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Abstract:

Two decked cable stayed concrete bridges are engineered to support heavy traffic loads while optimizing space utilization in
regions with limited land availability. These bridges are particularly suitable for spanning large distances while maintaining
high functionality and aesthetic appeal. This research investigates the dynamic behavior of such bridges by utilizing finite
element analysis (FEA), with a focus on modal frequencies, oscillation periods, and mode shapes that characterize the
vibrational response pertaining to the structure. The Comprehensive Two decked cable stayed concrete bridge was devised by
using staad pro to simulate the interactions between key structural components, including 12piers, 1440plates, 2 H type
pylons, 160 cables. The modal mass participation analysis revealed the influence of elementary vibrational modes on the
overall dynamic behavior of the structure, emphasizing the importance of mass distribution and dynamic loading effects in the
performance of the bridge. Parametric studies were conducted to assess how changes in damping ratios affect the inherent
frequencies of the structure. The time history distribution was performed to evaluate the bridge’s behavior under transient
loading conditions. The analysis offered valuable insights into how damping helps control vibration amplitudes at Node 2
duringthe 1, 2, 3, 4, 5, 6 second time interval. Through interpretation of the graphs of acceleration, velocity, and displacement
over time, it became apparent that damping plays a pivotal role in reducing vibrations—ultimately helping the bridge better
withstand fatigue from repeated loading. This study yields noteworthy insights that help improve bridge design strategies,
durability of double-deck cable- stayed concrete bridges, and support their long-term stability and resilience— especially when
facing dynamic forces and the effects of maximum base shear in X, Y, Z directions."

Keywords: Two decked cable stayed concrete bridge, Time history distribution, modal frequency, Staad pro, Material
Formulations.

1. INTRODUCTION:

Expedition of bridge technology is interrelated with evolution of community, spanning thousands of durations.
One of timeworn surviving illustrations pedestrian stone bridge over Meles River in modern- day Turkey believed
over 2,800 years old. Records of the past from writers like Homer and Herodotus mention floating spans made
from inflated animal hides, used as early as 800 B.C. Around 320 B.C., Alexander the Great utilized comparable
buoyant constructions to aid his troops in traversing rivers during each eastern expedition. In 200 B.C., Romans
conquered use of stone arches supported by robust piers—a highly notable leap in structural engineering. A
standout example from Renaissance: Venice’s Rialto Bridge, built 1591, parading graceful single-span design
measuring 27 meters.

