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Abstract: Diabetes is a persistent illness in which a person's body malfunctions to metabolize the glucose in blood 
effectively. The absence of insulin in the human body is source of diabetes. The most crucial component of health care 
is the ongoing checking of blood sugar. The majority of effective glucose level monitoring devices rely on blood pricking 
technique. For frequent measurement, however, this kind of approach might not be the best choice. The comprehensive 
review of glucose testing methods is presented in this study. The study discusses several non-invasive glucose testing 
techniques as well as smart medical technology for glucose management. The configuration of an accurate 
measurement instrument is required to meet the necessity for non-intrusive and painless blood sugar level checking 
system. The issue of repeatedly puncturing blood samples for blood samples is solved by non-invasive glucose-level 
checking devices for clinical tests. To provide continuous health monitoring, a Smart Healthcare framework based on 
the IoMT (Internet-Medical-Things) integrated H-CPS (Healthcare Cyber-Physical System) is needed for glucose 
measurement. In addition, a few consumer products and a few cutting-edge glucose measurement techniques are 
covered in the study. The study also included a list of unresolved issues and challenges related to measuring glucose. 
Keywords: Diabetes, Glucose monitoring, Non-invasive, Smart Healthcare, Internet of Medical Things, Artificial 
intelligence 
 
INTRODUCTION 
Glucose is a crucial energy source that allows the body to work well. When our blood sugar levels are 
within the normal range, we typically don't notice them. However, when these levels deviate from the 
recommended limits, we experience negative effects on our daily functioning. Glucose is a simple sugar, 
classified as a monosaccharide, which means it consists of a single sugar molecule. Other monosaccharides 
include fructose, glycogen, and D-ribose. In addition to fats, glucose is one of the body's preferred energy 
sources. We obtain glucose from foods containing gluten, fruits, vegetables and dairy products. While we 
eat, our body signals the pancreas to release necessary amount of insulin in response to the rise in glucose 
levels. Some individuals cannot produce sufficient insulin naturally, so they require insulin injections to 
manage their glucose levels.Approximately, there are now 463 million adults with diabetes worldwide and 
by 2045, that figure is projected to increase up to 700 million. The prevalence of diabetes is growing 
rapidly in many of the countries. Seventy-nine percent of grown-up person having diabetes reside in low-
to-middle-income countries. Among people under 65, diabetes affects one in five, and one in two people 
with diabetes are undiagnosed. Diabetes claimed 4.2 million lives in 2019 and led to in healthcare costs 
of minimum 760 billion dollars, accounting for 10% of total disbursing on grown-up people. One in six 
live births has diabetes during pregnancy, and more than 1.1 million children and young people have 
type 1 diabetes. Additionally, 374 million persons are having an elevated risk of growing type 2 diabetes. 
Diabetes is primarily categorized into three types (see Fig. 1). In Type 1 diabetes, the pancreas fails to 
produce insulin, leading to a compromised immune system and an inability to generate insulin naturally. 
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When enough insulin is not produced by the pancreas to maintain a proper glycemic profile, the type 2 
diabetes occurs. Gestational diabetes typically develops in women during the later pregnancy phases. 

 
Fig 1: Different kinds of diabetes and their symptoms. 
People with diabetes are at risk for chronic issues affecting essential organs and the neurological system. 
It's recommended that diabetic patients see an eye specialist regularly for comprehensive check-ups. 
Diabetes significantly enhances the risk of cataracts, which cloud the eye's lens and glaucoma, which raises 
the risk of diabetic retinopathy, impacting the back of the eye. Patients should have their urine tested for 
protein annually, as protein in urine stipulates kidney disease. High blood pressure can also lead to kidney 
problems, so it's important to monitor blood pressure during healthcare visits. Individuals with diabetes 
have a higher risk of heart disease and strokes which are the leading causes of death in diabetic patients. 
Managing other risk factors, such as hypertension and high cholesterol, along with blood sugar levels, is 
crucial. High blood sugar can lead to poor circulation and nerve damage, causing slow wound healing, 
severe pain, and loss of sensation in the feet. In severe cases, this may necessitate the amputation of toes 
or even the leg. Elevated blood sugar levels can affect the entire nervous system, leading to various types 
of neuropathy. 
Neuropathy in diabetics includes: 
Peripheral neuropathy: Damages peripheral nerves, impacting extremities. 
Gastroparesis: Disrupts the normal movement of food through the stomach. 
Postural hypotension: Causes a drop in blood pressure due to changes in body position. 
Uncontrolled diarrhea. 
The best approach for managing these complications is to control blood glucose levels and maintain good 
overall health. Diabetes occurs because the body is unable to use insulin efficiently or produces 
insufficient amounts of it. Insulin is the primary hormone that regulates blood glucose levels. It enables 
cells to absorb glucose for energy or storage. However, prolonged high blood glucose levels can lead to 
hyperglycemia, while prolonged low levels can cause hypoglycemia. Hyperglycemia can result in severe 
health issues such as heart disease, stroke, tissue damage, blindness, kidney failure and even death if 
untreated. Hypoglycemia occurs due to inadequate insulin secretion, leading to a rapid drop in blood 
glucose levels. Conversely, ineffective insulin use results in hyperglycemia, marked by high blood glucose 
levels. Both conditions require lifelong monitoring and treatment, as there is no permanent cure.Current 
glucose measurement methods for diabetic patients are mostly painful, invasive, time-consuming and 
expensive. The conventional approach makes use of an electrochemical process which requires a blood 
sample from a finger prick. A self-monitoring blood glucose device provides information about glucose 
levels and sample collection time without requiring any expert support. Continuous glucose monitoring 
(CGM) devices offer ongoing glucose level tracking, suitable for patients with high glucose levels. 
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However, both methods involve discomfort and pain, with continuous monitoring posing risks of tissue 
damage and infection.Since the early 2000s, endeavors have been made to evolve new non-invasive and 
minimally invasive devices to reduce the discomfort and pain associated with traditional approaches. The 
creation of a non-invasive device would permit millions of patients to check their blood sugar levels using 
a non-invasive technology without creating any pain or permanent tissue damage, generating significant 
demand. The World Health Organization (WHO) claims that there are currently 450 million diabetic 
patients worldwide, projected to reach 700 million by the mid-2040s.Recent advancements have explored 
the properties of glucose particles across different electromagnetic spectrum frequencies, including DC, 
visible, ultrasound and near-infrared (NIR) regions. Promising results have been observed in the visible 
and NIR regions, leading to the design and development of commercial devices. However, many of these 
products are no longer in use as a result of subpar accuracy, sensitivity and selectivity. Those available on 
the market have not yet matched the accuracy of conventional methods. This presents opportunities for 
non-invasive glucose monitoring, such as combining multiple techniques to develop a more dependable 
and economical glucose measurement device.Section 2 outlines the presently recognized techniques. 
Section 3 details the gadgets and authorized technologies available for non-invasive and minimally 
invasive monitoring. Section 4 explores the latest techniques and ongoing research in this field. Section 
5 identifies the research gaps associated with these new methods. Finally, Section 6 ties together the 
preceding sections, providing a comprehensive vision for future developments. Since 2010, the prevalence 
of diabetes has increased worldwide [14]. 9.3% of the world's population (463 million) had diabetes in 
2019. By 2030, that number is expected to rise to 10.2% (578 million), and by 2045, it will reach 10.9% 
(700 million) [15]. Chronic diabetes is brought on by either insufficient insulin production by the 
pancreas or inefficient insulin utilization by the body [16]. Insulin hormone facilitates the absorption of 
glucose by body cells. In diabetes, blood glucose levels rise. Type 1, type 2, and gestational diabetes are 
the three primary forms of the disease [17]. Untreated diabetes can lead to severe health complications, 
including strokes, nerve damage, heart disease, kidney disease, and blindness. Managing diabetes involves 
regular physical activity, a proper diet, and appropriate insulin dosages. Oral medications can also help 
control diabetes in its early stages. Among adults, 5% of diagnosed cases are type 1 diabetes, while 90-
95% are type 2 diabetes. This highlights the need for devices that measure blood glucose level for quick 
and continuous diagnosis [18]. Continuous monitoring of glucose levels is essential in diabetes 
management. Repeated finger pricking using existing invasive methods can lead to blood-related 
infections and trauma [19]. Therefore, developing real-time non-invasive devices is crucial. Currently, 
there are few such devices on the market, and they are often very expensive [20, 21]. As the population 
grows and resources become scarcer, the implementation of smart cities, which include smart healthcare, 
is increasingly necessary [22]. Technologies such as the AI, big data, cloud computing and IoT use smart 
healthcare to enhance effectiveness and user-friendliness [23]. Smart healthcare solutions are needed for 
non-invasive diabetes detection, particularly in rural and remote areas where immediate medical facilities 
are scarce [24]. Figure 2 illustrates smart healthcare for diabetes. 

