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Abstract: Groundwater recharge, being a major factor monitoring groundwater resources, should be 
carefully analyzed in order to establish the quantities of water that are available for pumping without 
dangerously depleting groundwater reserves, but also to determine the groundwater vulnerability. And 
hence, Quantification of groundwater recharge is a major problem in many water resource investigations. It 
is a complex function of meteorological conditions, physiographic characteristics and properties of the 
geological material within the paths of flow. To estimate the groundwater recharge a physically-based 
lumped hydrological model is developed for modeling groundwater levels in response to precipitation time-
series and groundwater abstractions by pumping. The model performance is assessed by comparing 
predicted and observed groundwater levels. In any modeling exercise their being a need for parameter 
optimization, Generalized likelihood Uncertainty Estimation methodology (GLUE) is widely-used for 
quantifying uncertainty in groundwater recharge mapping. In order to improve the reliability and 
performance of the lumped- hydrological model, in this study a general approach for the assessment of 
performance in the simulation of groundwater recharge estimation is proposed. Sensitivity analysis results 
indicate that the groundwater recharge is more sensitive to parameters related to climatic conditions, soil 
characteristics and land use. 
Keywords: Generalized likelihood uncertainty estimation (GLUE); Latin Hypercube Sample (LHS); 
Parameter optimization; Sensitivity analysis 
 

1. 1. INTRODUCTION 
 
Water is needed in all aspects of life, difficult to purify, expensive to transport and impossible to substitute. 
Renewable fresh water is an increasingly scarce commodity and the amount of fresh water actually available 
to people is finite. Although our earth is called the ‘Blue Planet’ as 70% of the earth is covered by water, yet 
only 2.5% of the world’s water is fresh, while 97.5% is saline being oceans. Of this small percentage of 
freshwater, only 0.3% of this freshwater is available from rivers, lakes and reservoirs, 30% from the 
groundwater, while the rest is stored in distant glaciers, ice sheets, mountainous areas, places that we can 
hardly access. This is the scenario of global water distribution when no intervention is anticipated. As we 
are aware that numerous interventions are taking place every day in the total environment, and thus actual 
freshwater availability in the form of surface water and groundwater resources are much different to what it 
appears from the global water distribution.  
The demand of water from various water users, namely, domestic, municipal, agricultural, horticultural, 
recreation, power and industrial sectors are increasing, and this has put tremendous pressure on the water 
resources systems. The growing water pollution problems for both surface water as well as groundwater have 
aggravated the water availability problem. The hydrological uncertainty, the development activities, 
heterogeneities in land, soil, climate, terrain and anthropogenic activities along with temporal variability 
and social dimensions has accentuated the water availability problems. The real life complexities, reducing 
freshwater availability and sustainability of water resources have raised many water issues at local, regional 
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and global scales. The time has come to have a retrospect view on the water use and misuse, to take serious 
viewpoints towards water management including quality and quantity aspects together. 
Water availability in Indian scenario: The geographical area of India is about 329 million hectares (2.45 % 
of the earth’s land mass) and its population is 1,027 million based on the 2001 census, which is about 16% 
of that of the world. The renewable freshwater resources of the country are 1,869 km³ year -1, which are only 
about 4% of those of the world. As in many other countries, water resources of this country are not evenly 
distributed in space and time. Although some water is received from the upstream countries, precipitation 
is the main source of water availability. The annual rainfall varies from more than 10,000 mm in parts of 
Meghalaya in the north-east to less than 500mm in semi-arid parts of Rajasthan and Gujarat. In arid 
regions, it is even less than 100mm. Much of the water is received during monsoon season, about four 
months in a year and more crucial is that it occurs in about 100 hours of the rainy days. 1Precipitation is the 
natural recharging source for the surface water resources and it also maintain the hydrological cycle.  Rivers 
are the major source of water in India. The utilizable annual surface water in rivers of the country is 690 
km3. Groundwater resource recharge from the precipitation mostly in the monsoon season in India. Canal 
irrigation and other form of irrigation systems also contribute to the recharging of the groundwater. The 
annual potential of natural groundwater recharge from rainfall in India is about 342.43 km3, which is 
8.56% of total annual rainfall of the country. The annual potential groundwater recharge augmentation 
from canal irrigation system is about 89.46 km3  
Management of Groundwater systems and role of recharge estimation: Groundwater recharge, being a 
major factor maintaining groundwater resources, should be carefully analyzed in order to establish the 
quantities of water that are available for pumping without dangerously depleting groundwater reserves, but 
also to determine the groundwater  vulnerability. Low groundwater resources can be an effective obstacle 
for industrial and social development, or at least significantly reduce its pace. In many countries, the 
management of groundwater basins has therefore high priority. In the estimation of groundwater recharge, 
in particular, in arid and semi arid regions, it is essential to (i) recognize and understand the complexity of 
the geological formations and the flow processes that occur therein; (ii) the high degree of variability, poor 
distribution and uncertainty of precipitation and its role in generating recharge; (iii) improvement in the 
data collection; and (iv) improvement in the recharge estimation methods. 
1.1 Recharge estimation through hydrological models 
A model is a simplified representation of real world system. The best model is the one which give results 
close to reality with the use of least parameters and model complexity. Models are mainly used for 
predicting system behaviour and understanding various hydrological processes. A model consists of various 
parameters that define the characteristics of the model. The two important inputs required for all models 
are rainfall data and drainage area. Along with these, watershed characteristics like soil properties, 
vegetation cover, watershed topography, soil moisture content, characteristics of ground water aquifer are 
also considered. Hydrological models are now a day considered as an important and necessary tool for water 
and environment resource management. Rainfall-runoff models are classified based on model input and 
parameters and the extent of physical principles applied in the model. It can be classified as lumped and 
distributed model based on the model parameters as a function of space and time and deterministic and 
stochastic models based on the other criteria. Deterministic model will give same output for a single set of 
input values whereas in stochastic models, different values of output can be produced for a single set of 
inputs. The parameters used in the lumped model represent spatially averaged characteristics in a 
hydrological system and are often unable to be directly compared with field measurements. In general, 
lumped models use simple bookkeeping procedures to quantify physical processes by simulating the 
temporal variation of various physical processes in a hydrological system. The advantage of these models 
over physically based models is that the conceptual parameterization in the models is simple and 
computation is efficient. With the availability of spatially distributed digital and remotely sensed data sets of 

