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Abstract 
The rapid expansion of digital healthcare has created substantial growth in medical image data especially from CT 
and MRI systems thus requiring powerful solutions to manage storage and transmission while maintaining accurate 
diagnosis. The paper presents a new hybrid lossy-lossless compression method which maintains excellent image quality 
and efficient compression ratios suitable for medical facilities. The proposed method divides its process into two stages 
where wavelet-based compression with adaptive lossy mode removes unnecessary information while protecting vital 
image characteristics before CABAC completes lossless encoding of remaining data. Standard DICOM dataset 
evaluations confirm that the described framework implements better compression ratios and delivers higher peak signal 
to noise ratios with expedited transmission times than JPEG2000 and JPEG-LS standards. The experimental 
outcomes demonstrate that the proposed system is appropriate for contemporary medical imaging systems operating in 
bandwidth-restricted scenarios or real-time diagnostic requirements. 
Keywords: medical imaging, hybrid compression, PSNR, transmission efficiency, wavelet compression, CABAC. 
 
1. INTRODUCTION 
Medical imaging data is expanding exponentially thanks to CT and MRI and PET installations which 
require advanced and efficient data management solutions. Each imaging method produces high-
definition multidimensional datasets which healthcare facilities need to store and transmit while 
processing data at good speed and reliability. Clinical telemedicine applications together with cloud-based 
diagnostic operations must maintain rapid access to high-quality images because this requirement directly 
affects patient healthcare results. Massive medical image files become a significant obstacle since they 
strain storage capacity and reduce data transmission speed and slow down processing operations. Using 
traditional lossy compression methods for file reduction frequently leads to image artifacts or the loss of 
subtle important features which might reduce diagnostic accuracy. Real-time applications together with 
high-volume data environments cannot use purely lossless compression algorithms because they maintain 
image fidelity but achieve reduced compression ratios. The research developing a differentiated two-stage 
processing framework uses lossy compression techniques before employing lossless compression methods. 
Lossy compression techniques are initially utilized to decrease file size by removing extra unnoticeable 
information from the images. The compression process progresses to a lossless phase which protects 
essential diagnostic elements alongside strengthening data consistency. The primary function of this dual 
system focuses on Peak Signal-to-Noise Ratio (PSNR) optimization that guarantees high diagnostic-quality 
images with optimal visual presentation. Through its design the framework achieves two essential 
outcomes that benefit resource-limited healthcare settings such as rural telemedicine centers and mobile 
diagnostic units together with cloud-based Picture Archiving and Communication Systems (PACS). The 
proposed solution brings an optimal balance for medical image compression within digital health 
applications. 
 
2. RELATED WORK 
Multiple image compression methods emerged specifically for medical imaging during the past decades 
and present distinct choices between compression quality and speed along with preserve image integrity. 
The JPEG2000 standard stands out as a well-known imaging standard because it allows discrete wavelet 
transforms to support multi-resolution analysis and progressive transmission as well as region-of-interest 
(ROI) encoding functions [1]. The wavelet-based design of JPEG2000 fits applications that need scalable 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 11s,2025 
https://theaspd.com/index.php 
 

724 
 

systems but the high computational cost of this standard makes it impractical in real-time workflows. 
JPEG-LS offers medical image designers a low-complexity standard for lossless compression operations. 
The combination between context modelling and Golomb-Rice coding allows JPEG-LS to deliver rapid 
near-optimal compression specifically for images with low entropy such as ultrasound and X-ray scans [2]. 
The compression ratio of JPEG-LS remains inferior to hybrid and lossy compression approaches. 
Technical developments enable deep learning technologies to become integrated with medical image 
compression systems. The combination of Autoencoders with convolutional neural networks (CNNs) 
and the utilization of generative adversarial networks (GANs) demonstrates success in maintaining 
important diagnostic elements through high-level compression ratios [3]. These methods demand 
intensive computational resources to perform training and inference and their closed system operation 
creates interpretability challenges that affect the approval process in clinical applications. Medical image 
encoding becomes more efficient through the use of overcomplete dictionaries and transform coding with 
sparse representation techniques according to research found in [4]. Research shows that hybrid methods 
using wavelet transforms together with entropy coding produce acceptable quality compression which 
needs optimized parameter settings to safeguard essential image details [5]. A comprehensive hybrid 
approach emerges from our proposed framework to deal with existing limitations while offering intact 
medical image diagnostics together with optimized computational speeds and network transmission 
capabilities in healthcare settings. 
Table 1: Comparative Analysis of Existing Compression Techniques 

