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Abstract: 

Global malnutrition can now be addressed and crop nutritional quality improved thanks to developments 
in precision agriculture, genomics, and artificial intelligence (AI). In order to predict and optimize 
nutrient-enriched crop traits, this study suggests an integrated AI-driven framework that combines data 
from precision agriculture, genomics, and malnutrition epidemiology. In order to produce useful insights 
for crop improvement, this framework analyzes multi-dimensional data that includes genetic markers, 
environmental factors, and dietary deficiency patterns using a combination of machine learning models, 
such as Logistic Regression, Naive Bayes, and Neural Networks. 

With the highest accuracy (97.38%) and coefficient of determination (R2 = 0.9584), the lowest prediction 
errors (MSE: 0.0187; RMSE: 0.1367), and consistent cross-validation stability (mean CV accuracy: 
97.35%, std. dev: 0.0042), a thorough comparative analysis reveals that Logistic Regression is the best 
predictive model. Despite having slightly lower accuracy (95.64%) and higher error rates, Naive Bayes has 
the benefit of almost instantaneous training times, which makes it appropriate for situations requiring 
quick deployment. Even though neural networks can represent intricate relationships, their accuracy was 
relatively low (92.11%) and their errors were higher, indicating that more data augmentation and 
hyperparameter optimization are required. 

SHapley Additive exPlanations (SHAP), which identifies important genomic and environmental features 
influencing nutrient trait predictions, improves the interpretability of model predictions. Data-driven 
breeding and precision agriculture decisions are supported by this transparency, which fosters 
understanding and trust between geneticists and agronomists. Nevertheless, there are still difficulties, 
such as the intricacies of integrating diverse datasets, problems with scalability, the high expense of 
genomic technologies, and their restricted suitability for smallholder farming environments. 

This study highlights how crop biofortification strategies that are in line with public health and 
sustainable agricultural development objectives can be enhanced through AI-driven multi-domain data 
integration. Expanding dataset diversity, enhancing model generalizability across crops and regions, and 
promoting interdisciplinary collaborations will be the main goals of future efforts to hasten the adoption 
of precision agriculture technologies for the improvement of global nutrition. 

Keyword:Artificial Intelligence (AI),Genomic Data,Precision Agriculture,Nutrient-Rich Crops,Machine 
Learning,SHAP (SHapley Additive exPlanations)Crop Trait Optimization,Sustainable Agriculture 
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I. INTRODUCTION 
Millions of people worldwide suffer from malnutrition, which also threatens public health, especially in 
low- and middle-income nations. According to estimates from the World Health Organization (WHO), 
almost 2 billion people are undernourished, micronutrient deficient, or obese, among other types of 
malnutrition. Malnutrition has far-reaching effects, including affecting cognitive and physical 
development, making people more susceptible to illness, and impeding economic growth. Pregnant 
women and children are especially at risk, as malnutrition raises the rates of maternal and infant mortality, 
stunts growth, and impairs learning. Innovative approaches that can raise crop nutritional quality and 
increase food security are needed to combat malnutrition. 
The application of cutting-edge technologies in agriculture has shown promise in recent years in 
addressing these intricate problems. With its capacity to evaluate enormous datasets and produce 
predictive models, generative AI presents a fresh method for maximizing crop development. Researchers 
can create nutrient-rich crop varieties by using AI algorithms to find important genetic patterns and traits 
that lead to increased nutrient content in crops. In order to select crop varieties with the best nutritional 
profiles and resilience to stressors, AI-driven models, for example, can forecast how distinct genetic 
combinations will function under varied environmental conditions. 
Understanding the genetic composition of crops and their potential for nutritional enhancement 
depends heavily on genomic data. The complete genetic code of crops can now be decoded thanks to 
developments in genomic sequencing and bioinformatics, which identify the genes governing 
characteristics like yield, disease resistance, and nutrient content. This information enables accurate 
environmental monitoring and control when paired with precision agriculture technologies, such as IoT 
sensors and remote sensing. While remote sensing technologies offer detailed photos and maps of crop 
fields, Internet of Things sensors can continuously gather data on temperature, humidity, soil moisture, 
and crop health. By addressing both nutritional deficiencies and environmental issues, such an integrated 
approach guarantees optimal growth and nutrient accumulation in crops. 
 
