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Abstract 
Object detection is a key challenge in computer vision, with applications that span security, surveillance, autonomous 
driving, and wildlife conservation. You Only Look Once (YOLO) has emerged as a state-of-the-art framework for real-time 
object detection, and its models are typically trained on standard datasets such as Common Objects in Context (COCO) and 
PASCAL Visual Object Classes (VOC), which often lack the diversity needed for real-world applications. Conservation 
efforts for endangered species, such as the Greater One-horned Rhino, require specialized solutions due to their ecological 
importance and vulnerability. 
Assam and Northeast India, home to the largest population of the endangered Greater One-horned Rhino, faces severe 
environmental threats including annual monsoon floods, habitat encroachment, and human-wildlife conflicts. These 
challenges highlight the urgent need for AI-powered monitoring solutions that can aid in conservation efforts. This work 
evaluated the performance of various You Only Look Once (YOLO) models, from YOLOv5 to YOLOv9, to detect one-
horned rhinos. It also enhances the existing rhino dataset by improving data quality, diversity, and relevance and tunes 
hyper-parameters for optimal performance. The best-performing model achieved a mean average precision (mAP) of 98.9% 
and an F1 score of 98%. 
Our findings underline the potential of tailored deep-learning models for wildlife monitoring, offering a scalable and effective 
approach to mitigating human-animal conflicts. By integrating AI into conservation practices, we can enhance real-time 
tracking, improve habitat protection strategies, and contribute to the long-term survival of endangered species. 
 
Key Words : Computer Vision, Machine Learning, Deep Learning, Convolutional Neural Network, YOLO Algorithm, 
Object Detection, Wildlife Monitoring, Human-Animal Conflicts 
 
1 Introduction 
Detecting wild animals is crucial for combating poaching and mitigating human-animal conflicts, both of 
which have escalated due to urbanization and habitat encroachment. Many species, including the endangered 
one-horned rhino, face extinction, underscoring the urgency of effective conservation tools. Assam and 
Northeast India, a critical habitat for this species, frequently experience challenges such as recurrent 
flooding, habitat loss, and increasing instances of human-wildlife conflict, making real-time monitoring 
essential for mitigation efforts. 
Advances in deep learning, particularly YOLO models, have revolutionized object detection, enabling real-
time identification with high accuracy and speed. YOLO is a convolutional neural network (CNN)-based 
object detector that performs regression and classification in a single pass, making it efficient in detecting 
multiple objects of varying sizes and shapes. Its variants have introduced features such as anchor boxes, 
spatial pyramid pooling, and mosaic augmentation to enhance performance. However, these models are 
typically trained on datasets such as COCO and PASCAL VOC, which lack the quality and diversity needed 
for specialized tasks such as wildlife monitoring. 
Object detection technologies have become an indispensable tool in the conservation and 
management of endangered species, providing precise and efficient methods for monitoring wildlife 
populations. These systems leverage advanced computer vision techniques to identify and track individual 
animals within their natural habitats, facilitating ecological studies with minimal human interference. By 
enabling automated population assessments, habitat utilization analysis, and behavioral studies, object 
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detection enhances the scientific understanding of species distribution and dynamics. Furthermore, real- time 
object detection plays a crucial role in mitigating human-wildlife conflicts, particularly in regions where 
habitat encroachment and environmental changes disrupt traditional animal migration patterns. The 
deployment of AI-powered monitoring solutions strengthens anti-poaching efforts by providing 
conservationists and authorities with actionable intelligence, thus improving the enforcement of wildlife 
protection laws. Additionally, object detection supports habitat preservation by offering valuable insights into 
environmental threats, such as deforestation and climate-induced changes, allowing for proactive 
conservation strategies. 
This work explores the detection of the one-horned rhino using YOLO models. The key 
contributions include the following: 

• Evaluation of various YOLO versions on a one-horned rhino dataset. 
• Improvement of the dataset by collecting and annotating additional images to enhance its size, 
• quality, and diversity. 
• Training and comparison of YOLO models using a custom dataset to assess their performance. 
• Analysis of the results to derive insights for wildlife detection applications. 