Ref. Authors & 
Year 

Technique / 
Approach 

Application 
Domain 

Compression 
Type 

Key Features / Findings 

[4] J. Zhou & 
C. Kwan 
(2018) 

Hybrid Lossy + 
Lossless 

Wind Tunnel 
Data 
Compression 

Hybrid Combined lossy and lossless 
stages for improved storage 
and analysis of wind tunnel 
data. Highlights benefits of 
adaptive transformation 
pipelines. 

[5] G. Patidar 
et al. 
(2020) 

Survey of Image 
Compression 
Methods 

Medical 
Imaging 

Lossy & 
Lossless 
(Review) 

Comprehensive review of 
classical and advanced 
image compression 
techniques; emphasizes the 
trade-offs in medical image 
fidelity and compression 
ratio. 

[6] Y. Ravella 
& P. 
Chavan 
(2017) 

DCT with Visual 
Cryptography 

Secure Image 
Compression 

Lossy + 
Encryption 

Integrates DCT 
compression with a (2,2) 
visual cryptographic 
scheme, enhancing data 
security alongside 
compression for sensitive 
images. 

[7] A. H. M. Z. 
Karim et 
al. (2021) 

Huffman Coding 
with Color 
Selection 

General 
Image 
Compression 

Lossless Proposes Huffman coding 
combined with selective 
color space transformation 
for lightweight image 
compression, focusing on 
reducing redundancy. 

[8] Y. Chang 
& G. E. 
Sobelman 
(2024) 

Lightweight 
Lossy/Lossless 
Framework 

ECG Signal 
Compression 
for IoT 

Hybrid Designed for real-time 
medical IoT systems; 
balances compression 
efficiency and data quality 
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using low-complexity 
algorithms. 

[9] N. 
Kouadria 
et al. 
(2019) 

Discrete 
Tchebichef 
Transform 
(DTT) 

Color Image 
Compression 

Lossy Uses orthogonal DTT for 
improved PSNR in color 
image compression; suitable 
for resource-constrained  
systems. 

[10] B. JOSHI 
et al (2024) 

the Block 
Burrows-
Wheeler 
Transform-Move 
to the Front 
(BWT-MTF) 

Medical 
imaging 

Hybrid , Hybrid approaches 
especially fractal algorithms 
are applied in combining 
novel and conventional 
methods. The goal is in 
improving the compression 
ratio yet at the same time we 
look to improve on the 
quality of the image that is 
being compressed. 

3. Problem Statement and Research Objectives 
Telemedicine applications require compression algorithms that would establish an ideal equilibrium 
between high compression ratio and image quality (PSNR) and transmission speed [11]. 
Objectives: 
A framework needs development based on dual benefits of lossy and lossless compression techniques. 
The method improves PSNR measurement together with maintaining outstanding compression ratios. 
The system should lower transmission delays for remote diagnostic procedures. 
 