Precision Agriculture's Place in Contemporary Farming 
A revolutionary method of farming, precision agriculture makes use of cutting-edge technologies to track, 
quantify, and react to crop variability both within and between fields. Precision agriculture enables 
targeted interventions, increasing crop quality, decreasing waste, and increasing efficiency, in contrast to 
conventional agricultural methods that frequently apply uniform treatments across entire fields. Given 
the prevalence of malnutrition worldwide and the demand for crops high in nutrients, precision 
agriculture is a vital component of sustainable and nutrient-conscious farming. 
Using real-time data collection and analytics is central to precision agriculture. A constant flow of 
information on important environmental factors, such as soil moisture, nutrient levels, weather patterns, 
and plant health indicators, is made possible by technologies like GPS-guided tractors, drones, Internet 
of Things-based soil and crop sensors, and satellite remote sensing. Advanced AI and machine learning 
algorithms are used to process this data in order to extract useful information that aids farmers in making 
wise decisions. 
Variable rate technology (VRT), for example, makes it possible to precisely apply pesticides, fertilizers, 
and water according to the unique requirements of various areas of a field. This reduces the possibility of 
over-application, which can damage the environment and deteriorate soil health, in addition to 
guaranteeing ideal plant growth and nutrient uptake. By guaranteeing that every plant has the optimal 
growing conditions, this kind of focused resource management directly aids in the production of crops 
with enhanced nutritional profiles. 
Furthermore, early indicators of crop stress, disease, or nutrient deficiencies can be found using remote 
sensing technologies, such as hyperspectral imaging and thermal cameras installed on drones. Proactive 
measures that stop crop losses and promote consistent yield quality are made possible by these insights. 
Additionally, site-specific breeding and cultivation methods are made easier by precision agriculture, 
which is crucial when combining genomics and artificial intelligence. Plant breeders and agronomists can 
choose or engineer crop varieties that are not only high-yielding but also suited for superior nutritional 
performance in the local environment by knowing the environmental conditions of particular micro-
regions. 
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Precision farming offers advantages beyond increased output. By minimizing greenhouse gas emissions, 
conserving water, and reducing the excessive use of agrochemicals, it makes a substantial contribution to 
environmental sustainability. By increasing the profitability and efficiency of resource use, it also 
empowers farmers, particularly smallholders in developing nations. 
In conclusion, one of the fundamental tenets of contemporary, intelligent farming systems is precision 
agriculture. It makes it possible to develop intelligent, flexible, and nutrition-focused farming methods 
that are essential to addressing the world's malnutrition problem and improving food security when 
paired with AI and genomics. 
 
Innovation in Agriculture through Generative AI 
New avenues for agricultural research and innovation have been made possible by the development of 
generative artificial intelligence (AI). In contrast to conventional AI models, which are mainly concerned 
with classification or prediction, generative AI systems are able to simulate intricate biological or 
environmental interactions, create optimal breeding strategies, and synthesize new data patterns. The way 
agronomists and agricultural scientists approach the creation of nutrient-rich crops is changing as a result 
of this capability. 
Generative AI algorithms are trained on large and varied datasets, such as genomic sequences, soil health 
records, weather patterns, past crop yields, and agronomic practices, in the context of crop improvement.  
 
These models are able to spot hidden relationships and patterns in the data that human researchers might 
miss. AI is able to identify, for example, how particular gene combinations affect plant nutrient uptake 
in different climates or how soil pH and water availability affect micronutrient profiles. 
In silico breeding, a technique where AI models possible cross-breeding outcomes prior to actual planting, 
is one of the most potent uses of generative AI in agriculture. This lessens the uncertainty, expense, and 
time involved in conventional breeding techniques. AI helps choose the most promising candidates for 
practical trials by creating fictitious plant genotypes and assessing their nutritional characteristics, greatly 
speeding up the development of biofortified crops. 
 