                                                
1 Source: Water resources of India, Current Science, Vol. 89, No. 5, 10 September 2005, by Rakesh Kumar, R. D. Singh and K. 
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features such as precipitation, elevation, vegetation, etc., many distributed lumped models have been 
developed in recent years. These kinds of models have been widely used in most climate and meteorological 
studies to model hydrological processes “Seiller et al. (2012)”. 
 Parameter Optimization Technique: Routine availability of hydrological, geological, and other physiographic 
data today allows us to obtain a priori estimates of hydrologic model parameters prior to explicit model 
calibration. When informative a priori estimates of model parameters are available, the problem of 
hydrologic model calibration becomes one of filtering, i.e. improving the a priori estimates based on 
observations of input and output to and from the hydrologic system, respectively, rather than one of 
bounded global optimization based solely on the input and output data as in traditional model calibration 
“kuzim et al. (2007)”. The equifinality problem has been universally found in hydrological models. The 
Generalized Likelihood Uncertainty Estimation methodology (GLUE) is widely used to quantify the 
parameter uncertainty in a variety of hydrological models “André Fonseca et al. (2013)”. This study makes a 
comprehensive discussion about the sources of equifinality in a distributed conceptual hydrological model 
“LI LU et al. (2009)”. However, the subjective nature of GLUE involving the definition of the likelihood 
measure and the criteria for defining acceptable versus unacceptable models can lead to different results in 
quantifying uncertainty bounds “Jung et al. (2014)”. The approach of Water Table Fluctuation (WTF) 
method as given by “Park and Parker (2007)”, further stated as P&P model in this paper is adopted to 
estimate groundwater recharge.  The objective of this paper is to perform a sensitivity analysis 2of the effect 
of the choice of likelihood measures and cut-off thresholds used in selecting behavioral and non-behavioral 
models in the GLUE methodology. 
2. MATERIALS AND METHODS 
2.1      Hydrogeological setting of India 

