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Abstract: Computer vision is one of the main fields of artificial intelligence. Computer vision enables machines to 

extract useful information from images or videos. Applications include image recognition, autonomous driving, and 
pedestrian detection. In the context of traffic environments, the interaction between pedestrians and vehicles is a key 
focus of many studies. Since pedestrians often face more severe injuries in traffic accidents, therefore, accurately 

predicting pedestrian movement trajectories is crucial for improving traffic safety. To address this issue, combining 
object detection and tracking techniques to optimize pedestrian trajectory prediction has become a core direction of 
research. These technologies enable drivers or ADAS (Advanced Driver Assistance Systems) to have a more 
comprehensive understanding of the driving environment. This effectively reduces the risk of traffic accidents and 
enhances overall road safety. This study focuses on predicting the trajectories of pedestrians on the road. It calculates 
the pedestrian's relative speed and direction. It utilizes the Kalman filter algorithm to integrate object detection models, 
tracking models, and trajectory prediction models, by predicting the system state and correcting it based on new observed 
data. This continuously improves the accuracy of state estimation by using prediction and update steps, generating an 
optimal estimate through weighted averaging, in order to infer the pedestrian's potential future path. The research 
results show that the error between the x-axis data of the Kalman filter trajectory prediction and the real trajectory's 
x-axis data ranges under 0.1 %, while the error in the y-axis data ranges under 0.1 % in absolute value. 
Keywords--Pedestrian trajectory prediction, object detection and tracking, Kalman filter, artificial intelligence. 

 

INTRODUCTION  
Artificial intelligence is a field of technology and science that enables machines to simulate and perform 
human intelligence. It combines knowledge from various disciplines, including computer science, data 
analysis, image recognition, mathematics, and psychology, with the goal of developing systems capable of 
performing tasks similar to human intelligence [1]. In AI image recognition technology, AI object 
detection techniques can identify the location and size of specified objects within an image, assisting in 
monitoring whether an object appears, its location, size, movement direction, and speed. This can be 
applied to real-time image recognition needs across various fields. Among them, pedestrian detection has 
become one of the most important research directions in the field of computer vision and a key topic in 
deep learning. The core technology relies on intelligent video surveillance, traffic statistics in scenic areas, 

and other fields. Its accuracy is of great significance for the development of traffic safety. Although current 
detection algorithms have made significant progress in terms of accuracy and speed, pedestrian trajectory 
detection technology still faces many challenges. For example, when multiple pedestrians appear in the 
same scene, two or more pedestrians may obstruct each other, making accurate detection challenging. 
These uncertainties make the research on pedestrian detection technology exceptionally challenging [2]. 
To fully address the uncertainty in trajectory information discrimination within the discriminator and 
improve prediction accuracy, this paper proposes a trajectory prediction method based on the Kalman 
filter. The Kalman filter is an efficient recursive filter (self-regressive filter) that can estimate the state of a 
dynamic system from a series of incomplete and noisy measurements [3]. The Kalman filter generates 
estimates of unknown variables by considering the joint distribution of measurements at different times, 
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based on their values at each time [4]. As a result, it provides more accurate estimates than methods that 
rely solely on a single measurement [5]. The Kalman filter is a commonly used filter in target state 
estimation algorithms. By establishing a target state model and estimating the target's velocity and 
acceleration, it can predict the future position of the target's centroid. This helps to narrow down the 
search area and overcome the tracking loss problem caused by partial occlusion of the target. 
 
MATERIAL AND METHODS 
The Kalman filter is a set of mathematical equations that provides an efficient computation of the least 
squares method [6]. The Kalman filter performs linear least-squares estimation on the state sequence of a 
dynamic system, using measurement values to correct the estimated states and provide reliable state 
estimates. It describes a dynamic system through state equations and observation equations. The state 
equation is shown in Equation 1.The observation equation is shown in Equation 2. 