 
Fig 2: Intelligent treatment for diabetes 
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The primary challenges in advancing truly non-invasive glucose monitoring technologies include 
achieving ease of use, accuracy and suitability for home use across diverse populations. A device that 
successfully addresses these issues could significantly enhance the life quality for millions of diabetic 
people worldwide [25]. This is particularly important as it reduces the need for frequent bedside visits, 
especially for critically ill patients receiving intravenous insulin, which poses risks during pandemics like 
COVID-19. For non-critically ill patients, a user-friendly non-invasive device can facilitate self-monitoring 
of blood glucose levels for diabetes management [26]. The mHealth application can also transmit glucose 
readings to doctors in remote locations. Therefore, creating a continuous glucose monitoring tool that is 
practical, economical, secure, and offers real-time readings is the aim. This can be accomplished by 
utilizing a non-invasive device paired with advanced post-processing algorithms, and integrating it with a 
microcontroller that is programmed with an optimal ML algorithm to ensure quick results and high 
accuracy.Previous research on glucose measurement encompasses invasive, non-invasive and minimally 
invasive methods. Significant efforts have been made to develop continuous glucose monitoring systems 
utilizing non-invasive techniques, both optical and non-optical. Optical methods include Raman 
Spectroscopy, NIR Spectroscopy, and the PPG method. Figure 3 illustrates various blood glucose 
measurement systems. Following data acquisition from sensors, researchers have focused on refining 
computational models for accurate glucose level prediction. For example, Sejdinović et al. developed an 
artificial neural network to classify prediabetic and type 2 diabetic patients [27], testing the model with a 
specific sample ratio. Alić et al. created an expert system using a feed-forward artificial neural network 
(ANN) to classify metabolic syndrome (MetS) [28]. Another ANN was applied to predict lactose 
intolerance [29], and a physiological behavior model was developed to simulate the glucose-insulin 
regulatory mechanism [30]. Various neural networks have also been introduced for other medical 
purposes, such as differentiating between cancer and non-cancer patients [31].The PPG method, a non-
invasive technique, employs sensors similar to those in pulse oximeters to record PPG signals. Paul et al. 
developed a PPG-based blood glucose monitoring system using a pulse oximeter, where light intensity 
variations at the receiver were used to predict glucose levels based on voltage changes with glucose 
concentration [22]. Similarly, Monte-Moreno designed a PPG-based sensor for estimating blood glucose 
using machine learning models [32]. Efforts in continuous glucose monitoring have also explored 
wearable microsystems with minimally invasive approaches, including the first wearable device for 
extracting glucose from the skin [33]. Optical Coherence Tomography (OCT), another non-invasive 
method, estimates glucose based on the OCT slope [34]. Raman Spectroscopy, which relies on chemical 
and molecular interactions, has been investigated for glucose estimation [35]. Attempts have also been 
made to use saliva for non-invasive glucose detection [36, 37]. Ramashyamam et al. proposed NIR 
spectroscopy-based glucose estimation using PPG with specific wavelengths (935 nm, 950 nm, and 1070 
nm) and FPGA with an Artificial Neural Network [38]. A microcontroller-based, painless blood glucose 
measurement system was explored [39]. Insulin pump-integrated diabetes management systems were 
developed for improved glycemic control, and pulsed laser diodes were presented to collect photoacoustic 
signals for glucose estimation [40]. The intelligent Glucometer iGLU, utilizing optical methods and 
machine learning models, was built with the Internet of Medical Things (IoMT) framework for remote 
monitoring [24]. This NIR spectroscopy-based gadget uses regression models to interpret three-channel 
data in order to monitor glucose.Despite these advancements, many solutions face accuracy challenges. 
The PPG method, which measures light intensity variations with blood volume, may not yield precise 
glucose values. Wearable microstrip solutions are often too bulky for continuous glucose measurement. 
OCT techniques can be time-consuming for glucose concentration estimation and may lack specificity 
and sensitivity. Raman Spectroscopy solutions require significant space, affecting portability. Saliva-based 
glucose detection is unreliable due to sample variability. Laser-based solutions are not ideal for frequent 
glucose monitoring. Thus, short-wavelength NIR spectroscopy is taken the most effective method for 
continuous glucose measurement, addressing many of these limitations. 
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Fig 3: An outline of methods for measuring blood glucose 
An overview of blood glucose measuring system measurement methods is provided in Fig. 3. 
Technique for Glucose Measurement: 
Currently, glucose monitoring is done either through laboratory-based techniques or home-based 
monitoring, both of which are invasive and involve blood pricking. This process is inconvenient and 
uncomfortable for users, often requiring multiple blood samples throughout the day, leading many 
patients to avoid it. As a result, notable modifications in glycemic profiles may go overlooked due to 
unexpected side effects and low patient conformity, potentially causing improper insulin dosages and 
unrecognized food ingredient impacts. Despite their drawbacks, these methods are reliable because of 
their high sensitivity and accuracy in glucose measurement.In recent years, novel approaches for glucose 
measurement have been explored, focusing on physical detection principles rather than traditional 
chemical methods. Non-invasive techniques, which do not require blood samples, utilize interstitial fluid 
(ISF) to detect glucose molecules. Various attempts have been made to measure glucose through saliva, 
sweat, tears, and the skin surface. However, achieving precise measurement, good sensitivity, and 
reliability remains a significant challenge. Non-invasive methods could be ideal for Continuous Glucose 
Monitoring (CGM) and self-monitoring purposes, allowing frequent daily measurements for better 
glucose control and essential preventive measures for people with hypoglycemia and hyperglycemia. These 
methods also aid dietitians and healthcare providers in preparing appropriate diet plans based on glucose 
fluctuations.Following sensor data collection, numerous researchers have focused on developing optimal 
computer models to accurately predict glucose levels.A multitude of novel research projects have surfaced, 
necessitating a continuous updating of the existing data. As seen in Figure 4, one of these novel 
techniques makes use of photoplethysmography (PPG).  