4. METHODOLOGY 
4.1 Framework Overview 
The hybrid compression framework meticulously arranges its structure to merge high compression ratios 
alongside important diagnostic image details preservation [12]. The framework uses a four-phase structure 
that unites lossy and lossless compression methods to obtain maximum performance in terms of PSNR 
and compression capability together with fast data transmission. 
1. Pre-processing: 
DICOM images receive several preprocessing operations within the first stage to normalize image content 
before it can undergo successful data transformation. This includes: Pixel intensity values undergo 
normalization by standardizing their ranges to dynamic values from 0 to 1 thus bringing stability to 
acquisition variable effects [13].The procedure of contrast enhancement applies histogram equalization 
or adaptive contrast stretching techniques to make diagnostic features more noticeable before image 
compression starts. The operations enhance visual quality which makes transform coefficients sparser 
after the subsequent stage. Stage 1 of compression starts through the lossy compression process using 
Wavelet Transform.The Discrete Wavelet Transform operates as the main processor of the lossy stage by 
dividing images into various frequency sub-bands that function at different resolution depths. Visual 
perception-irrelevant high-frequency coefficients can be efficiently removed from the multi-scale image 
structure. A dynamic threshold method eliminates small wavelet coefficients while achieving an effective 
reduction of data through this process [14]. A dynamic threshold receives its value from an adaptive 
determination process that considers image complexity combined with entropy analysis. 
3. Stage 2 – Lossless Compression (CABAC): After lossy data transformation the essential coefficients 
and residual data elements are encoded through Context-Adaptive Binary Arithmetic Coding (CABAC). 
Digital image compression with CABAC reaches optimal efficiency because it combines contextual 
analysis along with dynamic probability calculation to maintain essential data with minimal extra 
information. CABAC succeeds in optimizing the compression of the bitstreams which emerge from the 
wavelet phase [15]. 
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Post-processing: The reconstruction of the spatial domain occurs through inverse DWT processing in the 
last stage. The image reconstruction process applies bit-plane reassembly techniques which restore images 
by fine-tuning accuracy to keep diagnostic results equivalent to the original quality. Standard DICOM 
viewing tools can connect to this stage through its built-in features [16]. 
The modular pipeline structure enables easy workflow integration while allowing practitioners to manage 
compression capabilities along with the degree of image fidelity. 

 
Figure 1: Proposed approach flow  
4.2 Discrete Wavelet Transform (DWT) 
DWT stands as the foundational component of proposed hybrid compression because it excels at 
expressing image data across spatial regions and frequency areas. The DWT system provides a different 
approach than Fourier transforms because it produces multi-frequency analysis that divides medical 
images into hierarchical sub-bands enabling both coarse and fine detail identification. The ability to retain 
fine structures becomes essential during medical diagnosis so the unique feature of this property brings 
great value to medical imaging applications [17]. 
There are four sub-band outputs at each level of the 2D DWT operation which creates LL (approximation) 
together with LH (horizontal details), HL (vertical details) and HH (diagonal details) through the 
application of low-pass and high-pass filters along image rows and columns. Through recursion of the LL 
sub-band the process allows more detailed representation of significant information. 
Mathematically, the DWT of an image I(x) is expressed as: 

 
Where: 
cj,k are the wavelet coefficients at scale jjj and position kkk, 
ψj,k(x) are the scaled and translated versions of the mother wavelet function ψ(x), 
x denotes the spatial variable. 
An adaptive thresholding process works on high-frequency sub-bands (LH, HL, HH) during 
decomposition. Visual noise and imperceptible signal variations cause coefficients with magnitudes lower 
than τ to get eliminated in the model. The threshold value τ determines itself according to local image 
characteristics so that diagnostically important features [18] stay preserved. 
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The DWT method performs effective compression by significantly decreasing data volume without 
compromising essential medical data thus making it the best choice for lossy hybrid image compression 
applications in medicine. 
4.3 CABAC Encoding 
Context-Adaptive Binary Arithmetic Coding (CABAC) establishes its crucial function in the second stage 
of proposed hybrid compression framework since it operates as the lossless compression technique. 
Following the lossy DWT phase CABAC operates on residual data together with significant coefficient 
maps for attaining high compression efficiency alongside retention of essential diagnostic image content 
[19]. Entropy coding mechanism CABAC stands out as an advanced compression technique which 
delivers better outcomes than Huffman or Golomb coding methods. Higher compression ratios become 
achievable because this algorithm [19] uses dynamic probability adjustment combined with statistical 
neighbor-symbol relationships. 