x(k+1)=A(k+1,k)x(k)+w(k)                                 (Eq. 1) 
z(k)=H(k)x(k)+v(k)                                                 (Eq. 2) 
In the state equation:x(k) is the state vector.z(k) is the observation vector. A(k+1,k) is the state transition 
matrix. H(k) is the observation matrix. w(k) is the system noise vector.v(k) is the observation noise vector. 
It is typically assumed to be a mutually uncorrelated zero-mean Gaussian white noise vector. 
Using Kalman filter theory, the following prediction equations are shown in Equation 3, and the update 
equations are shown in Equations 4, 5, and 6. Equation 3 consists of two parts: the state prediction 
Equation 3a and the error covariance matrix prediction Equation 3b. State prediction equation: Equation 
3a is the prediction at time step k based on all available observation data Z(1), Z(2), … , Z(k) the optimal 
state estimate obtained. A(k+1,k)is the state transition matrix [7], which describes the system dynamics 
from time step k to time step k+1. 𝑥′(𝑘 + 1|𝑘) is the predicted state estimate at time step k+1.This part 
represents using the optimal state estimate 𝑥′(𝑘 + 1|𝑘)  from the previous time step and the system's 
transition matrix A(k+1,k)to predict the state at the next time step.Error covariance matrix prediction 
equation:In Equation 3b, P(𝑘 + 1|𝑘)is the error covariance matrix at time step k, which describes the 
certainty or uncertainty of the state estimate. A(k+1,k)is the state transition matrix, which projects the 
error covariance matrix from time step k to time step k+1. P(𝑘 + 1|𝑘) is the predicted error covariance 
matrix at time step k+1. Q(k) is the process noise covariance matrix, which represents the random 
disturbances or uncertainties that may arise in the model process. This part shows how to predict the 
error covariance matrix at the next time step based on the error covariance matrix from the previous time 
step P(𝑘 + 1|𝑘) and the system's dynamic transition matrix A(k+1,k). At the same time, the process noise 
Q(k) is also included to account for the uncertainty in the model process. 
The state prediction in Equation 3 uses the optimal state estimate from the previous time step 𝑥′(𝑘 + 1|𝑘) 
and the state transition matrix A(k+1,k) to predict the state at the next time step 𝑥′(𝑘 + 1|𝑘). The error 

covariance matrix prediction is based on the error covariance matrix from the previous time step P(𝑘 + 
1|𝑘) and the state transition matrix A(k+1,k) to predict the error covariance matrix at the next time step 
P(𝑘 + 1|𝑘), while considering the process noise matrix Q(k). 
Equation 4 calculates the Kalman gain matrix K(k+1) [8]. Where P(k+1|k) is the predicted error 
covariance matrix.H(k+1) is the observation matrix. It describes how to map from the system state to the 
observation values.R(K+1) is the observation noise covariance matrix. 𝐻𝑇(𝑘 + 1)is the transpose of the 
observation matrix. Equation 5 updates the state estimate 𝑥′(𝑘 + 1|𝑘+1), This is done based on the 
predicted state 𝑥′(𝑘 + 1|𝑘) and the actual observation value Z(k+1).The differenceZ(k+1)-H(k+1) 𝑥′(𝑘 + 
1|𝑘) is the prediction error, representing the gap between the predicted value and the actual observation. 
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The Kalman gain K(k+1) is used to incorporate this error into the new estimate. Equation 6 updates the 
error covariance matrix P(k+1|k+1), which represents the uncertainty of the new estimate. I is the identity 
matrix, K(k+1) is the Kalman gain, H(k+1) is observation matrix. The updated covariance matrix indicates 
that, after taking the observation data into account, the uncertainty in the system's estimation is reduced. 
The conclusion is that Equation 4 calculates the Kalman gain, which helps balance the influence of 
predictions and actual observations. Equation 5 is used to update the state estimate by combining the 
prediction error with the Kalman gain. Equation 6 is used to update the error covariance matrix, 
representing the accuracy of the state estimate after the update. By utilizing the prediction equations and 
update equations of the Kalman filter, the recursive method can continuously predict the position of a 
moving target in the next frame [9]. 
𝑥′{𝑘 + 1|𝑘} = 𝐴(𝑘 + 1, 𝑘)𝑥′(𝑘|𝑘)                                                                                             (Eq. 3a) 

𝑃{𝑘 + 1|𝑘} = 𝐴(𝑘 + 1, 𝑘)𝑃(𝑘|𝑘)𝐴𝑇(𝑘 + 1, 𝑘)𝑄(𝑘)                                                                  (Eq. 3b) 