 
Fig 4: Methods for Measuring Blood Glucose. 
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Methods for Measuring Glucose Levels: A General Outline 
An overview of the several invasive, non-invasive, and minimally invasive glucose-level measuring 
techniques is given in this section. Significant work has been done in these areas, particularly with non-
invasive techniques, which rely on both non-optical and optical techniques. Raman spectroscopy, NIR 
spectroscopy, and the PPG method are a few of the optical approaches. 
Invasive Techniques: 
Economical electrochemical sensors are used in a large number of commercial continuous blood glucose 
measuring devices to respond quickly for glucose detection in blood [42]. Lancets are used to prick the 
blood for primary blood glucose monitoring in various commercial devices [44]. This process can be 
distressing due to the need to prick the fingertip multiple times a day for regular observation [45]. 
Minimal-invasive biosensors for the purpose of monitoring glucose have been created using glucose 
oxidase, requiring about 1mm penetration into the skin for measurement [46]. Photometric techniques 
have also been used to identify glucose in little amounts of blood [47]. 
Low-Invasive Techniques: 
Low-invasive methods include the development of prototype sensors for frequent glucose tissue 
monitoring [48]. These sensors are wearable and implanted on a membrane containing immobilized 
glucose oxidase. Implantable devices for glucose monitoring have also been developed [49], as well as 
biosensors designed for semi or minimal invasive glucose monitoring [50]. Wearable microsystems have 
been explored for frequent glucose measurement [51]. Continuous glucose monitoring has been 
attempted with microfabricated biosensors using a transponder chip [52] and semi-invasive Dexcom 
sensors use the transponder chip's signal for calibration [53]. Glucose sensors have been integrated with 
artificial pancreas systems for better diabetes control [54]. However, minimally invasive approaches often 
face limitations in accuracy and may have shorter monitoring lifespans. One such wearable microsystem 
for ongoing blood glucose monitoring, a minimally invasive technique is employed with a micro-actuator 
containing shape memory alloy (SMA) to extract blood samples from the skin [55]. Despite its feasibility 
and performance, the device is large and inconvenient. 
Non-Invasive Methods: 
Non-invasive measurement methods aim to provide painless and accurate solutions, avoiding the issues 
associated with invasive and minimally invasive methods [56], [57]. For smart healthcare, portable non-
invasive glucose measuring devices have been created. These methods are more convenient for continuous 
glucose measurement compared to invasive and semi-invasive methods [56], [57]. Optical methods for 
non-intrusive glucose estimation like Raman spectroscopy, near-infrared spectroscopy, polarimetric, 
scattering spectroscopy [60], and photoacoustic spectroscopy [61], are considered reliable and precise. 
Researchers believe that a non-invasive estimation device would be much more user-friendly [62], [63]. 
For continuous glucose monitoring devices to be accurate, blood glucose must be calibrated to interstitial 
glucose dynamics [64], [65]. Numerous calibration algorithms have been created and applied for portable 
devices [66]. Significant efforts have been made to develop self-monitoring systems for glucose 
measurement [67]. The Invasive and Non-invasive approaches for glucose measurement is shown in Fig 5 
below. 
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Fig 5: Invasive versus Noninvasive Glucose Measurement. 
Invasive Versus Non-Invasive Glucose Measurements: The Trade-Offs 
Current glucose estimation methods, widely used by the rising number of people with diabetes globally 
are invasive, time-consuming, and unpleasant. They also require numerous disposable items, adding to 
household expenses. Non-invasive glucose measurement techniques address these limitations and have 
therefore become a major focus of research. However, there are trade-offs between these two methods, as 
illustrated in Figure 6. 