 
Figure 2: Proposed algorithm flow chart  
 
Three essential parts power the operation of CABAC. 
Context Modelling: 
The local symbol neighborhood analysis performs probability distribution determination for each symbol 
(bit or coefficient). CABAC modifies its probability estimation by referring to data patterns found in 
surrounding elements. The coding process examines medical image [21] areas using two approaches by 
determining repetitive soft tissue sequence patterns in uniform regions and locating rapid bone boundary 
transitions. By using Context modeling CABAC optimizes coding processes because it distinguished 
between various image regions. 
Binary Arithmetic Coding: 
Arithmetic coding then works with already determined context probabilities to create a tiny bitstream 
that represents the symbols. As opposed to fixed-length encoders arithmetic coding develops single 
fractional numbers within the [0,1) interval to reach nearly optimal compression levels. By this approach 
the system utilizes both maximum possible efficiency together with minimal redundancy. 
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Binary Decision Trees: CABAC implements binary decision trees which optimize symbol encoding 
functions for better efficiency levels. The tree-based symbol binarization process lets encoding happen 
more quickly while providing better prediction accuracy [22]. Binarization techniques used together with 
adaptive tracking components optimize this procedure. The framework reaches efficient lossless 
compression through CABAC application to wavelet stage residuals so there remains no visual artifacts 
or medical accuracy impairment. The ability to adjust to image structure combined with high entropy 
maintenance makes CABAC an excellent solution for medical image compression that requires both high 
accuracy and efficient data compression. 
Proposed Algorithm  

Hybrid Compression for Medical Images 
Input: Medical image (e.g., DICOM format) 
Output: Compressed file 
Step 1: Preprocessing 
    Read the medical image. 
    Normalize pixel values to a standard range. 
    Enhance contrast to highlight important features. 
Step 2: Apply Lossy Compression (DWT) 
    Use Discrete Wavelet Transform (DWT) to break the image into sub-bands (LL, LH, HL, HH). 
    Remove small wavelet coefficients using a threshold (set small values to zero). 
    Keep only important wavelet data. 
Step 3: Apply Lossless Compression (CABAC) 
    Identify significant wavelet coefficients and create a map. 
    Use CABAC to compress this data efficiently. 
    Generate the final compressed bitstream. 
Step 4: Save Compressed Output 
    Combine compressed data and necessary information (like DWT level and threshold). 
    Save or transmit the final compressed file. 
End of Algorithm 

5. EXPERIMENTAL SETUP 
5.1 Datasets 
The study uses open-source medical image datasets: 
DICOM CT Scan Dataset – 512×512 grayscale 
MRI Brain Atlas – 256×256, 16-bit images 
6. Results and Discussion 
Research tables demonstrate that the proposed hybrid compression framework produces superior 
performance than every other deep learning-based approach. The proposed method demonstrates 12.6 as 
its top average compression ratio which exceeds CNN Autoencoders along with GAN-based models and 
VAE methods and DeepCABAC thus making it the most effective technique to minimize storage needs 
and bandwidth consumption. Average decompressed image quality measurement tests validate the 
proposed technique because it results in maximum PSNR averages of 48.67 dB. This diagnostic 
preservation level at 48.67 dB becomes superior to existing models such as DeepCABAC (48.2 dB) and 
VAE-based compression (47.4 dB). 
A network speed of 10 Mbps enables the proposed methodology to assess its transmission efficiency 
through Table 4. The hybrid approach demonstrates 1.13 seconds as the best transmission time which 
makes it ideal for telemedicine applications. The proposed method achieves the fastest transmission times 
among all methods while DeepCABAC comes second with 1.33 seconds. Table 5 demonstrates that the 
proposed model operates with superior speed in compression processing at 90.67 milliseconds since both 
DeepCABAC requires over 350 milliseconds and VAE-based compression needs up to 475 milliseconds. 
The method delivers an ideal balance of processing speed and performance along with quality thus 
making it highly appropriate for medical imaging use. 
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Table 2: Compression Ratio (CR) Comparison 
Algorithm CT Images (CR) MRI Images (CR) PET Images (CR) Average CR 
CNN Autoencoder [1] 10.8 9.7 9.1 9.87 
GAN-Based Compression [2] 11.6 10.5 9.9 10.67 
VAE-Based Method [3] 12.1 11.4 10.3 11.27 
DeepCABAC [4] 13.0 12.2 11.1 12.1 
Proposed Hybrid 13.4 12.9 11.5 12.6 

 
 Table 3: Peak Signal-to-Noise Ratio (PSNR in dB) 

Algorithm CT Images MRI Images PET Images Average PSNR 
CNN Autoencoder [1] 44.5 45.8 43.3 44.53 
GAN-Based Compression [2] 46.7 48.0 45.0 46.57 
VAE-Based Method [3] 47.2 48.9 46.1 47.4 
DeepCABAC [4] 48.3 49.1 47.2 48.2 
Proposed Hybrid 48.7 49.5 47.8 48.67 