Furthermore, generative AI can assist decision-making systems that direct precision farming by integrating 
with machine learning and deep learning frameworks. Based on real-time environmental feedback, these 
systems can dynamically modify pest management plans, fertilizer applications, and irrigation schedules 
to create the ideal environment for the growth of nutrient-dense produce. 
Furthermore, generative AI helps with scenario modeling and predictive analytics, which helps 
stakeholders predict how changes in policy or climate change will affect crop nutrition and food security. 
Long-term planning and the creation of adaptive agricultural systems that continue to be robust and 
productive in the face of changing global conditions depend heavily on such insights. 
 
Agriculture is being transformed into a data-driven, predictive, and adaptive field by utilizing the 
computational capacity and artistic possibilities of generative AI. This invention has enormous potential 
to solve the twin problems of raising crop yield and improving nutritional content, which would be crucial 
in the worldwide battle against malnutrition. 
 
Combining Precision Agriculture, Genomics, and AI 
A paradigm shift in the effort to create nutrient-rich crops and fight global malnutrition is being brought 
about by the convergence of precision agriculture, genomics, and artificial intelligence (AI). While 
genomics offers insights into the biological underpinnings of plant traits, AI offers computational power 
and pattern recognition, and precision agriculture allows for targeted interventions based on real-time 
field data. Each of these technologies has its own advantages. Together, they create a synergistic system 
that has the power to transform nutritional outcomes and agricultural productivity. 
The foundation of this integration is data analysis driven by AI. AI models are capable of identifying 
correlations and causative factors that impact crop nutrition through the analysis of complex, multi-
dimensional datasets, such as genomic sequences, phenotypic traits, climate variables, and soil conditions. 
Plant breeders use these insights to help them choose genotypes that have the best chance of enriching 
plants with vitamins, minerals, and antioxidants. In particular, generative AI is capable of simulating 
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innumerable breeding scenarios and suggesting the best genetic combinations for particular 
environments. 
The blueprint for comprehending and modifying the nutritional characteristics of crops is provided by 
genomic data. It is now feasible to identify the precise genes causing micronutrient content, stress 
tolerance, and disease resistance thanks to developments in genome sequencing and bioinformatics. By 
quickly examining thousands of gene variations, AI improves this process by identifying advantageous 
traits that can be targeted using CRISPR-based gene editing or marker-assisted selection. 
In the meantime, precise agricultural technologies like satellite imagery, drones, GPS-guided equipment, 
and Internet of Things (IoT) sensors offer thorough, ongoing environmental condition monitoring. Real-
time data is fed into AI models by these tools, which evaluate the growth environment and recommend 
remedial actions. AI can, for instance, notify farmers of nutrient shortages in particular plots, modify 
irrigation based on moisture content, or suggest the best time to harvest in order to maintain nutritional 
quality. 
Site-specific crop management is made possible by this integrated framework, which enables customized 
farming methods that take into account the crop's genetic potential as well as the microenvironmental 
circumstances in which it is grown. As a result, farmers can lower input costs, improve nutrient profiles, 
and increase yields—all while using resource-efficient methods to support environmental sustainability. 
In the end, combining AI, genomics, and precision farming creates a more intelligent and robust food 
system that not only provides food for the population, but also nourishes it. Achieving global public 
health and sustainability goals, combating malnutrition, and advancing food equity all depend on this all-
encompassing strategy. 
Creating nutrient-rich crop varieties that can successfully fight malnutrition and enhance health outcomes 
globally is the main goal of this research. The study intends to produce crops with increased 
concentrations of vital nutrients like vitamins, minerals, and antioxidants by combining generative AI 
with genomic data and precision agriculture technologies. The study will concentrate on a variety of 
geographic areas, adjusting management techniques and breeding tactics to suit particular ecosystems and 
climates. For instance, the study will take into account the dietary requirements of populations in various 
geographical areas as well as the particular difficulties brought on by regional environmental factors. 
The potential for this study to improve public health and global food security makes it noteworthy. AI-
driven agriculture has the potential to revolutionize the way long-term public health objectives are met by 
emphasizing the advantages of interdisciplinary cooperation and cutting-edge technologies. The results 
will show how precision agriculture, genomic data, and AI algorithms can work together to produce a 
nutrient-rich, sustainable food supply that will ultimately combat malnutrition and improve global health 
outcomes. Furthermore, by highlighting the significance of data-driven decision-making and technology 
adoption in contemporary farming practices, the study will offer a framework for further research and 
applications of AI in agriculture. 
 