 
Fig 6: Invasive and non-invasive glucose measurement: trade-offs. 
Serum Glucose versus Capillary Glucose for Non-invasive Measurement 
Serum glucose levels provide more precise readings that closely match actual blood glucose levels 
compared to capillary glucose levels. Traditional methods can quickly measure capillary glucose, but 
determining serum glucose is more challenging. Typically, capillary glucose levels are higher than serum 
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glucose levels. Accurate blood glucose measurement is crucial for effective treatment decisions, making 
serum glucose a more trustworthy indicator for prescription drugs. Despite this, measurement of capillary 
blood glucose is more commonly used for diabetic patients. However, serum glucose measurement offers 
better blood glucose control if done regularly, though it is not feasible for continuous monitoring. Serum 
blood is also necessary for the laboratory examination of glycosylated hemoglobin (HbA1c), which 
represents blood glucose levels over a period of 6–8 weeks. In non-invasive methods, Optical spectroscopy 
is used to measure both serum and capillary glucose. This technique relies on detecting IR light absorption 
and scattering by blood vessel glucose molecules. The fundamental process is comparable for both kinds, 
but post-processing computational models differ to estimate blood glucose levels. 
Non-invasive Technique for Estimating Salivary Glucose Levels: 
Saliva-based glucose measurement [68] is highly convenient for both children and adults. There are two 
types of saliva: total saliva and gland-specific saliva, collected from glands like the parotid, submandibular, 
minor salivary glands and sublingual. This method is informed by patient history, including risk factors, 
age, family history, diabetes duration, sex and associated illnesses. Other glucose measurement techniques 
use photometric glucometers, requiring minimal sample volumes [69]. These rely on chemical test strips 
reacting with the sample, capturing reflections from the test area to estimate glucose levels. This method 
requires validation across a large patient population. 
Methods for Non-invasive Assessment of Glucose Levels: 
This segment delves into various noninvasive glucose-level monitoring methods, primarily using optical 
techniques based on different spectroscopy methods. A comparative summary of noninvasive methods is 
provided in Table I. 
Near-Infrared (NIR) Spectroscopy: This is called "infrared spectroscopy" or “vibration spectroscopy”. 
This method involves exposing matter to infrared radiation [70], [71]. It includes reflection, scattering, 
and absorption spectroscopy [72]. Infrared absorption causes molecular vibrations, creating a spectrum 
band with wavelengths measured in cm⁻¹ [73]. NIR light (700-2500 nm) is applied to the skin (e.g., finger 
or earlobe) [74], interacting with blood components, leading to scattering, absorption, and reflection [75], 
[76]. The Beer-Lambert law [77], [78] states that the intensity of light received changes with the content 
of glucose. The recipient measures glucose molecules in blood vessels [79].Comparing Short-Wave and 
Long-Wave NIR Spectroscopy: Optical detection offers precise glucose measurement. FIR (Far Infrared) 
techniques resonate with OH and CH bonds for the first overtone, performing well in vitro. Additionally, 
fiber-optic sensors that use laser-based mid-IR spectroscopy facilitate the measurement of glucose in vitro, 
using multivariate calibration for error analysis [80]. FIR has limited penetration depth compared to short-
wave NIR [81], which accurately detects glucose molecules. Specific wavelengths (e.g., 940 nm) have been 
effective for precise glucose measurement [82]. 
NIR Spectroscopy-Based Methods: Literature proposes non-invasive glucose measurement with PPG and 
NIR spectroscopy [87]. This involves NIR LEDs, photodetectors and an optode pair. At NIR wavelengths 
(935 nm, 950 nm, 1070 nm), PPG signals are obtained via system with an analog front-end. An ANN is 
used to estimate glucose levels on an FPGA. A microcontroller facilitates painless, autonomous blood 
extraction [88]. The Blood Glucose Measurement system uses a microcontroller for glucose display and 
insulin pump tracking for diabetes management. This method involves detecting pressure changes in 
sensitive areas, generating sound waves [89]. Higher glucose concentrations produce stronger 
photoacoustic signals, which are amplified for processing. Glucose estimation uses photoacoustic 
amplitude from signals gathered by pulsed laser diodes and piezoelectric transducers, though this setup is 
expensive and large. In previous studies, the stretching of glucose in the near-infrared region [84], [85] 
has been identified, and the glucose absorption has been confirmed for the range of 1300 to 1350 nm. 
In the investigation, the existence of the glucose component was detected at 1300 nm [86]. 
The iGLU or non-invasive blood glucose measurement device: The "Intelligent Glucose Meter (iGLU)" 
[90] combines NIR spectroscopy [91] and machine learning for data acquisition. This device uses three 
channels for data gathering, with 128 samples per second processed by a 16-bit ADC. Data is calibrated, 
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validated and stored on the cloud for remote monitoring by patients and doctors using regression 
algorithms. This low-cost device offers over 90% accuracy, but no real-time results are provided. 
The Reasons NIR Is Suggested Over Other Noninvasive Methods: Numerous non-invasive methods, 
including PPG signal analysis, NIR light spectroscopy, and impedance spectroscopy, have been explored. 
However, non-optical methods lack precise measurement capabilities. PPG, a promising alternative, varies 
with blood concentration [92], [93], limiting its accuracy. Saliva and sweat properties differ among 
individuals, making these methods unreliable. Other spectroscopic techniques fail to offer portable, cost-
effective, and accurate glucose prediction. Long-wave NIR lacks sufficient penetration [81] to detect 
glucose beneath the skin, whereas short-wave NIR is more effective for real-time detection [83], [94]. 
Mid-Infrared (MIR) Spectroscopy: MIR spectroscopy [95] effectively detects glucose molecule bending 
and stretching. However, it has shallow skin penetration due to high water absorption, mainly measuring 
ISF glucose in vivo. Some attempts have been made to measure glucose precisely through palm samples 
and saliva. 
Blood Glucose Level Measurement using PPG: PPG signals detect changes in blood volume through 
light absorption [92] [93]. These changes result from blood volume fluctuations, not glucose molecules, 
potentially causing inaccurate measurements. The differences between NIR and PPG are illustrated in 
Fig. 7. The iGLU device uses NIR spectroscopy for precise glucose measurement. There are several blood 
glucose detection techniques using PPG signals [96].  Various ML models have been used to forecast 
blood sugar levels [98] based on PPG signals [97]. For glucose estimation, smart solutions using PPG 
signals and intelligent algorithms have also been developed [99], [100], [101]. 
One advanced optical technique is Photo-Plethysmography (PPG), a non-invasive method for glucose 
measurement in healthcare. PPG sensors, similar to pulse oximeters, operate in the near-infrared region 
at 920 nm, measuring light absorption changes to obtain PPG signals. Glucose concentration inversely 
affects light absorbance, and the resulting photocurrent is filtered and converted into measurable voltage 
values. Lab view software processes these indicators for calculating blood glucose levels. Machine learning 
techniques and PPG systems have been developed for the non-invasive assessment of glucose. This model 
uses an activity detector, a PPG sensor and a signal processing module to analyze PPG waveform features, 
correlating them with blood glucose levels. 
In PPG, light intensity varies with blood volume changes, which are not specific to glucose molecules, 
limiting the system's accuracy [7], [89]. Fig. 7 highlights these differences. 
 