𝐾(𝑘 + 1) = 𝑃(𝑘 + 1|𝑘)𝐻𝑇(𝑘 + 1)[𝐻𝑇(𝑘 + 1)𝑃(𝑘 + 1|𝑘)𝐻𝑇(𝑘 + 1) + 𝑅(𝐾 + 1)]−1           (Eq. 4) 
𝑥′(𝑘 + 1|𝑘 + 1) = 𝑥′(𝑘 + 1|𝑘)𝑥′(𝑘 + 1|𝑘)𝐾(𝑘 + 1)[𝑍(𝑘 + 1) − 𝐻(𝑘 + 1)𝑥′(𝑘 + 1|𝑘)      (Eq. 5) 
𝑃(𝑘 + 1|𝑘 + 1) = [𝐼 − 𝐾(𝑘 + 1)𝐻(𝑘 + 1)]𝑃(𝐾 + 1|𝑘)                                                           (Eq. 6) 
The motion target tracking method based on Kalman filtering. 
Kalman filtering is a powerful recursive estimation technique widely used in motion target tracking. This 
method combines dynamic system models and measurement data to estimate the state of the system. For 
example, by utilizing the target's position information, accurate tracking of the moving target can be 
achieved. Through continuous iteration of the prediction and update cycle, the dynamic model's 
predictions are integrated with measurement data, enabling accurate tracking of the moving target amidst 
noise to obtain optimal estimates [10]. Figure 1 illustrates the algorithmic model flowchart of the motion 
target tracking using the Kalman filter, while Figure 2 shows the detection results of motion target tracking 
through the Kalman filter.Calculate the feature information of the moving target. To track the moving 
target, an enclosing rectangle is first used to mark the target, followed by calculating the centroid of the 
moving target as well as the width and height of the enclosing rectangle.Initialize the Kalman filter using 
the obtained feature information. Since the speed of the target and the rate of change of the enclosing 
rectangle are unknown during initialization, these quantities are initialized to 0.Use the Kalman filter to 
predict the corresponding target region in the next frame. When the next frame arrives, perform target 
matching within the predicted region.If a match is found, update the Kalman filter and record the target 
information in the current frame. 
The algorithmic model flowchart for motion target tracking based on the Kalman filter is shown in Figure 
1. The main steps will be discussed in detail below. 
Motion target detection results. 
Motion target feature extraction. 

Establish inter-frame relationship matrix. 
Detect the appearance of new targets, target matching, target occlusion, target separation, and target 
disappearance. 
Handle various situations corresponding to step (4). 
Confirm whether the target is matched 
If not matched, record the Kalman prediction results from the previous frame and re-extract the motion 
target features. 
If matched, update the target feature information. 
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Fig. 1. The algorithmic model flowchart for motion target tracking using the Kalman filter. 

 

Fig. 2. Detection results of motion target tracking using the Kalman filter. 
Kalman filter performs prediction and estimation 
State estimation is a crucial component of the Kalman filter. Generally, the estimation problem involves 

quantitatively inferring random variables based on observation data. Specifically, state estimation of 
dynamic behavior enables real-time operational status estimation and prediction functions [11]. Based on 
the above research on Kalman filter prediction and estimation, an experiment targeting pedestrian 
prediction is conducted. Assuming a pedestrian moves with an acceleration of 20 m/s² along the x-axis 
and 10 m/s² along the y-axis, observations are made for 10 seconds and 20 seconds respectively, and 
predictions and estimations are performed using the Kalman filter. 
The following conditions can be assumed: 

The pedestrian's acceleration along the x-axis is 𝑎𝑥 = 20m/𝑠2. 
The pedestrian's acceleration along the y-axis is 𝑎𝑦 = 10m/𝑠2. 



567 
 

Simulation time: 20 seconds. 
Assume the initial position and velocity are 0, and the pedestrian maintains constant acceleration during 
this period. 
Experimental Steps: 
Motion simulation: Based on the initialization and acceleration, the position and velocity at each second 
can be calculated using motion equations. It is assumed that at t=0, the pedestrian's initial position is 
(𝑥0, 𝑦0) = (0,0) ,the velocity is (𝑣𝑥𝑜, 𝑣𝑦0) = (0,0) , and the acceleration is constant. The motion 

equations are as shown in Equation 7 and Equation 8. In these motion equations, t represents time, and 
𝑎𝑥 and 𝑎𝑦 are the accelerations along the x-axis and y-axis, respectively. 

𝑥(𝑡) = 𝑥0 + 𝑣𝑥0⋅ ⋅ 𝑡 +
1

2
𝑎𝑥 ⋅ 𝑡2   (Eq. 7) 

𝑦(𝑡) = 𝑦0 + 𝑣𝑦0⋅ ⋅ 𝑡 +
1

2
𝑎𝑦 ⋅ 𝑡2   (Eq. 8) 

