and excretion commonly known as ADME. A PK study plays a vital role 
in understanding the rate, route of administration and excretion, safety and efficacy associated with certain 
drug formulations. 

The process of determination of PK parameters requires in- vivo animal and human testing for the 
determination of safety and efficacy of the drug. As this in-vivo testing process requires large number of 
datasets of pre-clinical and clinical testing that may cause certain serious health effects on humans and require 
consent and permission to proceed the testing. PBPK modelling is used for understand in vivo behaviour of 
animals testing which further extend to the in- vivo understanding of human experimental testing but these 
modelling are time consuming and so much expensive to conduct [49]. AI simulated with computational 
algorithm is now widely accepted procedure to tackle these types of hurdles in the prediction of the PK 
parameter. Machine learning (ML) is the main method of AI that is used for prediction of PK properties that 
significantly reduces the number of designs make test analyse cycle [49].  

Recent developments in AI and ML have enabled the accurate prediction and optimization of PK 
and PD parameters with much larger datasets, which are the result of these cutting-edge technologies. In silico 
chemical discovery and property prediction allow for fast screening of compounds and their possible 
interactions, which reduces the requirement for long experimental testing and expensive processes. High-
throughput synthesis and screening techniques speed this process even further by enabling rapid production 
and testing of large compound libraries for promising drug candidates. In addition, bioanalytical methods 
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like whole-genome DNA sequencing, RNASeq, single-molecule array assays, and array-based mRNA 
expression profiling yield detailed molecular and genomic data to better understand the genetic and cellular 
basis of drug responses. Mass spectrometric methods offer valuable insights into small molecule 
quantification, proteomics, methylation profiling, and metabolomics, facilitating the analysis of drug 
metabolism, interactions, and efficacy. 

7. AI ADVANCEMENT FOR COMPOUND PK PREDICTION 

Machine learning plays a pivotal role in optimizing drug delivery and predicting PK/PD parameters 
through various approaches. These include optimization of formulation by ML models which suggest the 
optimal drug composition in order to maximize solubility and stability; in-silico modelling enables virtual 
simulation of drug behaviour inside the body which reduces the animal trials needed to be conducted on 
animals. Drug delivery is targeted by ML and can predict which tissues or organs drugs will act on, which 
ensures that the drugs are efficiently delivered to the target sites. Dosing regimen optimization is another area 
where ML is highly effective, as it helps predict the ideal dosage and timing to maximize therapeutic effect 
while minimizing side effects. Additionally, real-time monitoring of drug levels in patients using wearable 
technologies or sensors allows for dynamic adjustments to dosing regimens. Drug-device interactions can be 
optimized by leveraging AI to better understand how the drug and delivery system interact, ensuring proper 
efficacy [49]. Nanoparticle design is increasingly assisted by ML models to develop nanoparticles that improve 
drug absorption and bioavailability, especially for poorly soluble compounds. Finally, personalized medicine 
benefits from AI by tailoring drug treatment plans based on an individual's genetic makeup and health data, 
ensuring that therapies are more effective and safer for each patient. 

Together, these advances in AI, ML, and data collection methods are transforming drug development 
by enhancing the precision, efficiency, and safety of drug therapies, enabling the creation of highly targeted 
treatments tailored to individual patient needs. 

8. APPLICATIONS OF ARTIFICIAL INTELLIGENCE (AI) 

Artificial intelligence (AI) is transforming the pharmaceutical industry by improving various aspects 
of drug development, manufacturing, and optimization. It helps predict pharmacokinetic (PK) and 
pharmacodynamic (PD) parameters of drug molecules, simulating how drugs behave to fine-tune dosing 
regimens [50]. AI also plays a crucial role in determining how quickly tablets disintegrate, which is vital for 
ensuring proper dissolution and optimal absorption [51]. Furthermore, AI techniques are instrumental in 
detecting and reducing tablet defects, thereby enhancing quality control during production[52-53]. In 
addition, AI supports the creation of capsule-based formulations [54], predicts interactions between 
compounds and proteins, and helps mitigate drug toxicity and errors in the early phases of drug development 
[55-56]. For long-acting parenterals (LAI), AI can forecast drug release profiles, ensuring therapeutic levels are 
maintained over extended periods [57-59]. The technology is also essential for assessing particle size and 
polydispersity index (PDI), which are critical for maintaining consistency in drug performance [60]. By 
minimizing the need for trial-and-error approaches, AI streamlines the processes of drug formulation and 
optimization [61-64]. It further improves the development of sterile preparations by ensuring quality control 
and reducing contamination risks. AI enhances the physical stability of solid dispersions and boosts the 
bioavailability of poorly water-soluble drugs by optimizing particle size and delivery systems. Additionally, AI 
advances drug delivery methods by predicting absorption, distribution, metabolism, and elimination, making 
these systems more efficient. In drug discovery, AI speeds up the identification of candidates, predicts toxicity, 
and identifies targets, facilitating the design of safer and more effective medications. It also models complex 
relationships and variables in drug development, providing insights into how different factors interact and 
affect outcomes [65]. Lastly, AI is significantly involved in image-based tasks, such as identification. 
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