 
Fig 7: Non-invasive Glucose Measurement: PPG vs. NIR [7], [89]. 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 11s,2025 
https://theaspd.com/index.php 
 

684 
 

Table 1: a qualitative analysis of various non-invasive methods for measuring blood sugar levels. 
Sl. 
No. 

Techniques Advantages Disadvantages 

1. 
 

Raman Spectroscopy High specificity, low sensitivity to 
water and temperature 

Cells may be at risk when a laser radiation 
source is used for continuous glucose 
monitoring (CGM). Furthermore, the 
technique's low signal-to-noise ratio (SNR) is 
caused by noise interference. 

2. Photoacoustic spectroscopy Compact and simple sensor 
design with non-harmful optical 
radiation for tissues. 
 

The signal is susceptible to interference from 
acoustic noise, temperature changes, and 
motion. Additionally, it may carry noise 
from non-glucose blood components. 

3. Optical Coherence 
Tomography (OCT) 

It offers high resolution and 
excellent signal-to-noise ratio 
(SNR), remaining unaffected by 
blood pressure and cardiac 
activity. 

Glucose readings can fluctuate due to skin 
conditions and movement, and the method 
is affected by tissue inhomogeneity. 

4. Near-Infrared (NIR) 
Spectroscopy 

Transparent water in the near-
infrared spectrum Materials 
required are rather inexpensive. 
The analyte concentration is 
directly correlated with the signal 
strength. The bare minimum of 
sample preparation is needed. 
The method also functions when 
there are substances present that 
interfere, such as glass or plastic 
containers 

False readings may result from 
heterogeneous glucose distributions. The 
concentrations of glucose are too low for 
precise detection. elevated level of scattering 
issues with glucose determination's 
selectivity. 

5. Polarimetry The prediction of glucose levels 
remains relatively unaffected by 
variations in laser intensity. 
 

It necessitates an external laser source and 
demands precise alignment with the eye, 
being sensitive to alterations in pH and 
temperature. 

Raman Spectroscopy: 
Raman spectroscopy detects changes in the polarization of glucose molecules [101] when they interact 
with light. The technique involves the oscillation and rotation of molecules induced by incident LASER 
light [102]. Blood glucose levels can be predicted [104] due to these molecular vibrations that affect 
scattered light [103] emission. Compared to infrared spectroscopy [105], Raman spectroscopy offers 
higher accuracy. Extensive research has validated its precise glucose measurement capabilities, including 
in vivo testing. Figures 13 illustrate the basic framework and the use of Raman spectroscopy in 
noninvasive glucose measurement. 
Spectroscopy via Photoacoustics or Photoacoustic Spectroscopy: 
Photoacoustic spectroscopy leverages the photoacoustic effect to generate acoustic pressure waves from 
an object [106]. This method allows for the measurement of blood glucose [107] by having the item absorb 
modulated light input. The high-intensity absorbed optical light based on the object's optical properties 
[108], excites specific molecules at their resonant frequencies [109]. The absorbed light converts to heat, 
causing localized temperature increases and thermal expansion [110], which generates acoustic pressure 
[111]. These photoacoustic waves [113] are utilized to forecast the amount of glucose present at particular 
resonant frequencies, that correspond to glucose molecule vibrations [112]. Prior research utilized 905 
nm wavelength [114], [115] optical light for excitation. 
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OCT or optical coherence tomography: 
OCT relies on the principles of Spectroscopy of reflectance. This method involves passing low-coherent 
light across a sample, within an interferometer. The interferometric signal including both backscattered 
and reflected light is captured by a photodetector and a moving mirror in the reference arm. The method 
produces high-quality 2D images. Glucose concentration is linked to variations in interstitial fluids' 
refractive index. The scattering coefficient [101] is changed by variations in the refractive index which 
indirectly indicates glucose levels. 
Polarimetry 
Polarimetry is a highly accurate technique frequently used in clinical laboratories for glucose monitoring 
[116]. This method measures the rotation of a light vector influenced by the thickness, temperature, and 
concentration of blood glucose. When polarized light travels through a glucose-containing medium, it 
can become depolarized due to high scattering through the skin. To mitigate this, polarimetric tests are 
conducted through eye, allowing light to go through the cornea. The approach remains unchanged by 
variations in temperature and blood pH levels [117]. 
IV. Related Work and Literature survey: 
Tjahjadi, H. et al [1] presented a number of state-of-the-art non-invasive methods that use 
photoplethysmography (PPG) signals to gauge BGL (blood glucose levels). Artificial intelligence 
algorithms can be used to carry out these procedures accurately and efficiently. Blood glucose is the most 
crucial indicator for determining whether a person has health problems. The PPG signal is a reflection of 
blood circulation. PPG-based BGL measurement using AI is a non-invasive measurement technique 
because BGL measurement is still invasive nowadays. They studied the information gathered from 2009 
to 2022 to investigate how this technology has been developed. It appeared that non-invasive BGL using 
PPG signals and AI technologies has a bright future. The results of the methodological mapping in this 
evaluation could serve as a guide for future research when selecting which BGL measurement 
methodology to employ.  
Figure 8 illustrates how the PPG data was collected by employing a finger sensor that is non-invasive. 
Every PPG signal is categorized as "normal" or "diabetic" according to the glucose meter measurement 
findings. The machine learning algorithm processed the PPG signal to generate a classification for the 
patient. After categorization was finished and compared to this categorization produced with a 
glucometer, the results were placed into the confusion matrix [9]. PPG functions just as well when using 
DL or ML techniques [12]. 
 

 
Fig. 8. An illustration of a non-invasive BGL classification system that detects diabetes early through the 
use of ML technique as per PPG data. phases in the processing include data gathering, segmenting it, 
labelling it and classifying the outcomes [9]. 
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Srinivasan, V. B. et al [2] provided a CNN-based Deep Learning classifier as a non-invasive approach. To 
diagnose diabetes, they employ the scalograms produced from transmissive PPG signals gathered from 
the MIMIC-III database. A little altered VGGNet model was trained with 584 patient data from various 
sets of inputs. Every patient receives a probabilistic diabetes score from them, which is then utilized to 
divide the patient population into those with and without diabetes. Using a combination of PPG signals, 
classification of hypertension, age, and gender as inputs, the finest model was able to provide an accuracy 
of 76.34% and an AUC of 0.830 on 224 test subjects. They have successfully used as one of the earliest 
CNN-based techniques in the literature to use the MIMIC-III waveforms dataset to detect diabetes. 