The advent of contemporary bridge engineering commenced 1714 when French Henri Gautier engineer
Published firstcomprehensive text on subject. Momentum carried on with founding of Ecole des Ponts et
Chausses in Paris, 1747—world’s first engineering school. Rodolphe Perronet, considered father of modern
bridge construction, refined masonry arch design. Pont de la Concorde in Paris (1791) remains one of his most
recognized works. Firth of Forth Cantilever Bridge (completed 1890) and John Roebling’s Brooklyn Bridge, with
490-meter main span, exemplify this advancement. Post-World War II, reinforced concrete gained popularity
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for durability, low maintenance—especially in short to medium spans. In 1928, French technology Eugene
Freyssinet unveiled prestressed concrete, enabling longer, more economical spans. By 1950s, around 70% of new
bridges in Germany used this technique. A modern example Ganga Bridge in Patna, India, utilizing precast
segmental box girders, standing as Asia’s longest prestressed concrete bridge. Another milestone: cable-stayed
bridge, where inclined cables support deck. First modern example: Strémsund Bridge in Sweden completed 1955.
This study proposes a new shear connector gusset connection for seismic design of corroborated concrete frames
with buckling- restrained braces, demonstrating bettered seismic performance and damage control[1]. This study
examines the dynamic geste of double- sundeck string- stayed islands under train loads on the lower sundeck,
assaying factors like weight combinations, train faves, and damping rates to give perceptivity for ground design
and conservation[2]. former studies on brand - concrete conflation joints( SCC]Js) have primarily concentrated
on their structural integrity under static and dynamic loads, but limited attention has been given to their
performance in high- speed road crossbred string- stayed islands. Recent exploration has emphasized the
significance of stress distribution, weight transfer mechanisms, and distortion geste in icing structural safety
and continuity. This study builds on that foundation by combining experimental and numerical styles to estimate
SCCJ performance under extreme weight conditions [3]. Former exploration on innovative brand - concrete
joints (SCJs) in long- span road islands has emphasized the significance of stress distribution, slip geste , and axial
force transfer mechanisms in maintaining structural integrity under high loads. Finite element analysis (FEA)
has proven essential in validating experimental findings and optimizing common design, particularly regarding
bearing plate effectiveness and weld detailing. This perceptivity directly inform the dynamic modeling and modal
frequency analysis of complex systems like double- sundeck string- stayed concrete islands using STAAD.Pro [4].
Former exploration on orthotropic brand sundeck (OSD) islands has explored structural performance under
colorful functional countries, but multitudinous studies integrate lifecycle assessment (LCA) with structural
optimization. Recent work emphasizes how material choice, opening angles, and actuation systems impact both
mechanical demands and environmental sustainability. This study advances that understanding by linking high-
grade brand use with mass reduction, bettered performance, and reduced CO ; emigrations in bascule ground
design[5]. Former studies on ground sundeck fatigue have primarily concentrated on orthotropic brand
sundecks (OSDs), with limited attention to the part of ultra-high- performance concrete (UHPC) in enhancing
fatigue resistance. Recent exploration highlights UHPC’s eventuality to significantly reduce stress ranges and
diversions in conflation sundecks, thereby extending service life. This study contributes by validating field-
covered fatigue data and finite element analysis, emphasizing UHPC’s effectiveness in real business conditions
[6]. Several studies have explored the dynamic geste of string- stayed islands, emphasizing the influence of sundeck
wind, string arrangement, and palace indolence. Zhang and Xu( 2005) detailed modal identification under
functional conditions, while Fryba( 1996) mooted vibration modes and their perceptivity to geometric
configurations. Recent advancements, similar as vision- rested monitoring (Farrar & Worden, 2012), farther
support accurate remote dynamic assessment [7]. Recent exploration highlights the eventuality of fiber
corroborated polymer( FRP) lines in long- span string- stayed islands, offering superior erosion resistance and
reduced weight( Nakamura et al., 2000). Studies by Kim and Meier (1991) demonstrate the structural and
profitable benefits of crossbred FRP arrangements. This paper extends those findings by proposing a span-
optimized crossbred FRP system that enhances seismic performance and reduces life- cycle costs [8]. Cable- stayed
footbridges are largely susceptible to dynamic issues like coterminous side excitation, as mooted by Dallard
et al. (2001) following the Millennium Bridge case. Studies by Caetano et al.( 2010) emphasize the significance
of integrating structural and damping system design. This paper builds on those principles by proposing an
optimization algorithm that contemporaneously addresses structural, dynamic, and profitable performance [9].
Crooked string- stayed islands( CSBs) are decreasingly espoused for aesthetic and point-specific conditions, but
their seismic design remains less explored( Kim & Laman, 2010). Formerly exploration, similar as by Zhang et
al.( 2015), highlights the perceptivity of CSBs to seismic goods, particularly spatial ground stir variability. This
study advances the field by integrating construction stages and seismic optimization using an entropy- rested
algorithm [10]. Recent studies emphasize Ultra-High Performance Concrete( UHPC) overlays as a promising
result to fatigue issues in orthotropic brand sundecks( OSDs), enhancing stiffness and reducing stress attention(
Graybeal, 2006). exploration by Liu et al.( 2020) highlights UHPC’s effectiveness in extending fatigue life at
critical welded joints. This study advances understanding by combining in- situ measures and FE modeling to
estimate residual fatigue life in brand- UHPC conflation sundecks [11]. Construction simulation of string- stayed
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islands is critical due to high stress situations during construction, constantly exceeding those in service (
Virlogeux, 1999). Traditional styles calculate on stage superposition and iterative processes, limiting harshness
and adding computational demand (Kawashima & Unjoh, 1997). This study introduces a direct analysis( DA)
approach using the unstressed length system, enhancing effectiveness and delicacy without specialized
software[12]. Crossbred string- stayed suspense islands( HCSBs) offer enhanced gauging capability but are prone
to fatigue in hanger zones due to cyclic stresses( Xu et al., 2020). former studies have explored structural
parameters affecting fatigue, but detailed evaluation using influence line styles remains limited. This exploration
provides new perceptivity into optimizing hanger layout, stiffness, and string arrangements to reduce stress
confines and meliorate fatigue resistance [13].