Integrating these technologies into conservation practices not only enhances wildlife monitoring but also 
informs policy decisions and resource allocation for biodiversity conservation. As deep learning models 
continue to evolve, their application in ecological research and conservation management is expected to 
expand, further contributing to the protection and sustainability of endangered species and their habitats. The 
remainder of this paper is structured as follows: Section 2 review related works and theories. 
Section 3 details the methodology and presents the results. Section 4 discusses the findings as a conclusion, and 
finally concludes with future scope. 
 
2 Literature Review 
2.1 Related Works 
Recent advancements in machine learning have significantly contributed to object detection and tracking in 
wildlife monitoring and road safety applications. This literature review summarizes key studies, grouping similar 
objectives and methods to provide a streamlined perspective on the field. 
 
Animal Detection for Road Safety: 
The work in [1] & [2] focuses on detecting animals to prevent road accidents. In [2], a system using 
Histogram of Oriented Gradients (HOG) and a cascade classifier detects cows on highways with an 82.5% 
accuracy, but its effectiveness is limited to daylight and speeds below 35 km/h. Similarly, [2] employs Faster R-
CNN, trained on the PASCAL VOC 2012 dataset, to detect on-road obstacles, including animals. The study 
emphasizes robustness to varying environmental conditions and suggests dataset customization for Indian road 
scenarios. 
 
Camera Trap-Based Animal Detection: 
Detecting animals in cluttered backgrounds from camera trap images has been a major challenge, addressed in 
[3], [4]. The authors in [3] propose multilevel graph cuts for object segmentation and introduce deep learning 
with HOG features for enhanced accuracy, outperforming Faster R-CNN by 4.5%. Meanwhile, [4] integrates 
dynamic background modeling with deep convolutional neural networks (DCNN), achieving high accuracy 
while reducing classification time by 14 times. 
 
Deep Learning for Wildlife Monitoring: 
Several studies leverage deep learning for large-scale automated wildlife monitoring. In [5], a model trained on the 
Wildlife Spotter dataset achieves 96% accuracy in recognizing common species like birds and rats. Similarly, [6] 
trains deep CNNs on the Snapshot Serengeti dataset, identifying 48 species with 93.8% accuracy and 
reducing manual annotation time by 99.3%. In [7], an ensemble graph-cut segmentation method is used for 
animal object detection in dynamic scenes, improving detection rates while minimizing false positives. 
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UAV and Thermal Imaging for Animal Detection: 
UAVs and thermal cameras have been employed for improved wildlife detection in [8] & [9]. Study [8] uses 
thermal imaging and a dynamic thresholding approach to detect animals, extracting features via Discrete 
Cosine Transform (DCT) and classifying them with a KNN classifier, achieving up to 93.3% balanced 
accuracy. In [9], UAV-acquired sub-decimeter images enable high-precision animal detection, surpassing Fast 
R-CNN in reducing false positives while processing over 72 images per second for real- time applications. 
 
Individual Animal Identification and Action Recognition: 
Recognizing specific animals or their actions is explored in [10] & [11]. Study [10] employs Faster R-CNN with 
AlexNet features and SVM classification for identifying patterned species like tigers and zebras. In [11], an 
I3D-based model is tested for animal action recognition, achieving 36% accuracy, with 
recommendations for pre-trained models to enhance performance. 
 
Specialized Challenges in Animal Detection: 
Challenges like detecting animals behind obstructions or in occluded environments are addressed in [12] & [13]. 
In [12], M2Det, utilizing a Multi-Level Feature Pyramid Network (MLFPN), improves detection for animals 
behind cage bars. Study [13] presents a unified model integrating feature extraction, occlusion handling, and 
classification, reducing the average miss rate by 9% on pedestrian detection benchmarks. 
 
One-Horned Rhino Detection: 
Building on these advancements, [14] focuses on detecting the Greater One-Horned Rhino using YOLOv3, 
introducing architectural modifications to improve performance. The study also presents the first deep 
learning dataset specific to one-horned rhinos, setting the groundwork for future research in rhino detection and 
behavior analysis. 
 
2.2 Related Theories 
Object detection, a fundamental task in computer vision, has seen significant advancements through the 
evolution of deep learning models. The YOLO (You Only Look Once) series has emerged as a state-of- the-art 
framework, excelling in real-time detection applications due to its speed and accuracy [15]. Unlike traditional 
two-stage detectors, YOLO adopts a single-stage approach, segmenting images into grids and predicting 
bounding boxes and class probabilities simultaneously, thereby enabling efficient real-time detection [16]. 
 