 
Fig 9: The A CNN-based classifier for predicting diabetes is made up of four parts: a fully connected 
block, a convolutional block, a scalogram generator, and preprocessing. 
To enable patients and the general public to receive comfortable healthcare services Liu, J.et al [3] created 
a glucose monitoring device that is non-invasive employing Edge-AI for connected healthcare. In this 
study, a number of predictive algorithm models are used to translate the physical signal value to the actual 
blood glucose measurement. They did this by using a self-built infrared research device having a peak 
wavelength of 2900 nm and a wavenumber of 3448 cm−1. Separate measurements and analyses are 
performed on the transmittance and reflectance signals. According to the results, the transmittance and 
reflectance signals (R2=0.990, R2=0.984) both meet performance expectations. EGA (Clarke Error Grid 
Analysis) is also used to assess and display the outcomes. According to the EGA data, regions A and B 
contain nearly all of the projected values, making them clinically correct and uncritical choices. They 
demonstrated how the technology for non-invasive blood glucose monitoring can offer strong technical 
support to linked healthcare services by combining smart device and Edge-AI convergence. 
 

 
Fig 10: Measurement system with data collection and predictive model 
Mary, L. J. [4] et al offered a process for creating a hybrid AI model that uses patient data to identify 
diabetes. The device provides correct and constant details on the wearer's health state by combining body 
vitals calculated with a smartwatch that has a bioactive sensor. The hybrid model achieves a high degree 
of accuracy in diabetes diagnosis by combining classical AI computations with DL. The framework gathers 
information on a wide range of physiological measures, such as pulse, skin conductance, and circulatory 
strain—all of which are well-established to be highly correlated with diabetes. Before the collected data is 
used to build the hybrid model, it is pre-processed. The regular AI calculation is used to categorize the 
data into diabetes or non-diabetic groups, while the profound learning calculation is used to exclude 
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important level highlights from the raw data. The hybrid method increases the accuracy of diabetes 
localization by fusing the benefits of standard AI with DL.  
The advent of photoplethysmography as a non-invasive approach for measuring blood sugar levels in 
diabetes care provides a substitute to invasive technologies' drawbacks. It has been demonstrated that 
applying AI technology to PPG signals for non-invasive blood glucose level (BGL) measurement using ML 
or DL methodologies improve the resulting performance. Susana, E. et al [5] presented a quick overview 
of the latest and planned technological advancements in photoplethysmography-based monitoring blood 
glucose levels without invasive procedures. The research's main focus is on the prospects and limitations 
for furthering this line of inquiry.  
Gade, A. et al [6] introduced a novel model based on exhaled breath and NICBGM. 
Here the pre-processing work was done using median filtering (MF). Next, the following are extracted: " 
Continuous Wavelet Transform (CWT), Improved Discrete Wavelet Transform (DWT), QT intervals, R-
peak detection, Entropy-based feature, PR intervals and short-time Fourier transformation (I-STFT)". 
Moreover, the best features are selected and run via a hybrid technique that combines "Long Short-Term 
Memory (LSTM) and Deep Max out (DMO)". DMO and LSTM then take the mean to get the desired 
outcome. To optimize the LSTM weights in this case, the WBU-HGSO or Wild Beest Updated HGSO 
model is employed. An analysis demonstrating the WBU-HGSO-based model's superiority is the last 
phase.  

 
Fig 11: Diagrammatic model of the selected plan. 
Joshi, A. M. et al [7] presented a brand-new non-intrusive wearable consumer gadget known as iGLU 2.0 
utilized by customers to accurately track their blood sugar levels over time. We have created a new brief 
spectroscopy in the near infrared (NIR) range that is used in this gadget. It incorporates IoMT (Internet 
of Medical Things) for intelligent healthcare, in which users and caregivers can access and store healthcare 
data on the cloud. The regression model that was optimized and analysed is healthy, prediabetic and 
diabetic individuals to verify and  adjust the system.. The mechanism for accurate measurement in iGLU 
2.0 is then implemented for serum glucose level using the robust regression models. AvgE (Average Error) 
and mARD (Mean Absolute Relative Difference) which are computed as 6.09% and 6.07% respectively 
for capillary blood glucose prediction and estimated as 4.88% and 4.86% respectively for serum glucose, 
are used to validate the performance of iGLU 2.0. 
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Fig 12: top-level illustration of the iGLU 2.0 gadget. 
For the precise measurement of serum glucose levels, a novel dual NIR spectroscopy system combining 
reflection and absorption spectroscopy at 940nm and 1300 nm has been presented in Figure 12 process 
flow 

 
Fig 13: The device's validation and calibration process flow. 
Fig. 13 depicts the processes in the calibration and validation procedure. To estimate the performance, 
RMSE (Root Mean Square Error), the MAD (Mean Absolute Deviation), mARD, and AvgE are 
computed. 

 
Fig 10: The model utilized for calibration is a Deep Neural Network (DNN). 
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Applying sigmoid activation functions to the suggested DNN models has been done. The Levenberg-
Marquardt backpropagation algorithm is used to instruct the models [36]. Figure 10 displays the DNN 
model's diagram. The DNN model's overall accuracy was found to be highest when it had ten hidden 
layers. 
Table 2: A Comparative Analysis of Advanced Techniques for Glucose Measurement 

Ref. 
No. 

Significant Contribution Methodology/Model 
used 

Performance Limitations 

[2] 
 
 

creation of a CNN-based classification 
algorithm that can dynamically acquire 
the attributes of the diabetes patients 
from PPG scalograms by utilizing 
metadata and PPG signals. 
 

CNN-based classifier, 
scalogram creation and 
pre-processing. 
 

With 224 test patients, 
the optimal model 
created by combining 
PPG signals, gender, age 
and hypertension 
classification as inputs 
achieves an accuracy of 
76.34%, specificity of 
76.11%, AUC of 0.830 
and sensitivity of 
76.66%  

This can be further 
enhanced by 
incorporating 
additional MIMIC-
III dataset data to 
the training 
dataset, which 
could increase our 
model's 
performance and 
enable it to pass the 
FPG test. 
 