Rainfall is the important element of Indian economy. Although the monsoons affect most part of 
India, the amount of rainfall varies from heavy to scanty on different parts. There is great regional and 
temporal variation in the distribution of rainfall. Over 80% of the annual rainfall is received in the four 
rainy months of June to September. The average annual rainfall is about 125cm, but it has great spatial 
variations. 
The hydrogeological setting of groundwater defines the potential of groundwater resource and its 
vulnerability to irreversible degradation. This setting in India can be divided into following categories, 
which are described below: 
Hard-rock aquifers of peninsular India: These aquifers represent around 65% of India’s overall aquifer surface 
area. Most of them are found in central peninsular India, where land is typically underlain by hard-rock 
formations. These rocks give rise to a complex and extensive low-storage aquifer system, where in the water 
level tends to drop very rapidly once the water table falls by more than 2-6 meters. Additionally, these 
aquifers have poor permeability which limits their recharge through rainfall. This implies that water in 
these aquifers is non- replenishable and will eventually dry out due to continuous usage. 
Alluvial aquifers of the Indo-Gangetic plains: These aquifers, found in the Gangetic and Indus plains in 
Northern India have significant storage spaces, and hence are a valuable source of fresh water supply. 
However, due to excessive groundwater extraction and high salinity and elevated arsenic concentrations 
exist in parts of the basin limiting the usefulness of the groundwater resource. Saline water predominates in 
the Lower Indus, and near to the coast in the Bengal Delta, and is also a major concern in the Middle 
Ganges and Upper Ganges.  Arsenic severely impacts the development of shallow groundwater in the fluvial 
influenced deltaic area of the Bengal Basin leading to low recharge rates. 
Data availability for groundwater recharges estimation: Monitoring of groundwater regime is an effort to 
obtain information on groundwater levels. The important attributes of groundwater regime monitoring are 
groundwater level, groundwater quality and temperature. Groundwater levels are being measured four times 

                                                
2 "Sensitivity Analysis - Investopedia." http://www.investopedia.com/terms/s/sensitivityanalysis.asp. 
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a year during January, April/ May, August and November. The regime monitoring started in the year 1969 
by Central Ground Water Board. At present a network of 15640 observation wells located all over the country 
is being monitored “CGWB Report (2011)”. The Ministry of Water Resources regularly monitors groundwater 
level through a wide network of groundwater observation wells located all over the Country. Water level is 
measured four times in a year i.e., in the month of January, April/May, August and November and 
groundwater quality samples are collected once in a year i.e., during April/May. The Groundwater Wing of 
the Department of Mines and Geology is carrying out monitoring of groundwater levels in the State, 
monitoring of groundwater quality and assessment of groundwater resources once in five years as per 
guidelines of Ministry of Water Resources, Government of India. The available data series are point data series 
and hence suitable would be lumped model. The parameters used in the lumped model represent spatially 
averaged characteristics in a hydrological system and are often unable to be directly compared with field 
measurements. The advantage of these models over physically based models is that the conceptual 
parameterization in the models is simple and computation is efficient. 
This work pertains to use a lumped hydrological model ”Park and Parker (2007)” momentarily stated as P&P 
model, which when applied to the data sets of a groundwater level series and incorporating the groundwater 
pumping series for the study area would yield the groundwater recharge estimates of the area which are 
then represented as recharge maps. 

2.2 Study area 
Berambadi Watershed : The Berambadi watershed (84 km2) located in the hard – rock aquifers of 
peninsular India, belongs to Gundlupet town in Chamarajanagar district of Karnataka state in South India 
as shown in Fig 2.1. The watershed lies in semi-arid climate zone with a mean annual dominant South-West 
monsoon rainfall of 800 mm, regionally; the climate is dominated by a monsoon regime that generates a 
strong precipitation gradient with decadal trends and strong inter-annual variability, with recurrent 
droughts “Sekhar et al. (2011)”. 