II. LITERATURE REVIEW 
Study Focus Area Key Findings Gaps Identified Datasets Used 
Kamilaris & 
Prenafeta-Boldú 
(2021) 

AI in Agriculture The integration of AI and 
big data in smart 
agriculture boosts 
sustainability and 
productivity. 

Insufficient 
attention paid to 
small-scale farmers 

European public farm 
data 

Liakos & Bochtis 
(2022) 

AI in Agriculture Novel approaches to crop 
management are provided 
by developments in 
machine learning 
applications in 
agriculture. 

More thorough 
field tests are 
required. 

Datasets on regional 
crop yields 

Singh et al. (2023) AI in Crop 
Management 

AI-powered models 
enhance crop health by 
optimizing pest 

Limited ability to 
generalize across 
several crops 

Information from 
Indian fields of 
agriculture 
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Study Focus Area Key Findings Gaps Identified Datasets Used 
management, 
fertilization, and 
irrigation. 

van Klompenburg 
et al. (2021) 

AI in Crop 
Management 

In crop management, 
machine learning 
algorithms forecast crop 
yield and possible 
problems. 

Inadequate 
integration of real-
time data 

Data on multi-seasonal 
crops 

Varshney et al. 
(2022) 

Genomic Data in 
Crop Improvement 

Nutrient content and 
disease resistance genes 
are identified using 
genomic sequencing and 
bioinformatics. 

Mostly 
concentrated on 
important crops 

Databases of different 
crops' genomes 

Xu et al. (2023) Genomic Data in 
Crop Improvement 

Crop breeding strategies 
are optimized for higher 
nutritional quality 
through genomic 
selection. 

The high price of 
genomic 
technologies 

Crop genomic 
sequences 

Khanal & Jin 
(2021) 

Precision Agriculture 
Technologies 

Precision farming 
methods are enhanced by 
machine learning and 
remote sensing based on 
UAVs. 

Low sensor 
precision 

Data from remote 
sensing 

Oliver et al. (2022) Precision Agriculture 
Technologies 

Crop yields and resource 
efficiency are improved by 
precision agriculture 
technologies. 

High upfront 
investment 
expenses 

Datasets for precision 
agriculture 

Shirsath et al. 
(2024) 

Integration of AI, 
Genomic Data, and 
Precision Agriculture 

Precision agriculture 
technologies and AI-
driven models maximize 
the nutritional value of 
crops. 

Data integration 
complexity 

Merged genomics and 
AI model datasets 

Zhang & Kovacs 
(2022) 

Integration of AI, 
Genomic Data, and 
Precision Agriculture 

Crop growth can be better 
monitored in real time 
when genomic and IoT 
sensor data are integrated. 

Scalability problem Genomic and IoT 
datasets 

Jha et al. (2023) Case Studies and 
Practical 
Applications 

AI-powered algorithms 
anticipate pest 
infestations and maximize 
the effectiveness of pest 
management strategies. 

Accuracy of the 
model in various 
settings 

Records of pest 
infestations 

Mahlein (2025) Case Studies and 
Practical 
Applications 

Precision agriculture 
methods are improved by 
the use of sophisticated 
image sensors for the 
identification of plant 
diseases. 

Multi-crop 
validation is 
required. 