[3] 
 
 
 
 
 
 
 

Utilized a homemade IR measurement 
device having a wavelength of 2900 nm 
and a peak wavenumber of 3448 cm−1, 
which determine the value of physical 
signal. Then, applied several prediction 
algorithm models to correlate physical 
signal with actual amount of blood 
glucose. Separate measurements and 
analyses done for the transmittance and 
reflectance signals.  

(i)For physical data 
collection a self-
developed equipment 
with mid-infrared 
diodes is used. 
On the transmitting 
end, Arduino 
produces PWM waves 
and on the other side, 
to collect the signal 
and decrease the noise 
arduino is utilised. 

The transmittance 
prediction performance 
of the signal is 
determined by XGBoost 
(R2=0.990, 
RMSE=3.300). 
AdaBoost provides the 
top performance in 
predictions for the 
reflectance signal 
(R2=0.984, 
RMSE=4.151). 

The absence of a 
significant no. of 
samples of data is 
the study's 
limitation because 
it can be difficult to 
obtain huge 
amounts of data 
quickly.  
 

[4] recommended solution provides 
continuous, non-invasive checking 
method that lowers false positives and 
increases accuracy by utilizing ML 
algorithms and wearable technologies. 
This yield a sizable quantity of data for 
study, pinpoint risk factors of diabetes, 
and offer certain therapies to halt the 
progression of the illness.  
 

Algorithm for 
Predicting Blood 
Glucose: i) Gather 
patient data with 
various parameter 
values. 
ii) Split the collected 
data into two sets, one 
for testing and the 
other for training the 
model.  
iii) Using the training 
data, build a linear 
regression model with 
HBCA1 as the target 
variable and other 
variables as attributes. 
iv) Using the training 
data, build a logistic 
regression model with 

Achieves MAD 
6.82(mg/dl),  
mARD10.64(%)  
RMSE 9.14 (mg/dl) and 
AvgE 
9.033% and CEG(A&B) 
100% 

-- 
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the presence of 
diabetes as the goal 
variable and the other 
factors as input 
features.  
v) Use the subsequent 
procedures to merge 
the two models:  
In order to predict the 
blood glucose level, use 
the linear regression 
model and the smart 
watch's input data. 
Identify the presence 
of diabetes by 
incorporating the 
anticipated BGL into 
the logistic regression 
model as an additional 
input characteristic.  
vi) Make use of the test 
data to assess the 
performance of hybrid 
model.  
vii) Repeat steps 3-6 
with different 
combinations of target 
variables and input 
features to find the 
best model.  
viii) After the 
identification of best 
model, use the model 
to predict BGL and the 
presence of diabetes in 
real time by installing 
it on the wristwatch. 

[6] i) suggests using the NICBGM model, 
which is where attributes like enhanced 
STFT, DWT, and CWT, as well as I-
EWF, R-peak detection, QT intervals, 
PR intervals, and entropy-based features 
are developed.  
ii) the WBU-HGSO algorithm is used to 
choose features in the best possible way.  
iii) after that, HC (DMO and LSTM) is 
used to classify the resulting features.  
iv) uses the WBU-HGSO technique to 
optimize the LSTM weights. 

suggested an exhaled 
breath scheme-based 
NICBGM-based 
model where the 
signals were pre-
processed using MF. 
After that, the 
following were 
extracted: QT 
intervals, PR intervals, 
I-EWF, R-peak 
detection, entropy-
based features, 
enhanced STFT, 
DWT, and CWT. 

For the maximal 
scenario, WBU-HGSO + 
HC achieved an 
accuracy of 0.92; in 
contrast, BI-GRU, DBN, 
RNN, CNN, SVM, HC 
+ HGSO, HC + WBHO, 
SCMP + HC, and 
APEHBE + Ensemble 
classifier obtained lower 
accuracy. WBU-HGSO 
+ HC produced higher 
outputs in the mean 
scenario. 
The WBU-HGSO +HC 

The primary 
disadvantage is that 
it monitors 
interstitial glucose 
levels rather than 
blood glucose 
levels in real time, 
which results in a 
gap in the 
treatment of 
hyperglycemic 
patients. Analysis 
of large datasets 
have to be taken 
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Additionally, the best 
features were chosen 
and subsequently run 
utilizing a hybrid plan 
that blends LSTM and 
DMO. The final, 
superior result was 
then obtained by 
averaging the LSTM 
and DMO values. In 
this case, WBU-HGSO 
technique was utilized 
to optimize the LSTM 
weights. 

has improved to 98% of 
accuracy at the 60th LP.  
 

into consideration 
in the future.  
 

[7] i) a novel dual NIR spectroscopy system 
combining reflection and absorption 
spectroscopy at 940 nm and at 1300 nm 
has been presented for the exact 
measurement of serum glucose levels.  
ii) new polynomial regression and DNN 
models have been constructed 
depending on dual-NIR spectroscopy 
and real-life serum data for accurate 
glucose level prediction.  
iii) The acquisition module's design 
makes use of NIR LEDs with spectral 
wavelengths of 1300 nm and 940 nm to 
gather BGL measurement sample.  
iv) A continuous glucose monitoring 
apparatus is created that can assess blood 
glucose levels for all types of diabetics, 
ranging from 80 to 420 mg/dl. 
 

depending on the 
concept of Near-
Infrared (NIR) optical 
spectroscopy a novel 
wearable glucometer 
provides non-intrusive 
BGL measurement. 
Regression analysis 
(Multiple Polynomial 
Regression (MPR3)) is 
utilized to further 
process  collected data 
for estimation of sugar 
levels. With the use of 
calibrated ML models 
(DNN) and dual NIR 
spectroscopy based on 
absorbance and 
reflectance, the 
suggested wearable 
glucose monitor  
delivers an accurate 
assessment of serum 
glucose levels. 
 

mARD and AvgE are 
computed as 6.07% and 
6.09% respectively, for 
capillary blood glucose 
prediction and 
calculated as 4.86% and 
4.88% and respectively 
for serum glucose. 
 

It requires the 
development in 
ML models for the 
necessary insulin 
production for 
critically diabetic 
patients' automatic 
insulin delivery in 
iGLU 2.0 
activated.  IoMT  
framework that 
Investigating the 
effects of 
continuous glucose 
monitoring using 
iGLU by other  
important medical 
disorders like 
epileptic seizures 
will also be 
emphasized. The 
confidentiality and 
safety of individual 
health information 
in  future, as well as 
solutions for the 
IoMT-enabled 
iGLU device is 
needed. 