YOLOv5 introduced multiple model variants (n, s, m, l, x) with different sizes and complexities, optimizing 
detection performance using anchor boxes refined through k-means clustering [17]. Further improvements 
were seen in YOLOv6, which incorporated anchor-free detection mechanisms and novel loss functions such as 
varifocal loss (VFL) and distribution focal loss (DFL), improving classification precision and localization accuracy 
[18]. 
 
YOLOv7 extended these advancements by enhancing small object recognition through multi- anchor 
training and focal loss reduction techniques, further improving robustness in cluttered environments [19]. 
YOLOv8, developed by Ultralytics, expanded its capabilities by integrating object detection, 
segmentation, and classification, employing anchor-free detection and mosaic augmentation for improved 
generalization [20]. 
 
The most recent iteration, YOLOv9, introduced cutting-edge enhancements such as Programmable Gradient 
Information (PGI) and Generalized Efficient Layer Aggregation Networks (GELAN), optimizing efficiency and 
accuracy across varying detection scenarios [21]. These progressive improvements underscore the 
adaptability of YOLO models in wildlife conservation, where the ability to detect, track, and monitor animals in 
real-time is critical for mitigating human-animal conflicts and supporting conservation efforts. 
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The YOLO series represents a substantial advancement in object detection, emphasizing real-time performance 
and high accuracy. The original YOLO framework introduced a single-pass detection approach, 
segmenting images into grids and simultaneously predicting bounding boxes and class probabilities. Its 
evolution through YOLOv5 to YOLOv9 has resulted in various enhancements, including anchor-free detection, 
spatial pyramid pooling, mosaic augmentation, and novel loss functions to improve precision and recall. These 
developments have solidified the YOLO series as a dominant approach for real-time object detection in 
diverse applications, particularly wildlife conservation, where real-time monitoring and accuracy are 
paramount. 
 
3 Methodology 
This section outlines four key parts of our approach: data creation and preparation, model selection, model 
training, and model evaluation and comparison. This study follows a structured approach for developing and 
evaluating a YOLO-based object detection model for the Greater One-Horned Rhino. The methodology is 
divided into four key stages: 3.1 Dataset Preparation, 3.2 Model Selection, 3.3 Model Training, and 3.4 
Model Evaluation Results and Comparison. 
 
3.1 Data Creation and Preparation 
The first step involved creating and preparing a custom dataset of endangered, Greater One-Horned Rhino for 
object detection. This effort improves existing datasets by incorporating high-quality images with accurate 
annotations, diverse scenarios (varied poses, lighting, and backgrounds), and images addressing challenges 
such as occlusion and scale variation. 
 
3.1.1 Initial Dataset and Analysis 
• The dataset used in this study initially consisted of 4,649 training and 418 testing images. 
• A performance comparison was conducted using YOLOv5, YOLOv6, YOLOv7, and YOLOv8, evaluating 
models at default IoU (Intersection over Union) of 0.5. 
• A modification to the IoU metric is also considered to explore the impact on detection performance. As 
increasing the IoU threshold, the model becomes more stringent in accepting predictions as true positives 
leading to a higher precision. Hence, an IoU threshold of 0.85 is considered in the following experiment 
on YOLOv5, YOLOv6, YOLOv7 and YOLOv8 network architectures on the one-horned rhino RGB dataset. 
• The best-performing model at this stage was YOLOv8L, achieving 0.975 mAP and an F1-Score of 0.95 at IoU 
threshold of 0.5, showing a slight improvement over the prior work. 
 
3.1.2 Dataset Expansion and Augmentation 
To further improve detection performance, the dataset was expanded and balanced: 
• Additional 2,000 training and 200 testing images were collected, increasing the dataset to 6,649 training 
and 618 testing images. 
• Data Preprocessing & Annotation: The images were resized to a fixed dimension of 640×360 pixels to ensure 
compatibility with the YOLO models. The bounding boxes and class labels were manually annotated using the 
LabelImg software. The classes included rhino and group of rhinos. The annotations followed the YOLO 
dataset format, specifying the image ID, class ID, and bounding box coordinates (x, y, width, height). The 
annotations were validated for their accuracy and consistency. 
• A significant class imbalance was observed, with the ”group of rhinos” class underrepresented more than 
rhino. 
• Augmentation techniques were applied, including flipping, rotation, cropping, scaling, brightness 
adjustment, and blurring on manually selected images having “group of rhino” class to improve class 
distribution and model generalization. Some sample of image augmentation on one-horned rhino dataset is 
shown in Figure 1. The ImgAug Python library was utilized for advanced augmentations such as affine 
transformations, Gaussian noise, and saturation changes. Annotation files were updated after augmentation. 
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Figure 1: Sample Image Augmentation using basic image manipulation 