2. Methodology:

This investigation entails the modeling of a two-decked cablestayed concrete bridge using STAAD.Pro
CONNECT Edition V24 to scrutinize its dynamic characteristics. A modal frequency analysis was conducted to
determine the structure's natural frequencies and mode shapes. The materials and loading criteria were defined
in accordance with IS 456:2000 and IRC:6-2017 standards. Support conditions and cable forces were assigned
based on conventional bridge engineering methods. The analysis results offer valuable Apprehension of the
bridge's vibration behavior, contributing to the Maturation of safer and more effective structural designs.

2.1Two decked cable stayed concrete bridge schematic: A two decked cable stayed concrete bridge with spatial
attributes of span 1200 meters, upper deck 16 meters, lower deck 8 meters shown in fig(1) engaged for
assessment

2.2Structural attributes

Fig:2 Structure cable’s properties
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Fig: 3 Structure deck, pier and pylon properties

2.3The structural loads are detailed below.

L
T

Fig: 4 shown in fig displacement of plates and beams under modal load
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2.3.1 Time - displacement response of the two decked cable stayed bridge

Fig: 6 shown in fig time - displacement of response in graphs at node 2

The time history analysis shows significant transient displacement at key nodes, with peak responses occurring
around 0.376 seconds. Displacements rapidly decay, indicating effective damping in the structural system.

2.4The calculated frequencies under load case 2(5.0625Kn/m)

Mod Frequency(cycles/ Time period in

e sec) sec

1 0.055 18.14442
2 0.059 17.01067
3 0.065 15.37207
4 0.083 12.01518
5 0.093 10.72283
6 0.094 10.63868
7 0.098 10.25129
8 0.102 9.79996
9 0.102 9.75776

Table 1: The calculated frequencies under load case 2

Mode 1 shows the lowest frequency (0.055 Hz) and the longest period (18.14 sec), reflecting the slow, flexible
movement typical of the primary vibration mode in a cable-stayed bridge. Modes 8 and 9 show the highest
frequency (0.102 Hz) and shortest periods (™ 9.8 sec), representing faster, higher-order vibrations.

2.5Mode Contributions to Resonant Response in the Bridge

Mode [Frequency(Hz) Importance

1 0.05513 0.0000003931
2 0.058787 0.0000500650
3 0.065053 1

4 0.083228 0.0000500650
5 0.093259 0.0031792000
6 0.093997 0.0488756514
7 0.097549 0.0086674653
3 0.102041 0.0792858147
0 0.102483 0.0000233484

Table 2: Contribution of Missing Mass and Mode Importance at Resonance
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For the two-decked cable-stayed bridge, Mode 3 plays a key role in how the structure responds to resonance. Even
though its frequency is relatively low at 0.065 Hz, it carries the highest importance value of 1.000, showing that
it dominates the dynamic response. On the other hand, Mode 9, despite having a higher frequency of 0.102 Hz,
contributes very little, with an importance value close to zero (0.00002). Modes 1, 2, and 4 also have extremely
low importance, meaning they have only a minor effect on the bridge’s movement when exposed to dynamic

forces at resonance

2.6Reactions and Moments at Supports in the X, Y, and Z Directions
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2.7 Detailed Analysis of Strain Energy, Damping Energy, and Composite Damping for Each Mode

Mo deStrain energy (Kn-m)|[Damping energy (Kn-m)Composite damping
1 1.405651E+00 6.993234E-02 0.0498
2 1.351426E+00 6.732269E-02 0.0498
3 1.361154E+01 6.770018E-01 0.0497
4 1.156962E+01 5.775057E-01 0.0499
5 5.077401E+00 2.475036E-01 0.0487
6 4.564975E+00 2.256239E-01 0.0494
7 1.690700E+01 6.934086E-01 0.0410
8 1.650246E+01 6.907169E-01 0.0419
9 2.323495E+01 1.156028E+00 0.0498