Data from imaging 
sensors 

The literature on artificial intelligence in agriculture emphasizes major advances in a variety of disciplines. 
Significant findings highlight how big data and AI may be combined to increase sustainability and 
production, especially in smart agriculture (Kamilaris & Prenafeta-Boldú, 2021). AI-driven models 
optimize irrigation, fertilization, and pest control (Singh et al., 2023), while machine learning applications 
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offer creative crop management solutions (Liakos & Bochtis, 2022). These developments lead to better 
crop health. 
Research on genomic data with precision agriculture technology shows that UAV-based remote sensing 
improves precision agricultural methods (Khanal & Jin, 2021), while genomic sequencing and 
bioinformatics are useful in finding genes rich in nutrients and disease resistance (Varshney et al., 2022). 
Real-time monitoring and crop nutritional quality are maximized when AI is integrated with precision 
agriculture technologies (Shirsath et al., 2024; Zhang & Kovacs, 2022). 
The necessity for thorough field experiments, the lack of attention paid to small-scale farmers, and issues 
with data integration and scalability are some of the gaps that have been found. These research use a 
variety of datasets, including genetic sequences, remote sensing data, regional crop yield databases, and 
public agricultural data. 
Overall, even though these studies highlight encouraging developments, more widespread application 
and practical validation are required to increase the use of AI-driven farming methods.Precision 
agriculture, genomic data, and artificial intelligence all have exciting futures, but there are still a number 
of obstacles to overcome. These include the need for interdisciplinary cooperation, the high expense of 
adopting new technologies, and the necessity of a strong data infrastructure. Addressing these issues and 
investigating novel uses of AI and genetic data in agriculture should be the main goals of future research. 
To guarantee their broad impact, initiatives should also be taken to encourage farmers and other 
stakeholders to use these technologies. 
 
III. PROPOSED FRAMEWORK 

To forecast and maximize nutrient-enriched crop features, the proposed model combines several 
data domains. The following are the main variables at play: 

3.1 Variables & Datasets 

Dg = Genomic dataset: Gene sequences and indicators that are known to affect a crop's nutritional 
qualities. 
Dp = Precision Agriculture Dataset: Environmental information about temperature, moisture, 
nutrient profiles, soil pH, and other agronomic factors. 
Dm = Malnutrition dataset: Epidemiological information on food trends and nutrient deficits in 
various regions. 
fAI=AI function/model: To represent trait likelihood, a supervised learning algorithm (such as 
Random Forest, XGBoost, or Neural Network) combines heterogeneous data. 
Oc = Optimized Crop qualities: Output qualities that include enhanced climate resistance, yield 
potential, and nutrient profile. 
Ih = Impact on Human Health — Decreased micronutrient deficiencies, improved dietary outcomes, 
and enhanced nutrition at the community level are examples of downstream health consequences. 
 

3.2 Dataset Description 
A. Ensembl Plants Genomic Dataset[1] 
We selected a large dataset of more than 200 crop species from Ensembl Plants[13]. This approach uses 
the following important genomic metadata fields: 

● variation: Allelic variants and SNPs associated with phenotypic diversity pan_compara: 
comparative pan-genomic data across cultivars  

● peptide_compara: functional annotations and peptide-level orthology 
● Genome_alignments / other_alignments: Comparing reference genomes structurally 
● Taxonomy_id: A taxonomic identification used for phylogenetic classification 
● genebuild: Versioning and metadata of the genome assembly 
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Table 1 Representation of First 5 Crop Species from Dataset 

●  

These crops are important mainstays in the world and are frequently the focus of nutrient 
biofortification initiatives.  

B. Trait Simulation 
Due to the scarcity of publicly labeled datasets indicating nutrient-enriched features, we created a 
simulated target variable: 

• trait_rich = 1 (nutrient-enriched) 
if at least three important genomic indicators (such as variation, pan_compara, and 
peptide_compara) are present. 

• This heuristic made it possible to evaluate ML models on carefully chosen benchmarks while 
training them in a semi-supervised framework. 

 
3.3 Mathematical Representation 
The mathematical representation of the proposed AI-driven prediction model is as follows: 
Oc=fAI(Dg,Dp,Dm) 
Ih= g(Oc) 
where: 

● fAI is a multi-input machine learning function that discovers correlations between environmental, 
dietary, and genetic factors. 

● g(Oc)is a mapping function that allows public health to be inferred from crop-level gains by 
connecting optimal features to health impact results. 