 
3.1.3 Final Dataset 
The final dataset after expansion and augmentation consists of: 
• 6,849 training and 618 testing 
• 8,096 instances of the ”rhino” class. 
• 1,338 instances of the ”group of rhinos” class.Some sample images of the final dataset of one-horned rhino 
is shown in Figure 2. 
 

 
Figure 2: Sample images of one-horned rhino dataset 

 
3.2 Model Selection 
The second step involves selecting object detection models based on criteria, such as speed, accuracy, 
robustness, and compatibility. As discussed in Section 2.2, we focus on the latest iterations of the YOLO 
series, which are known for their efficiency and scalability. The study explored multiple YOLO versions to 
determine the most effective model for one-horned rhino detection: 
YOLOv5: A streamlined version of YOLOv4 built using the PyTorch framework, focusing on architectural 
optimization. YOLOv6: Enhances YOLOv5 with features such as self-adversarial training and cross-stage partial 
networks. 
YOLOv7: Introduces attention mechanisms and transformer blocks, improving YOLOv6. YOLOv8: 
Implements spatial attention, feature fusion, and context aggregation modules for improved detection. 
YOLOv9: The latest YOLO iteration is designed with the Information Bottleneck Principle and Reversible 
Functions to mitigate information loss in deep networks, ensuring superior accuracy and efficiency. 
 
Model Training 
The third step of our methodology involves training the YOLO models and their variants on a custom 
dataset using optimized hyper-parameters and settings. This section details the hardware and software 
configurations, training workflow, and iterative training improvements across dataset versions. 
 
3.3.1 Hardware and Software Specifications 
Hardware: 
• 12th Gen Intel Core i7 processor 
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• 32 GB RAM 
• NVIDIA RTX 3070Ti GPU with 8 GB VRAM and 6,144 CUDA cores Software: 
• Programming Language: Python 3.8 
• Deep Learning Framework: PyTorch 1.8 
• Libraries: NumPy, OpenCV, Matplotlib, and additional libraries as required 
 
3.3.2 Training Process 
• Data Loading: The custom dataset was loaded into PyTorch using the torch .utils. data. Dataset and torch. 
utils. data. DataLoader classes. The dataset was split into training, validation, and testing sets at an 80:10:10 
ratio. 
• Model Initialization: The YOLO models were initialized with pretrained weights from the COCO dataset. 
These weights, which are available online, served as a foundation for fine-tuning the models for the rhino 
specific dataset. Initialization was handled using the torch.nn.Module class. 
• Loss Function: The loss function comprises a weighted sum of: o Localization Loss: Measures the error in 
bounding box predictions using Mean Squared Error (MSE). 
o Classification Loss: Computes errors in class predictions using Binary Cross-Entropy (BCE). 
o Confidence Loss: Evaluates objectness scores using BCE. 
• Optimization Algorithms 
– YOLOv5 & YOLOv6: Used Stochastic Gradient Descent (SGD) with momentum and weight decay. 
– YOLOv7: Emphasized architectural optimizations during training, leveraging SGD and dynamic learning 
rate schedules. 
– YOLOv8: Combined AdamW optimizer for the first 10,000 iterations, followed by SGD. 
– YOLOv9: Incorporated advanced features such as a Generalized Efficient Layer Aggregation 
Network (GELAN) and Programmable Gradient Information (PGI). 
• Learning Rate Schedules: Each model followed tailored learning rate schedules as defined in their respective 
original implementations. 
 
3.4 Results and Model Comparison 
The fourth stage of the methodology evaluates the YOLO models and compares their performance with 
alternative methods using established benchmarks and metrics. This analysis helps to identify the most effective 
models and highlights areas of improvement. 
 