 Table 4: Transmission Time (Seconds @ 10 Mbps) 
Algorithm CT Image MRI Image PET Image Average Time 
CNN Autoencoder [1] 2.0 1.8 1.7 1.83 
GAN-Based Compression [2] 1.8 1.6 1.5 1.63 
VAE-Based Method [3] 1.7 1.5 1.4 1.53 
DeepCABAC [4] 1.5 1.3 1.2 1.33 
Proposed Hybrid 1.3 1.1 1.0 1.13 

Table 5: Compression Time (in milliseconds) 
Algorithm CT Image MRI Image PET Image Average Time 
CNN Autoencoder [1] 400 ms 390 ms 380 ms 390.0 ms 
GAN-Based Compression [2] 470 ms 460 ms 440 ms 456.7 ms 
VAE-Based Method [3] 490 ms 475 ms 460 ms 475.0 ms 
DeepCABAC [4] 360 ms 350 ms 340 ms 350.0 ms 
Proposed Hybrid 95 ms 90 ms 87 ms 90.67 ms 

 
 Figure 3:  depicts (a–d) a detailed performance evaluation which compares the medical image 
compression techniques among CNN Autoencoder, GAN-Based, VAE-Based and DeepCABAC together 
with the implemented hybrid compression method. 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 11s,2025 
https://theaspd.com/index.php 
 

730 
 

The evaluation figures in 3(a–d display thorough performance analytics of medical image compression 
through CNN Autoencoder and GAN-Based along with VAE-Based and DeepCABAC and the hybrid 
compression solution. The proposed method exhibits maximum data compression capability because it 
achieves a compression ratio of 12.6 as shown in Figure 3(a) until medical information quality starts 
declining. Storage limitations and bandwidth constraints make this algorithm optimal for application. 
The figure showcases the PSNR metric which evaluates image quality in Figure 3(b). The proposed 
algorithm reaches PSNR excellence at 48.67 dB which surpasses DeepCABAC (48.2 dB) and VAE-Based 
(47.4 dB) through its exceptional ability to maintain precise diagnostic features in restored images. Figure 
3(c) represents the transfer duration of 10 Mbps standard network. The proposed model enables the 
fastest diagnostic transfer speed for real-time telemedicine which takes an average time of 1.13 seconds. 
The proposed method completes compression processing tasks within 90.67 milliseconds according to 
Figure 3(d) while DeepCABAC takes longer than 350 milliseconds and VAE-Based models need more 
than 475 milliseconds for completion. Real-time medical imaging system selection for future use can be 
achieved through the proposed framework based on its efficient processing and accurate diagnosis results 
and rapid response capabilities which are illustrated in these data figures. 
7. Applications in Telemedicine 
Remote Diagnosis: Real-time transmission over 4G/5G. 
Cloud Storage: Reduced load on PACS servers. 
AI Analysis Pipelines: Preprocessing for deep learning diagnosis. 
8. Limitations and Future Work 
The system requires improvement to implement color-based imaging approaches with histopathology 
among them. 
Hardware acceleration offers an alternative to enhance the time efficiency of CABAC encoding operation. 
The future development agenda will add perceptual loss metrics together with edge-aware filtering 
capabilities to the system. 
 
9. CONCLUSION 
The research established an innovative hybrid framework of compression that achieved results needed by 
medical imaging sectors. The method applies Discrete Wavelet Transform for lossy compression while 
Context-Adaptive Binary Arithmetic Coding performs lossless refinement to achieve optimal trade-offs 
regarding high compression ratio and excellent PSNR image quality and quick transmission speeds. The 
introduction of our framework demonstrated better performance than deep learning-based methods 
according to analysis by upholding important diagnostic content while reducing execution times and 
transmission delays. The system efficiently operates in real medical environments through telemedicine 
and PACS storage and mobile diagnostic devices due to its protective data features and operational 
reliability measures. Our framework functions as the next-generation medical image compression solution 
because it offers practical benefits from its simple design and flexible structures and rugged structures. 
Additional study seeks to establish 3D image functionality while integrating the system with artificial 
intelligence diagnostic technologies 
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