 
Fig 2.1. Location of Berambadi watershed inside India (shown in inset) and Digital Elevation Model 

(DEM). Location of 50 soil moisture measurement plots is also shown. 
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The Berambadi watershed is a representative Southern Indian catchment in terms of overexploitation of its 
hard-rock aquifer, its cropping, rural socio-economy and agricultural practices. The watershed comprises of 
12 villages, the borewells in use in each village is as shown in Fig 2.2.  
The number of borewells in the watershed has been drastically increased over the years (Fig 2.2) which has 
lead to the exploitation of groundwater in the area. Overexploitation occurs as far as groundwater 
abstraction exceeds available groundwater recharge from precipitation or surface water contribution in the 
study area. India, with hard rock constituting more than two-thirds of the total surface, is a great example of 
the nexus between water scarcity and the occurrence of hard-rock aquifers. The groundwater boom during 
the Green revolution of the seventies has lead to a complete inversion of the irrigation scenario, with 
groundwater now sustaining almost 60% of irrigated land “Roy and Shah (2002)”. It is generally assumed 
that specific yield varies with depth – especially in hard-rock aquifers where fracture density and porosity 
change with depth, namely between the different layers constituting the aquifer “Mare´chal et al. (2004)” 
which ranges between (0.0138 – 0.0140) ± 0.0027 and hence specific yield of 0.01 is adopted in the study. 
The groundwater levels for the study area were collected from Indian Institute of Science (IISc), Bangalore, for 
205 observation wells from 2010-2015 as shown in Fig 2.3. and also water yield data for the wells in 
berambadi were collected from Ashoka Trust for Research in Ecology and The Environment(ATREE), Bangalore. 

 
Fig 2.2  Borewells in the villages in the watershed 

Out of 205 observation wells, 24 wells were considered Fig 2.4 (Spatial distribution of borewell locations selected 
under study in the Berambadi watershed). The rainfall data for the Berambadi rain gauge station was collected 
from Indian Institute of Science (IISc), Bangalore which comprises of monthly rainfall data during the year 
2010 -2015. 
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Fig 2.3 Spatial distribution of monitoring locations in the Berambadi watershed 

 

 

Fig 2.4 Spatial distribution of borewell locations selected under study in the Berambadi watershed 

2.3 Methodology 

The methodology for groundwater recharge estimation is modeled based on the lumped hydrological model 
given by “Park and Parker (2007)”. The model henceforth can be called as P&P model. Optimization of 
parameters is done by adopting Generalized Likelihood Uncertainty Estimation (GLUE) technique and the 
results obtained through GLUE are then used for uncertainty and sensitivity analysis. The framework for 
the methodology is presented in the form of flowchart as shown in Figure 2.5 below 
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Figure 2.5 Flowchart representing the methodology adopted in this work 
 
The lumped hydrological model and its development: 
The lumped hydrological model, which was developed by “Park and Parker (2007)” (P&P model), has been 
applied in the Berambadi watershed with further small modifications. The primary equations of the model 
are presented in the model development section below. 
Model development 
It is assumed that the modeled aquifer region is relatively small and the hydraulic gradient inside domain is 
approximately constant. Further assuming that there is no groundwater pumping and no significant 
evapotranspiration, the following mathematical model is given- 

          h = h0 exp⁡(kt) + α P  ((exp⁡(k)-1))/((k*s))   (2.1) 
where h is the groundwater level, h0 is the initial groundwater level, P is the precipitation data series for the 
study area, α is the recharge factor. Based on the above equation, an algorithm is given as where hi is taken 
to be ho for the first time-step (i = 1) and the groundwater elevation at the end of the time -step is computed 
from the average precipitation rate Pi for the period as 

               h(i+1 )= hi exp⁡(k∆t)+(αP(exp⁡(k∆t)-1))/kn               (2.2)                         
      Where hi+1 is the groundwater level calculated at time step i+1 after the time step ∆t. Also, P 
now is the precipitation in the time interval ∆t. From then on, the groundwater level for the next time step 
is computed using the previous groundwater level h and the precipitation in the respective time step. It is 
observed in Eqn.2.2 that the first term of the right hand side lead to a constant fall in the groundwater level 
in the case when there is no precipitation. If there is precipitation in the time period ∆t, then the second 
term of the right hand side of the Eqn.2.2 leads to a corresponding rise in groundwater level. 