Performance Metrics : 
Performance evaluation of object detection models involves assessing detection validity by comparing 
predictions to ground truth data [22]. Key metrics include True Positive (TP) for valid detections, False Positive 
(FP) for incorrect detections, and False Negative (FN) for missed objects. Recall measures the model’s ability to 
detect all ground truths, while Precision evaluates its accuracy in identifying relevant objects. Intersection over 
Union (IoU) quantifies localization accuracy by measuring the overlap between predicted and ground 
truth bounding boxes. F1-Score balances precision and recall. Mean Average Precision (mAP) aggregates class-
specific Average Precision (AP) values, reflecting overall performance. Evaluations often apply an IoU 
threshold of 0.5, with higher thresholds improving precision but potentially reducing recall. For this work, 
AP values were calculated for two classes (rhino and group of rhinos), with their average representing mAP. Per-
class analysis highlighted model performance on the minority class (group of rhinos), and statistical tests 
ensured the significance of performance differences among YOLO variants and other deep learning models. 
These evaluation metrics and processes ensured a rigorous comparison, focusing on precision, recall, and 
accurate localization for robust one-horned rhino detection. 
 
3.4.1 Initial Training (YOLOv5 to YOLOv8 on Original Dataset) 
Initially, training was conducted on the existing one-horned rhino dataset using YOLOv5, YOLOv6, 
YOLOv7, and YOLOv8. To investigate the impact of a higher IoU threshold on detection performance, an IoU 
threshold of 0.85 was also considered additionally. Upon increasing the IoU threshold, the model becomes 
more stringent in accepting predictions as true positives leading to a higher precision. 
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The Model Performances Evaluation with the default IoU threshold of 0.5 and additional IoU threshold of 0.85 
are shown in Table 1. 
 

Table 1: Model Performance Evaluation 
Model Class AP (0.5) mAP (0.5) F1-Score (0.5) AP (0.85) mAP (0.85) F1-Score 

(0.85) 
YOLOv5n rhino 0.946 0.937 0.90 0.71 0.57 0.64 

 group_of_rhino 0.929   0.43   
YOLOv5s rhino 0.974 0.961 0.94 0.911 0.897 0.9 

 group_of_rhino 0.948   0.883   
YOLOv5m rhino 0.961 0.951 0.94 0.895 0.879 0.88 

 group_of_rhino 0.941   0.863   
YOLOv5l rhino 0.969 0.956 0.94 0.889 0.896 0.9 

 group_of_rhino 0.942   0.903   
YOLOv5x rhino 0.965 0.951 0.92 0.771 0.754 0.78 

 group_of_rhino 0.937   0.738   
YOLOv6N rhino 0.975 0.961 0.93 0.882 0.868 0.86 

 group_of_rhino 0.947   0.855   
YOLOv6S rhino 0.974 0.964 0.96 0.906 0.902 0.92 

group_of_rhino 0.954   0.897   
YOLOv6M rhino 0.977 0.972 0.95 0.883 0.887 0.89 

group_of_rhino 0.967   0.891   
YOLOv6L rhino 0.982 0.969 0.95 0.923 0.898 0.9 

group_of_rhino 0.956   0.874   
YOLOv7 rhino 0.959 0.95 0.92 0.854 0.845 0.84 

group_of_rhino 0.941   0.836   
YOLOv7-d6 rhino 0.982 0.961 0.92 0.896 0.887 0.88 

group_of_rhino 0.939   0.877   
YOLOv7-e6 rhino 0.978 0.954 0.92 0.901 0.888 0.87 

group_of_rhino 0.93   0.874   
YOLOv7-e6e rhino 0.975 0.965 0.92 0.875 0.872 0.87 

group_of_rhino 0.955   0.868   
YOLOv7-tiny rhino 0.972 0.953 0.91 0.868 0.84 0.84 

group_of_rhino 0.934   0.811   
YOLOv7-w6 rhino 0.983 0.966 0.94 0.908 0.892 0.88 