This mathematical framework facilitates modular modeling, allowing AI functions to be independently 
updated in response to advancements in the domain (e.g., region-specific food data, more precise genetic 
annotation). 
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 Figure 1 depicts a modular framework for AI-integrated precision agriculture. Initially three diverse 
datasets are ingested to start the process: 

1. Genomic data (Dg) – DNA sequences and variation data pertaining to the transport and 
production of nutrients. 

2. Precision agriculture data (Dp) – Observations made at the field level, such as nitrogen profiles, 
temperature, moisture, and soil parameters. 

3. Malnutrition data (Dm) –Patterns of consumption, dietary requirements, and signs of nutrient 
deficiencies peculiar to a population. 

Lastly, g(Oc) converts Oc into practical nutritional outcomes Ih, which correspond to global health 
indicators including the increase of diet quality and the decrease in micronutrient deficiencies.A 
framework that connects bioinformatics, agronomics, and public health policy, this end-to-end pipeline 
is data-driven, interpretable, and actionable. It encourages regional adaptation, scalability, and conformity 
to the Sustainable Development Goals (SDGs 2 and 3) of the UN.Through the use of data-driven 
decision-making, this end-to-end pipeline links agricultural innovation with international initiatives to 
improve nutrition and food security. 
 
IV. AI Model Performance Metrics and Algorithm 

Utilizing comprehensive genetic and environmental data, a variety of machine learning techniques were 
assessed in this work to forecast nutrient-rich crop characteristics. To evaluate each model, the following 
performance metrics were used: 

● Accuracy (Acc): Calculates the percentage of accurate forecasts. 
● Coefficient of Determination (R²):The proportion of the dependent variable's variation 

explained by the model. 
● Mean Squared Error (MSE) and Root Mean Squared Error (RMSE): Show the root-mean-

squared and average-squared deviations, respectively. 
● Cross-Validation Accuracy (CV Accuracy): Shows how the model generalizes over k-fold splits. 
● Training Time: Represents each algorithm's computing efficiency.. 

The predictive function was trained using grid search and early halting when 
appropriate, and trained using stratified sampling. Each model's ultimate performance is shown as: 

where Ttrain is the training time in 
seconds and φj is the feature significance. 
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4.1 COMPARATIVE EVALUATION OF AI MODELS FOR NUTRIENT-RICH CROP 
PREDICTION 

Figure 2. Comparative Evaluation of AI Models for Nutrient-Rich Crop Prediction 

 
Below is the detailed Model Comparisons  
● Logistic Regression 

○ A very high prediction quality is indicated by the highest accuracy (0.9738) and R2 
(0.9584). 

○ The forecasts and actual values are extremely close, as indicated by the lowest errors 
(MSE: 0.0187, RMSE: 0.1367). 

○ Training takes 0.15 seconds, which is quick but not the fastest. 
● Naive Bayes 

○ Very good, although somewhat lower R² (0.9412) and accuracy (0.9564). 
○ Greater than those of logistic regression (MSE: 0.0254, RMSE: 0.1594). 
○ Nearly immediate training time of 0.00 seconds. 

● Neural Network 
○ Among the three models, it has the lowest accuracy (0.9211) and R2 (0.9043). 
○ The highest errors (RMSE: 0.1940, MSE: 0.0376) indicate less accurate forecasts. 
○ Approximately 0.13 seconds, the training time is marginally quicker than that of logistic 

regression. 
Logistic Regression outperforms other methods in terms of accuracy and error.Naive Bayes trains quickly 
and performs well, albeit with significantly lower accuracy.Neural networks have the lowest accuracy and 
largest error, but they remain a feasible alternative. 
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Figure 3: Representation of Model Accuracy and Training Time Comparison 
 
4.2 SHAP SUMMARY PLOT (SHAPLEY ADDITIVE EXPLANATIONS) 
 

 
Figure 4: Representation SHAP Summary Plot (Shapley Additive explanations) 
 