In Eqn.2.2 there are three parameters- parameter k controls the fall in the groundwater level whereas 
parameter α in combination of parameter n (and implicitly along with k) controls the rises in groundwater 
level. It is observed from Eqn.2.2 that the second term is exclusively taking care of the influence of the 
precipitation on the groundwater level fluctuation. Extending this understanding a little further, the output 
through pumping from the system can be logically integrated as given- 

            h(i+1) = hi exp⁡(k)+((rP-Pm )(exp⁡(k)-1))/((k*s))   (2.3) 
Where hi+1 is the groundwater level calculated at the time step i+1, hi is the groundwater level of the time 
step i, Pm is the pumping data series of the study area, P is the precipitation data series of the study area, r is 
the recharge factor, k is the falling parameter and s is the specific yield. The term (P-Pm) can be now 
considered as net input which can be either positive or negative based on the relative magnitudes of P and 
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Pm. Then knowing groundwater level of the previous month, and knowing the precipitation and pumping 
value of the same month, the groundwater level of the month can be calculated. The above equation is the 
primary equation on which the lumped model is based. 

Implementation of P&P model in MATLAB   

The P&P model as represented by Eq2.3 is implemented in MATLAB, to generate the simulated 
groundwater levels by optimizing the model parameters such as the recharge factor (r) and the falling 
parameter (k) by using the Nash Sutcliffe (NS) coefficient as the objective function and GLUE technique of 
parameter estimation.    
 
Generalized Likelihood Uncertainty Estimation (GLUE) 
Parameter optimization 
A critical review of the application of physically based distributed modeling “Beven, (1996)” with multiple 
distributed parameters, led to the recognition that, rather than a single globally optimal parameter set, a 
large number of parameter sets could show equivalent behavior in terms of the objective function used in 
calibration. This recognition is the basic principle of the GLUE procedure, where the likelihood that any 
possible parameter set is a good simulator of the system is expressed in terms of how well the model 
performs with that parameter set, given the available data. The model parameters r and k are calibrated by 
adopting the Nash-Sutcliffe values as the objective function which helps in determining the model 
performance, where the NS values itself is taken as the likelihood measures further for the parameter 
uncertainty estimation. 
Uncertainty analysis 
The NS values obtained from the P&P model is taken as the likelihood measures. For each of the model 
parameters, a prior distribution is defined. Parameter sets are sampled randomly from this prior 
distribution. In most of the reported applications of the GLUE procedure “Beven and Binley (1992)”; 
“Aronica et al. (1998)”; “Uhlenbrook et al. (1999)”, little prior information was available as to the distribution 
of each parameter, and a non-informative uniformly distributed prior is selected. Thus the obtained 
number of parameter sets (NMC) was sampled using the Monte-Carlo technique from the prior parameter 
distributions (say 1000 samples). The model is then run using these parameter sets and the model outcome 
of each run is compared to the observed values using the selected objective function (NS values). Based on 
the value of this objective function, a likelihood value is assigned to the parameter set. The distribution of 
the likelihood function (NS values) is then normalized to create a proper posterior distribution of 
likelihoods “Romanowicz et al. (1996)”. All parameter sets performing below a preselected threshold 0.75 are 
considered non-behavioral and thus removed. 
The likelihood values of the behavioral parameter sets are normalized such that the distribution function is 
again proper and a new threshold of 0.80 is set. Subsequent predictive model runs using the remaining 
parameter sets are weighted according to the likelihood value of the parameter used, and from this 
ensemble the weighted mean and uncertainty bounds of model outcome can be derived. 
Quantification of Uncertainty and sensitivity: The behavioral parameter sets and the corresponding NS 
values having the threshold value >= 0.8 are used for the quantification of uncertainty and sensitivity. The 
NS values itself are considered as the likelihood measures which are  then normalized by dividing each 
value of likelihood measure by its total value, which gives the relative frequency of values of each parameter 
as typically shown in Table 2.1. 
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 Table 2.1 Normalized Uncertainty measure 