group_of_rhino 0.949   0.877   
YOLOv7x rhino 0.97 0.957 0.93 0.893 0.888 0.89 

group_of_rhino 0.944   0.883   
YOLOv8N rhino 0.977 0.969 0.95 0.903 0.902 0.89 

group_of_rhino 0.961   0.9   
YOLOv8S rhino 0.966 0.96 0.93 0.914 0.91 0.89 

group_of_rhino 0.955   0.905   
YOLOv8M rhino 0.974 0.969 0.94 0.924 0.931 0.91 

group_of_rhino 0.965   0.938   
YOLOv8L rhino 0.979 0.975 0.95 0.927 0.927 0.9 

group_of_rhino 0.97   0.928   
YOLOv8X rhino 0.964 0.971 0.95 0.912 0.91 0.9 

group_of_rhino 0.979   0.908   
 
The performance comparison revealed that YOLOv8L (large) delivered the highest performance, achieving 
a Mean Average Precision (mAP) of 0.975 and an F1-Score of 0.95, demonstrating a notable improvement over 
the previously evaluated models. 
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3.4.2 Training on Expanded dataset 
In continuation of the previous step, the deep learning models YOLOv5, YOLOv6, YOLOv7 and 
YOLOv8 were used for performance tests on the expanded dataset. 
Table 2 lists the performance on the new expanded one-horned rhino dataset. The results of the 
experiment on YOLOv6s (small) yielded the best result with a Mean Average Precision (mAP) of 0.976 and F1-
Score of 0.96. followed closely by YOLOv8L, with an mAP of 0.976 and an F1-Score of 0.95. 
 

Table 2: Model Performance on Expanded dataset 
Model Class AP mAP F1-Score 
YOLOV5N rhino 0.960 0.948 0.92 
 group_of_rhino 0.935   
YOLOV5S rhino 0.964 0.955 0.94 

group_of_rhino 0.947 
YOLOV5M rhino 0.967 0.961 0.93 

group_of_rhino 0.955 
YOLOV5L rhino 0.971 0.957 0.94 

group_of_rhino 0.943 
YOLOV5X rhino 0.972 0.961 0.96 

group_of_rhino 0.949 
YOLOV6N rhino 0.977 0.953 0.91 

group_of_rhino 0.929 
YOLOV6S rhino 0.986 0.972 0.96 

group_of_rhino 0.959 
YOLOV6M rhino 0.980 0.972 0.94 

group_of_rhino 0.965 
YOLOV6L rhino 0.982 0.965 0.94 

group_of_rhino 0.948 
YOLOV7 rhino 0.971 0.956 0.94 

group_of_rhino 0.940 
YOLOV7-D6 rhino 0.974 0.958 0.92 

group_of_rhino 0.943 
YOLOV7-E6 rhino 0.975 0.958 0.93 

group_of_rhino 0.942 
YOLOV7-E6E rhino 0.978 0.960 0.93 

group_of_rhino 0.942 
YOLOV7-TINY rhino 0.973 0.955 0.92 

group_of_rhino 0.938 
YOLOV7-W6 rhino 0.984 0.976 0.94 

group_of_rhino 0.968 
YOLOV7X rhino 0.976 0.959 0.94 

group_of_rhino 0.941 
YOLOV8N rhino 0.967 0.965 0.94 

group_of_rhino 0.962 
YOLOV8S rhino 0.969 0.971 0.95 

group_of_rhino 0.974 
YOLOV8M rhino 0.966 0.960 0.93 

group_of_rhino 0.955 
YOLOV8L rhino 0.976 0.975 0.95 

group_of_rhino 0.974 
YOLOV8X rhino 0.973 0.969 0.93 

group_of_rhino 0.964 
 
There is a slight improvement over the previous result of YOLOv8L (large), yielding a Mean Average Precision 
(mAP) of 0.975 and F1-Score of 0.95. 
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However, on examining the result, it is noticed that the AP scores of the “rhino” class is much higher than the 
“group of rhinos,” thus resulting in a overall lower mAP. Analysis showed that the Average Precision (AP) 
score for the rhino class significantly outperformed that of the group of rhinos class, leading to lower mean 
Average Precision (mAP). This imbalance stems from the dataset distribution (Figure 3) which in this work is 
tackled using Augmentation techniques as discussed in 3.1.2. 
 

Figure 3: Labels distribution 

 
 

3.4.3 Training on Augmented dataset (Final dataset) 
This augmented dataset was subsequently used to retrain the YOLO models. By this time, YOLOv9 was also 
released which is also included in further experiment. Therefore, the models used are YOLOv5, 
YOLOv6, YOLOv7, YOLOv8, and YOLOv9. 
This iterative training methodology ensures robust detection capabilities while addressing challenges, such as 
dataset imbalance and hyperparameter optimization. Table 3 shows the performance result on the new one-
horned rhino dataset after Image Augmentation and Optimizing of Hyper-parameters. 
 