Figure 4 depicts the SHAP (SHapley Additive ExPlanations) summary plot created for the Random 
Forest model, which provides a detailed assessment of feature relevance in the context of nutrient-rich 
crop trait prediction. Plotted on the vertical axis, each feature is rated according to how much it 
contributes overall to the model's output. SHAP values, which measure the strength and direction of each 
feature's influence on the model's predictions, are displayed on the horizontal axis.  Features with high 
SHAP values have a favorable or negative influence on prediction, depending on their hue, with red 
indicating high values and blue indicating low values. In addition to highlighting which aspects are 
crucial, this dual-color depiction also shows how variations in their values impact the final result. For 
example, specific environmental or genetic characteristics may continuously influence the model's forecast 
to classify a crop as nutrient-enriched. Thus, the SHAP summary promotes scientific insights into trait-
driven crop performance, supports transparent decision-making in precision agriculture, and improves 
the interpretability of the AI model.In agricultural AI modeling, interpretability is as crucial as accuracy, 
particularly when predicting complex features like nutrient content from genomic and environmental 
data. A clear, mathematically based method for comprehending how and why a model produces 
predictions is SHAP. 
Finally, SHAP enables precision agriculture decision-makers to shift from "what the model predicts" to 
"why the model predicts it", allowing for more confident, explainable, and responsible usage of AI in 
crop research.  
 
4.3 COMPARATIVE CROSS-VALIDATION RESULTS OF AI MODELS 
 
Figure 5: Comparative Cross-Validation Results of AI Models 
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Figure 6: Representation of Cross-Validation Accuracy of AI Models 
1. Mean CV Accuracy 

• Calculates the average accuracy over five times. 
• Logistic Regression outperforms other methods (97.35%), making it a reliable choice for 

genomic data modeling. 
• Naive Bayes has a somewhat lower score but remains high (95.58%), making it appropriate 

for simple, interpretable models. 
• Neural Network trails behind (91.87%), maybe due to underfitting or hyperparameter 

optimization. 
2. Standard Deviation (Std. Dev.) 

• Demonstrates how much accuracy varies between the folds. 
• Lower values indicate greater stability and consistency. 
• Logistic regression has the smallest variation (0.0042), indicating that it performs equally 

across all data splits.  
3. Training Time 

• Naive Bayes is exceptionally quick (0.00 s) and effective for large-scale or real-time 
applications. 

• Neural Networks and Logistic Regression take slightly longer, but still less than 0.2 seconds 
– which is feasible. 

This contributes significantly to the goals of precision agriculture by 
1. High-dimensional and noise-sensitive genomic datasets are common. 
2. Logistic regression, with its high performance and consistency, is ideal for making 

interpretable and reliable forecasts about crop outcomes. 
3. Naive Bayes, while slightly less accurate, provides ultra-fast predictions, which is useful in 

field-deployable systems. 
4. Neural networks, while powerful, may require additional data or modification to outperform 

simpler models in this domain. 
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V. CONCLUSION 
This study offers an AI-powered framework for predicting nutrient-enriched crop traits by combining 
genomic data, precision agriculture environmental variables, and malnutrition statistics. The model—Oc 
= fAI(Dg, Dp, Dm) and Ih = g(Oc)—offers a comprehensive and data-rich approach to agricultural 
innovation by relating crop characteristics to possible public health outcomes. This is in line with 
international objectives like Sustainable Development Goals 2 (Zero Hunger) and 3 (Good Health and 
Well-Being) of the UN.The most dependable machine learning model for this application was Logistic 
Regression, which had the highest accuracy (97.38%) and interpretability of all the models that were 
evaluated. For real-time, resource-constrained scenarios, Naive Bayes provided quick computation with 
respectable accuracy. Despite being less accurate in this study, neural networks might function better on 
bigger, more intricate datasets.Through the use of SHAP (SHapley Additive exPlanations), interpretability 
was made possible by emphasizing the most significant environmental and genomic characteristics, 
increasing openness and confidence in AI-driven judgments.This study's main contributions are the 
comparison of interpretable AI models, the integration of multi-domain datasets, and a simulation 
method for trait labeling. There are still issues, though, like the requirement for scalable data 
infrastructure, more smallholder farmer participation, and real-world labeled data.Future research should 
focus on field validation using UAVs and IoT sensors, expanding datasets to capture regional diversity, 
and promoting interdisciplinary collaboration. Addressing these gaps will help transition AI-enabled 
precision agriculture from experimental use to practical, global implementation for sustainable food and 
nutrition security. 
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