Par 1 NS(Likelihood 
measure) 

Normalized likelihood measure 

Value 
1 

Value 4 =value4/(value4+value5+value6) 

Value 
2 

Value 5 =value5/(value4+value5+value6) 

Value 
3 

Value 6 =value6/(value4+value5+value6) 

In first row, normalized likelihood measure calculated as shown in the Table 2.1 gives the relative frequency 
of value 1 of Par 1. Likewise the normalized likelihood measures are calculated for the rest of the values for 
Par1. which are then used to get the histogram, where the area under the histogram is 1 and hence is 
equivalent to a probability density function (PDF). The normal distribution is fitted to the histogram to 
derive the PDF. From the PDF, the CDF is derived and the plot of CDF is typically as shown in Figure 2.6. 
From the CDF, 0.05 quantile (Q0.05), 0.5 quantile (Q0.5) and 0.95 quantile (Q0.95) are read. 

 
  

Fig 2.6  CDF of Par 1 
 The uncertainty bound is then obtained as, 

UB = Q0.95 – Q0.05                                                                 (2.4) 
 Where, UB = Uncertainty Bound 
Q0.95 = 0.95 quantile of the parameter 
Q0.05  = 0.05 quantile of the parameter 
The uncertainty bound obtained are then normalized as shown below to compare the uncertainty of the 
model parameters. 
Normalized Uncertainty Bound =      ( Q0.95  – Q0.05)/Q0.5                         (2.5) 
The sensitiveness of model parameter is then quantified by dotty plots. If the dotty plot of the parameter is 
peaked (may be also asymmetric), then the parameter is said to sensitive; otherwise it is relatively less 
sensitive which is typically as shown in Figure 2.7. 
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Fig 2.7 Dotty plot for Par 1 

The dotty plot of Par 1 represents that the Par 1 is sensitive to the model response, as the scatter plot is 
peaked (may be also asymmetric), more likely aligning towards left. 
3. Results and Discussions 
The results referring to the implementation of lumped hydrological model (P&P model) are given in this 
section. Also, Optimization of model parameters by GLUE technique involves Latin Hypercube Sampling 
(LHS) and the obtained parameter values are then used to quantify uncertainty and sensitivity of the 
parameters. The model parameters considered under study i.e., the single falling parameter k and yearly 
recharge parameters (r1, r2, r3, r4, r5, r6) over the period of 5 years (2010-2015), the number of samples for 
which the program has to generate the parameter values i.e., 1000 samples, and the specified range of values 
for each parameter as mentioned is given as input to the Latin Hypercube Sampling (LHS) program. The 
LHS vector obtained, thus is given as input to the lumped model (P&P model), along with the other input 
variables such as groundwater levels observed, the precipitation values for every month for the period of 5 
years (2010-2015) and also the pumping values having same units of measurements as precipitation for the 
same month. The model is thus run for 1000 times and the simulated groundwater levels are calculated by 
using the Eqn. 2.3 which is programmed in MATLAB. Thus, the outputs from P&P model after the model 
simulations are (a) the simulated groundwater levels and (b) an array of 1000 NS values. Then the model 
parameters are segregated as behavioral and non behavioral parameters by sorting the parameter set with 
the corresponding NS value >= 0.75 as threshold. The parameter sets corresponding to NS values, whose 
threshold is less than 0.75 is discarded as non behavioral parameters.  
From the obtained behavioral parameter sets, the refined range of values of each parameter is then 
generated by plotting NS values versus model parameters. This refined range for all the model parameters 
act as input to the LHS program, to get a new 1000 sample values of refined range of each parameter. The 
simulated groundwater levels are then generated using the Eqn. 2.3. with the parameter values for k, r1, r2, 
r3, r4, r5, r6 taken as the average of upper bound (ub) and lower bound (lb). Further, the simulated 
groundwater levels are then obtained for all the borewells considered under study with the same procedure 
as mentioned above. The goodness of fit of P&P model is then represented by comparing the simulated 
groundwater levels and the groundwater levels observed as typically represented for a borewell in the study 
area in Figure 2.8. 
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Fig 2.8 Comparison of simulated groundwater levels and observed groundwater levels for 24 borewells 