Table 3: Mode-wise Strain Energy, Damping Energy, and Composite Damping
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This table reflects the dynamic behavior of a two-decked cable-stayed concrete bridge across different vibration
modes. Modes 1 and 2 have low strain and damping energy (around 1.35-1.41 kN'm and 0.067-0.07 kN-m),
indicating gentle, flexible movements typical of the structure’s basic response. Modes 5 and 6 fall in a moderate
range, showing slightly higher energy levels (about 4.56-5.08 kN-m for strain and 0.225- 0.247 kN-m for
damping), likely caused by localized deck activity. The higher modes— 3, 4, 7, 8, and 9—show significantly larger
strain and damping energy values (11.56- 23.23 kN-m and 0.577-1.156 kN-m), suggesting more complex
behavior involving the interaction of decks, cables, and towers. Interestingly, although Modes 7 and 8 carry high
energy, their lower damping ratios (around 0.041-0.0419) hint at reduced efficiency in dissipating that energy.
2.7Modal Weight Distribution and Directional Mass Participation per Mode

M X - Y - zZ - Modal mass in kN
odes | direc tion | direc tion | direction

1 5.20 2.28 1.720 4.026312
9566 5243 182E E+04
E-09 E-07 +05

2 9.24 1.88 3.930 3.402348
3531 8321 980E E+04
E-05 E-08 +02

3 4.54 1.72 7.990 2.798438
8439 0857 181E- E+05
E+0 E-04 06
5

4 1.58 2.90 1.443 1.453194
3164 0987 893E E+05
E-06 E-06 +05

5 3.52 1.02 1.525 5.079304
4343 7369 020E- E+04
E+0 E+05 05
0

6 7.60 1.10 5.552 4.495290
7954 5899 872E- E+04
E+0 E+00 06
2

7 9.54 7.75 5.012 1.545850
3631 9756 131E- E+05
E+0 E+03 06
1

8 8.52 2.95 7.886 1.378927
9245 1263 593E- E+05
E+0 E+02 06
3

9 1.05 2.42 8.624 1.924801
0452 7832 829E E+05
E-03 E-04 +01

Table 4: Mode-wise Distribution of Modal Weights and Generalized Mass Participation in X, Y, and Z
Directions

This table shows the modal weights (calculated as modal mass times gravitational acceleration) for the first nine
vibration modes of a two-decked cable- stayed concrete bridge. The values, given in kilo newtons (kN), represent
the distribution of weight in the X, Y, and Z directions, as well as the total generalized weight for each mode.
Mode 3 has the highest generalized weight at 279,843 kN, with the majority of this weight concentrated in the
X-direction (454,843 kN), highlighting its significant contribution to the bridge's dynamic behavior. Mode 1,
with a generalized weight of 40,263 kN, shows a major influence from the Z-direction (172,018 kN), indicating
its importance in vertical motion. Mode 8, with a total weight of 137,893 kN, demonstrates a more balanced
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distribution between the X- direction (8,529 kN) and Y-direction (295 kN), suggesting a more even involvement
in horizontal movements. On the other hand, Mode 9, with a generalized weight of 192,480 kN, has minimal
participation from the Y-direction (242 kN), indicating less influence in this mode.

SELLCLLLLLLLEE

UL ) s

Fig: 7 shown in fig The stress on plate element

2.8Mass Participation Factors for Each Mode in X, Y, and Z Directions

Mode [X-direction|[Y-direction [Z-direction[SUM M-X[SUM M-Y [SUM M-Z
1 0 0 36. 0 0 36.
53 52
7
2 0 0 0.0 0 0 36.
§] 61
3 96. 0 0 96 0 36.
57 .5 61
74
4 0 o 30. 96 0 67.
66 .5 27
74 0
5 0 16.3 0 96 16. 67.
1 .5 12 27
74 7 0
§ 0.1 0 0 96 16. 67.
§ .7 12 27
36 i 0
7 0.0 1.22 0 96 17. 67.
2 .7 34 27
36 5 0
3 1.8 0.05 0 98 17. 67.
1 .5 39 27
67 1 0
9 0 0 0.0 98 17. 67.
2 .5 39 28
67 1 0

Table 4: Mode-wise Mass Participation Factors
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3.
I.