Adding Noise: Actual observations are affected by measurement noise, so random noise needs to be added 
to the simulated data at each time point to model this type of error. Typically, the noise is assumed to be 
Gaussian noise. 
Using Kalman filtering for prediction and correction, a Kalman Filter is established to filter out the noise 
and estimate the pedestrian's true position and velocity. 
The Kalman filter prediction and estimation are based on the following two steps: 
Prediction Step: Predict the state at the next time point based on the dynamic model. 
Update Step: Adjust the prediction based on the observed values. 
The Trajectory Prediction Process of the Kalman Filter 
The Kalman filter is a recursive method for estimating the next state of a system, commonly used in 
dynamic systems with time-dependent parameters, such as motion equations. The trajectory prediction 
within this filter is analogous to the motion equations used for estimation and prediction in frame 
sequences [12]. The experimental process outlined below covers the core steps of the Kalman filter, 
including state initialization, prediction steps, measurement update steps, and dynamic data fusion during 
the iterative process. The flowchart of the pedestrian prediction algorithm model based on the Kalman 
filter is shown in Figure 3. The main steps will be discussed in detail below. 
Initialization: 
Set the initial state vector 𝑥0(position and velocity). 
Set the initial covariance matrix 𝑃0,representing the uncertainty of the initial estimate. 

Set the state transition matrix F, measurement matrix H, and measurement noise matrix R. 
Prediction step: 

Predict the current state based on the state transition matrix F as shown in Equation 9. Update the 
covariance matrix (assuming the presence of a process noise matrix) as shown in Equation 10. 
𝑥 = 𝐹 ⋅ 𝑥𝑝𝑟𝑒𝑣                       (Eq. 9) 

𝑃 = 𝐹 ⋅ 𝑃𝑃𝑟𝑒𝜈 ⋅ 𝐹𝑇 + 𝑄        (Eq. 10) 
Update Step: 
The calculation of innovation (measurement error) is as shown in Equation 11, the calculation of the 
innovation covariance is as shown in Equation 12, the calculation of the Kalman gain is as shown in 
Equation 13, the update of the estimated value is as shown in Equation 14, and the update of the 
covariance is as shown in Equation 15. 
𝑦 = 𝑧 − 𝐻 ⋅ 𝑥                    (Eq. 11) 
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𝑆 = 𝐻 ⋅ 𝑃 ⋅ 𝐻𝑇 + 𝑅           (Eq. 12) 
𝐾 = 𝑃 ⋅ 𝐻𝑇 ⋅ 𝑆−1               (Eq. 13) 
𝑥 = 𝑥 + 𝐾 ⋅ 𝑦                    (Eq. 14) 
𝑃 = (𝐼 − 𝑘 ⋅ 𝐻) ⋅ 𝑃           (Eq. 15) 
Repeat Steps: Repeat the prediction and update steps until all measurement data is processed. 
Update the predicted trajectory data after processing all measurement data. 

 
Fig. 3. Flowchart of the pedestrian prediction algorithm model using the Kalman filter. 
Kalman filter prediction implementation 
This study combines the linear dynamic system model with the Gaussian noise assumption to predict the 
target state using a Kalman filter [13-14]. The main objectives are: 
To track the target's position and velocity in a dynamic system. 
To integrate model predictions with measurement data for a smoothed estimation of the target trajectory. 
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To provide accurate predictions of the target's future state, applicable to trajectory tracking or control 
decision-making. 
This experiment will cover the core steps of the Kalman filter, including state initialization, prediction 
steps, measurement update steps, and dynamic data fusion during the iterative process. Additionally, it 
will simulate a typical motion target tracking problem to demonstrate the predictive capability of the 
Kalman filter in a noisy environment. This experiment initializes the observed values, assuming they are 
the coordinates (𝑥, 𝑦) and the horizontal and vertical velocities (𝑣𝑥, 𝑣𝑦) of the object 𝑆𝑡𝑎𝑡ⅇ(𝑥), along 

with the time interval (ⅆ𝑡)。 

Simulating the real motion trajectory: The pedestrian's position and velocity are calculated using the 
quadratic motion equation [15], and noise is added at each time step to simulate actual measurement 
data. 

The following is the Kalman process noise covariance matrix 𝑄, as shown in Equation 16. 

𝑄 = 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦([ [1, 0, 0, 0],  
                            [0, 1, 0, 0], 
                            [0, 0, 1, 0], 
                            [0, 0, 0, 1] ])                                     (Eq. 16) 
The following is the Kalman measurement noise covariance matrix 𝑅, as shown in Equation 17. 

𝑅 = 𝑛𝑝.𝑎𝑟𝑟𝑎𝑦([ [1, 0], 
                 [0, 1] ])               (Eq. 17) 
The execution steps of the Kalman filter include state prediction and measurement update (correction). 
The Kalman filter is established to filter out noise and estimate the pedestrian's true position. This process 
involves making predictions based on the motion model and updating the estimation using measurement 
data. 
Kalman prediction steps 
Kalman predicted state. 
Kalman predicted covariance. 
Assume the observed position includes measurement noise. 
Create Kalman Gain. 
Kalman Update Steps. 
6.1) Kalman Updated State. 
6.2) Kalman Updated Covariance. 
 