The simulated groundwater levels modeled were very well captured by lumped hydrological model (P&P 
model) with great goodness of fit except the very few borewells which has relatively low goodness of fit when 
compared to the other borewells. The goodness of fit mainly depends upon the likelihood measures i.e., NS 
value and also the cut- off thresholds and also the low goodness of fits are may be due to the reason that a 
rain gauge is very close proximity to the well is not used. The obtained NS values from P&P model is itself 
taken as likelihood measures. The likelihood measures are then normalized by dividing each likelihood 
measure with the sum of likelihood measures with the help of which histograms are obtained.The normal 
distribution is fitted to the histogram to derive PDF. From, the PDF, the CDF is derived and the code used 
in MATLAB for the same. The quantiles such as 0.05 quantile (Q0.05), 0.95 quantile (Q0.95) and 0.5 quantile 
(Q0.5) is noted from the CDF curves for all the borewells considered under study. Then the uncertainty 
bound for all the parameters in the borewells considered under study is obtained as (Q(0.95 )- Q(0.05)) and is 
represented in the Table 2.2. 

 
Table 2.2 The Uncertainty Bound (UB) of each parameter of 24 borewells considered under study 

Borewell 
no. 

UTM(X
) 

UTM(Y) Uncertainty Bound 

r1 r2 r3 r4 r5 r6 k 

B5 679790 1304565 0.0435 0.029 0.034 0.028 0.085 0.104 0.00025 

B10 679482 1304287 0.106 0.039 0.13 0.092 0.13 0.046 0.00016 

B25 677249 1302067 0.096 0.048 0.068 0.078 0.066 0.048 0.0014 

B28 678017 1303431 0.048 0.092 0.068 0.062 0.064 0.084 0.0004 

B34 679218 1304198 0.088 0.066 0.106 0.102 0.132 0.122 0.00046 

B36 680170 1304984 0.098 0.048 0.056 0.017 0.067
8 

0.07 0.00014 

B48 677434 1304327 0.05 0.0385 0.063 0.0088 0.097
2 

0.086 0.0007 

B49 677028 1304414 0.02 0.062 0.068 0.106 0.098 0.0194 0.0012 
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B56 677258 1303088 0.0995 0.07 0.122 0.058 0.126 0.076 0.00085 