Results:

This investigation examines the vibrational characteristics and dynamic response of a dual-deck cable-stayed
concrete bridge utilizing STAAD.Pro. The time- history analysis identified peak base shear forces at 1.124992
seconds, recorded as follows: X-direction = 27,089.90kN, Y-direction =345.83kN, and Z-

Direction = -10.53kN.

The dynamic behavior of a two- decked cable-stayed concrete bridge shows varying strain and damping energy
across modes, with low energy in modes 1 and 2 (strain:1.35-1.41 kNem, damping: 0.067-0.07
kN ¢ m), moderate energy in modes 5 and 6 (strain: 4.56-5.08kN *m, damping: 0.225-0.247 kN em),
and high energy in modes 3, 4, 7, 8, and 9 (strain: 11.56-23.23 kN * m, damping: 0.577-1.156 kN em),
with modes 7 and 8 showing lower damping efficiency (0.041- 0.0419).

The modal weight analysis of the two-decked cable-stayed concrete bridge reveals that Mode 3 plays the most
significant role, with a total generalized weight of 279,843 kN, driven mainly by a large contribution in the
X-direction (454,843 kN). Mode 1 comes next, with a weight of 40,263 kN, showing substantial vertical
motion (172,018 kN in the Z-direction). Mode 8 has a more balanced weight distribution, totaling 137,893
kN, with contributions from both the X-direction (8,529 kN) and Y-direction (295 kN). Finally, Mode

9 has a generalized weight of 192,480 kN, but its contribution from the Y-direction (242 kN) is minimal,

4.

indicating it has a smaller impact on the overall behavior of the bridge.

The modal analysis of the two- decked cable-stayed concrete bridge shows dominant X-direction mass
participation from Modes 3-9 (96.574%-98.567%), minimal input from Modes 1-2, Y-direction influence
mainly from Modes 5 (16.13%) and 7 (1.22%), and Z-direction dominance by Modes 1(36.53%) and
4 (30.66%), highlighting distinct directional contributions across modes.

Maximum displacement recorded is approximately 0.688 m in the vertical direction at Node 2.

3.1CONCLUSION:

1.

2.

Dynamic Response Identified: The Bridge shows distinct vibrational behavior, with Mode 3 contributing
most significantly to horizontal movement, while Modes 1 and 4 influence vertical dynamics.

Base Shear Peaks Early: The highest base shear occurs at 1.12 seconds, with the X-direction experiencing the
greatest force, emphasizing the need for strong lateral stability.

. Critical Node Displacement: Maximum vertical displacement of approximately 0.688 m was observed at Node

2, highlighting it as a key area for monitoring and design focus.
Damping Is Essential: Damping effectively reduces vibration amplitudes over time, playing a major role in
enhancing the bridge's ability to handle repeated dynamic loading.

. Design Implications: These findings provide valuable guidance for designing safer and more resilient double-

deck cable-stayed bridges, especially in space-constrained, high-traffic regions.

3.2Areas of future exploration

1.

Exploring Other Materials: Future work could look into using different materials like steel, composites, or
high-performance concrete to see how they affect the bridge’s vibration behavior, damping capacity, and
overall performance.

. Tweaking Material Properties: Even with the same material—like concrete—changing its properties such as

stiffness, density, or damping could help fine-tune the bridge’s response to dynamic loads.

Trying New Configurations: Adjusting the shape and size of structural elements—like increasing pylon height,
changing deck thickness, or rearranging cables— may reveal ways to improve the bridge’s strength and stability.
Using Hybrid Designs: Combining materials, such as using a steel- concrete hybrid system, could enhance
strength while reducing weight, offering a smarter approach to bridge design.

. Pretending More Realistic Loads: By testing how the bridge reacts to different forces—like earthquakes, strong

winds, or heavy traffic— future studies can better predict how it would behave in realworld conditions.
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