Table 3: Model Performance on Final Dataset 
Model Class AP mAP F1-Score 
YOLOV5N rhino 0.960 0.958 0.92 
 group_of_rhino 0.957   

YOLOV5S rhino 0.977 0.979 0.97 
 group_of_rhino 0.982   

YOLOV5M rhino 0.975 0.975 0.96 
 group_of_rhino 0.976   

YOLOV5L rhino 0.975 0.976 0.96 
 group_of_rhino 0.978   

YOLOV5X rhino 0.978 0.978 0.97 
group_of_rhino 0.979 

YOLOV6N rhino 0.984 0.983 0.96 
group_of_rhino 0.982 

YOLOV6S rhino 0.987 0.988 0.97 
group_of_rhino 0.990 

YOLOV6M rhino 0.986 0.987 0.98 
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group_of_rhino 0.987 
YOLOV6L rhino 0.990 0.989 0.98 

group_of_rhino 0.988 
YOLOV7 rhino 0.968 0.969 0.94 

group_of_rhino 0.970 
YOLOV7-W6 rhino 0.967 0.970 0.94 

group_of_rhino 0.973 
YOLOV7X rhino 0.973 0.976 0.95 

group_of_rhino 0.978 
YOLOV8N rhino 0.980 0.984 0.97 

group_of_rhino 0.987 
YOLOV8S rhino 0.982 0.985 0.97 

group_of_rhino 0.988 
YOLOV8M rhino 0.983 0.984 0.98 

group_of_rhino 0.985 
YOLOV8L rhino 0.986 0.987 0.98 

group_of_rhino 0.988 
YOLOV8X rhino 0.984 0.984 0.98 

group_of_rhino 0.984 
YOLOv9 rhino 0.977 0.979 0.95 

group_of_rhino 0.980 
 
The results of the experiment on YOLOv6L (large) yielded the best result, with a Mean Average Precision 
(mAP) of 0.989 (Figure 4) and F1-Score of 0.98 (Figure 5). The detection result (inference) on one-horned 
rhino dataset is shown in Figure 6. 

 
Figure 4: Performance metrics of YOLOV6L – mAP 
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Figure 5: Performance metrics of YOLOV6L - F1-Score 

 
 

Figure 6: Detection  

 
 
4 Conclusion and Future Scope 
In conclusion, the experimental results demonstrate that YOLOv6, particularly the large variant 
(YOLOv6L), yielded the best performance for detecting the Greater One-horned Rhino, achieving a Mean 
Average Precision (mAP) of 0.989 and an F1-Score of 0.98 in the expanded and augmentation dataset. The 
consistent improvements observed across different YOLO models can be attributed to a combination of 
factors, including high-quality and diverse data, advanced model architectures, and robust training 
optimizations. YOLOv6’s architectural refinements, such as CSPDarknet53 and specialized modules like 
SimCSPSPPF, proved especially effective in handling occlusions, class imbalances, and small object 
detection—key challenges in the rhino detection task. 
While YOLOv8L also produced competitive results, YOLOv6 struck an optimal balance between detection 
quality and computational efficiency. The findings underscore the importance of integrating tailored data 
augmentation strategies and leveraging state-of-the-art detection frameworks when working with wildlife 
datasets. 
This research contributes to enhancing automated monitoring systems for rhino conservation, providing a 
reliable approach for detecting both individual rhinos and groups under diverse and challenging 
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environmental conditions. 
Looking ahead, while the proposed approach shows promising results in rhino detection, several areas remain 
for future research. First, limited data on rare behaviors like mating, territorial disputes, or aggression poses 
challenges for model generalization. Expanding datasets and collaborations with wildlife experts can 
improve detection of such behaviors. Second, ethical concerns regarding animal privacy and potential stress 
from monitoring technologies require attention. Developing non-invasive methods and clear ethical guidelines 
will ensure responsible AI deployment in conservation. 
Lastly, future work can explore action detection models to classify behaviors such as aggression, normal 
movement, or social interactions, enhancing automated behavioral analysis for better wildlife 
monitoring. 
These advancements will further strengthen the capabilities of AI-driven conservation tools, ensuring their 
effectiveness and ethical application in real-world scenarios. 
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