B71 675713 1301531 0.04 0.098 0.096 0.094 0.03 0.096 0.0013 

B78 676116 1300885 0.044 0.038 0.032 0.03 0.03 0.05 0.00028 

B82 677123 1301716 0.07 0.096 0.05 0.03 0.098 0.078 0.0009 

B89 673160 1302715 0.076 0.078 0.036 0.048 0.074 0.03 0.00036 

B94 670889 1302870 0.05 0.074 0.058 0.04 0.086 0.094 0.0008 

B101 675732 1302767 0.02 0.022 0.036 0.036 0.028 0.08 0.00018 

B112 672958 1302305 0.088 0.08 0.0435 0.059 0.035 0.054 0.000195 

B115 672381 1302424 0.0185 0.0028 0.0255 0.016 0.026
5 

0.0072 0.000072 

B130 674324 1300555 0.02 0.0195 0.028 0.082 0.037 0.0149
5 

0.001 

B132 674303 1300539 0.017 0.046 0.017 0.064 0.009
2 

0.056 0.0004 

B135 674833 1302129 0.112 0.095 0.164 0.15 0.21 0.12 0.0008 

B138 671863 1302540 0.048 0.0635 0.0285 0.08 0.028 0.0086 0.0004 

B170 673074 1300202 0.0465 0.0185 0.0465 0.0489 0.064 0.052 0.00762 

B191 669881 1301802 0 0.056 0.116 0.058 0.098 0.094 0.0005 

B193 669953 1302105 0.019 0.057 0.038 0.0194
5 

0.046 0.0865 0.00095 

 
The normalized uncertainty bound is used to compare the parameter uncertainty across the year (2010-
2015) for the borewells considered. It was observed that, even though the parameter uncertainty across the 
year for the borewells differs, the average parameter uncertainty across the year and across the wells is 
almost same having the value of 0.27(27% uncertainty). The sensitiveness of each parameter to the model 
response is quantified by plotting NS values3 versus each parameter. The parameter is said to be sensitive if 
the scatter plots are peaked (may be also asymmetric) otherwise it is said to be insensitive. The model 
parameter sensitiveness and is represented in the Table 2.3 for 24 borewells considered under study. 

 Table 2.3 The sensitiveness [Y] and insensitiveness [N] of the parameter across the wells for all the years 

1Borewell no. r1 r2 r3 r4 r5 r6 k 

B5 N N N N Y N Y 

B10 N Y N N N N Y 

                                                
3 (Note: NS values taken as likelihood measures) 
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B25 N Y N N N N Y 

B28 Y Y Y Y Y Y Y 

B34 N Y Y N Y N K 

B36 Y Y Y Y Y Y Y 

B48 N N N N Y N N 

B49 N N N Y N N Y 

B56 Y Y N Y N N N 

B71 N Y N Y N N N 

B78 Y Y N Y N N N 

B82 N Y N N N N Y 

B89 N Y N N N N Y 

B94 N Y N N N N N 

B101 Y Y Y N Y N Y 

B112 Y Y Y Y Y Y Y 

B115 Y Y Y Y N N Y 

B130 N N N Y N N N 

B132 N Y N Y N N N 

B138 N Y N Y N N Y 

B170 N N N Y N N Y 

B191 N N Y N N N Y 

B193 N Y N N N N Y 

From Table 2.3 it can be observed that, the sensitivity of the model parameters is not homogenous. The 
sensitivity of the model parameters vary for different wells may be because of the reason that the rain gauge 
located in the proximity of the well is not used. 

4. CONCLUSIONS AND RECOMMENDATIONS 

The use of the lumped hydrological groundwater model proposed by “Park and Parker (2007)” was able to 
simulate the groundwater levels reasonably well except for the very few borewells. The overall average 
recharge across the years and across the 24 borewells considered under the study is 0.26 (27%) with the 
range being 0.09 to 0.63 (9% - 63%). Uncertainty in modeling exercise was studied using GLUE technique 
and the overall uncertainty of the model parameters is 0.27 (27%). GLUE being the subjective method that 
involves making decisions on a probability distribution of the uncertain variable and the selection of 
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likelihood measures and a cut-off threshold to develop the uncertainty bound. Depending on the choices 
made for the probability distribution, likelihood measure and cut-off threshold, the results may vary. The 
subjectivity of the GLUE methodology is widely discussed in the literature; a framework to quantify the 
effect of these subjective decisions on the final result does not exist. This study is an attempt to develop 
such a framework. Based on the results from the study area we can come to an understanding that the 
shape of the posterior PDF also changes as the cut-off threshold is changed for different likelihood 
measures. Usually, the number of datasets used to create an uncertainty bound decreases with tighter 
thresholds. In order to get a reasonable number of datasets with a tighter threshold for the smooth CDF 
weighted by behavioral models, a large number of simulations are needed. However, too many simulations 
can increase the computational burden.  
The sensitivity analysis of the model parameters indicates that the sensitivity of the model parameters is not 
homogenous and hence for any further model implementation, the parameters should be considered for 
their sensitivity on an individual basis. 
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