RESULTS AND DISCUSSION 
The results of this experiment involve a trajectory prediction experiment for pedestrian movement based 

on the Kalman filter. When the pedestrian's acceleration is 20 m/𝑠2,along the x-axis and 10 m/𝑠2along 
the y-axis, observations were conducted for 10 seconds and 20 seconds, respectively. Trajectory predictions 
were performed using the Kalman filter, and the experimental results were compared with the true 
trajectory of a pedestrian moving with constant acceleration.Figure 4(a) shows the trajectory prediction 
results using the Kalman filter. The red line represents the observed data with noise over 10 seconds. The 
blue dotted line represents the trajectory estimated by the Kalman filter within 10 seconds, which closely 
approximates the true trajectory. 
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Figure 4(b) shows the trajectory prediction results using the Kalman filter. The red line represents the 
observed data with noise over 20 seconds. The blue dotted line represents the trajectory estimated by the 
Kalman filter within 20 seconds. 
Figure 4(c) shows the light blue line representing the simulated true trajectory of a pedestrian moving 
with constant acceleration. 
Table 1 presents a comparison between the x-axis and y-axis data of the trajectory prediction results within 
10 seconds using the Kalman filter and the x-axis and y-axis data of the true trajectory. The unit is in 
meter. 
Table 2 shows the error values of the x-axis and y-axis data between the trajectory prediction results using 
the Kalman filter and the true trajectory. 

    
(a)                                                                                       (b) 

 

(c) 
Fig. 4. Trajectory prediction results using the Kalman filter: (a) within 10 seconds, (b) within 20 seconds, 
(c) true trajectory. 
Table 1. Comparison table of the x- and y-axis. 

Prediction position (x, y) True Trajectory (x, y) 

(1000.31, 499.62) (1000.00, 500.00) 

(4000.98, 1999.25) (4000.00, 2000.00) 

(9003.53, 4497.91) (9000.00, 4500.00) 

(16004.40, 7997.67) (16000.00, 8000.00) 

(25005.20, 12497.60) (25000.00, 12500.00) 

(36005.40, 17997.10) (36000.00, 18000.00) 

(49005.32, 24494.70) (49000.00, 24500.00) 

(64005.40, 31993.61) (64000.00, 32000.00) 

(81005.60, 40493.10) (81000.00, 40500.00) 

(100004.00, 49991.89) (100000.00, 50000.00) 

Table 2. Error values of the x- and y-axis. 
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x-axis y-axis 

0.03% -0.08% 

0.02% -0.04% 

0.04% -0.05% 

0.03% -0.03% 

0.02% -0.02% 

0.01% -0.02% 

0.01% -0.02% 

0.01% -0.02% 

0.01% -0.02% 

0.00% -0.02% 

CONCLUSIONS 
This study utilizes the core concept of the Kalman filter to continuously improve the accuracy of state 
estimation through system state prediction and corrections based on new observational data. The 
prediction step relies on the dynamic model of the system, while the update step combines new 
observational data with the predictions to produce an optimal estimate through a weighted average. The 
Kalman filter assumes that the system dynamics and observation models are linear, and all noise is 
Gaussian white noise, which forms its theoretical foundation. The strength of the Kalman filter lies in its 
ability to provide relatively accurate state estimations in real-time within dynamic environments by 
continuously updating and correcting, as well as effectively handling noise from various sources. In this 
study, a practical experiment was conducted using the Kalman filter to predict pedestrian trajectories. The 
accuracy of the predicted trajectories was observed over the period from 10 to 20 seconds, comparing 
noisy observations with the Kalman filter's predictions. The conclusions are as follows: 
The true trajectory data of a pedestrian was calculated by simulating a scenario where the pedestrian moves 
with constant acceleration using the equations of motion.Based on the noisy observation data over 10 
seconds and 20 seconds, the Kalman filter continuously corrected its predictions. Observations revealed 
that the accuracy of the pedestrian trajectory state estimation was effectively improved.The study results 
involved calculating the error values between the Kalman filter's predicted trajectory data (x-axis and y-
axis) and the true trajectory data (x-axis and y-axis). Statistical analysis revealed that the error values for 
the x-axis data ranged under 0.1 %, while the error values for the y-axis data ranged under 0.1 % in 
absolute value. 
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