[8] i)A novel method for diagnosing liver 
illness has been chosen, which combines 
physiological and iris characteristics.  
ii) Three hospitals in 
Islamabad/Rawalpindi, Pakistan, 
provided 879 patients' primary data.  
iii) Eleven cutting-edge classifiers from 
various classification model families were 
examined for the detection of chronic 

The non-invasive 
diagnostic for chronic 
liver disease that is 
being presented uses 
an ensemble 
classification model 
that analyzes 
physiological and iris 
characteristics. 

i)The model that was 
presented had the best 
results, particularly in 
terms of F-Score, 
specificity, and accuracy.  
ii) For the comparative 
analysis, eleven different 
classifiers were used.  
iii) Higher-quality data 

i)The model is 
restricted to the 
early identification 
of chronic liver 
disease. It suggests 
consultation with a 
medical 
professional for the 
kind of chronic 
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liver disease.  
iv) The ensemble approach, or stack 
learning, was used to combine numerous 
classifiers in order to boost accuracy.  
v) To ensure good data quality, the 
physiological characteristics' missing 
values were filled in using KNN 
technique. 
 

Furthermore, stack 
learning was used to 
merge eleven distinct 
cutting-edge machine 
learning methods.  
 

was obtained through 
completing the missed 
data in physiological 
data utilizing the KNN 
algorithm. 
 

liver disease and its 
thorough 
diagnosis. 
ii) The model takes 
much time to be 
trained.  
iii) The intricacy 
has increased due 
to the stack 
learning 
combination of 
eleven classifiers.  
iv) To get 98% 
accuracy, the 
model needs a 
sizable data set. 
The classification 
of liver disease will 
require a large 
database. 

[9] The diabetes’s causes and classification, 
the framework information on non-
intrusive monitoring of blood glucose, 
the fundamentals of optical 
technologies, are all introduced. The 
fiber laser's fundamentals, construction 
and essential properties of light pulse 
output are then covered. It is possible to 
employ fiber lasers to replace other light 
sources regarding non-invasive blood 
glucose testing, and five optical methods 
are covered in detail. Thirdly, it explains 
the techniques for assessing the device's 
performance, several crucial algorithms, 
and the method of processing electrical 
signals for non-invasive blood glucose 
testing systems.  

 This review explains the 
methods for evaluating 
the non-invasive blood 
glucose monitoring 
device's performance, as 
well as some key 
algorithms and electrical 
signal processing in the 
device.  
 

--- 

[10] The viability of employing commercially 
available WDs for noninvasive BG level 
assessment in diabetic patients is further 
supported by this study. By using AI 
models, we were able to infer the 
association linking glycemic measures 
and attributes that may be obtained via 
non-invasive Wearable Devices with a 
high level of precision.  

The study utilised an 
open-source dataset 
that had information 
on 13 subjects by age 
group who were 
diagnosed with WDs. 
The dataset included 
BGL readings, body 
temperature, sweating, 
shivering, heart rate, 
diastolic and systolic 
blood pressure, and 
blood oxygen level 
(SPO2). feature 
engineering, Data 

By using AI models, it 
enables to assess the 
association between 
features that may be 
extracted from non-
invasive WDs and 
glucose measures with a 
high degree of accuracy 
and RMSE range from 
0.099 to 0.197.  
 

-- 
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collection, ML model 
construction and 
choosing and metrics 
calculation  and 
assessment were all 
part of our 
experimental design.  

[11] Developing, creating, and verifying a 
wearable IoMT PPG gadget for non-
invasive BGL assessment.  
A new input-reinforced CNN named 
GlucoNet designed and developed to 
calculate PPG signal blood glucose.  
• GlucoNet's analogy with current 
architectures  
• GlucoNet's deployment and 
performance assessment as an edge AI 
mode. 

Algorithm: 
Gluconet 
Architecture, 
 
Device used: 
PPG sensor, 
 
Dataset used: Among 
the 357 participants, 
88 had pre-diabetes 
and 124 have diabetes; 
used for more than 
21,000 glucose 
readings; only time 
series PPG signals were 
used. 

100% of predictions 
were made in zones A 
(55%) and B (45%) of 
the Clarke error grid, 
with an MAE of 25 
mg/dL and a MAPE of 
17.8% (±12.8%). 
An end-to-end glucose 
monitoring system with 
edge AI that is 
demographic-agnostic 
and doesn't require 
feature engineering. 

-- 

[13] The PIDD dataset and information 
gathered from the iGLU, an intelligent 
glucose monitor, are used for non-
invasive BGL measurement. ML-based 
regression techniques are applied. Clarke 
Error Grid examination was conducted 
on iGLU dataset to validate the 
proposed method's feasibility. 
Additionally, the suggested ML model is 
compared to other similar studies using 
various performance evaluation metrics, 
such as Mean Absolute Deviation 
(MAD), mean Relative Root Mean 
Square Error (RMSE) and Absolute 
Deviation (mRAD) and Average Error 
(AvgE).  

ML algorithms 
including K-Nearest 
Neighbors (KNN), 
Random Forest, 
Linear SVC, Gradient 
Boosting, Decision 
Tree, Gaussian Naïve 
Bayes, and Logistic 
Regression and NN 
were employed to 
identify diabetic 
samples. Additionally, 
XGBoost Regression, 
Multi-Polynomial 
Regression, Linear 
Regression, Support 
Vector Regression, 
Decision Tree, 
Random Forest, and 
NN were employed to 
forecast blood sugar 
levels using data 
collected by the iGLU 
device. 

The AUC value of 0.87 
for both logistic 
regression and random 
forest suggests the 
effective diabetes 
prediction of our model. 
A decision tree with 
70% accuracy and an 
RMSE of 8.56% can also 
be employed to predict 
the glucose level. 
 

more work be done 
to address the 
privacy and 
security concerns 
with continuous 
glucose 
monitoring. Efforts 
would also be made 
to incorporate a 
strong mechanism 
for type 1 diabetes 
patients' insulin 
medication 
delivery. 
 

 
V. Obstacles in Non-invasive Blood glucose Assessment: 
 There are many difficulties in commercializing non-invasive assessment of glucose level devices. Several 
key issues remain unresolved, which pose significant obstacles to achieving accurate measurement of non-
invasive glucose. These difficulties are illustrated. Researchers have recently focused on addressing the 
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precise measurement of glucose in hypoglycemic patients and ensuring long-term continuous glucose 
monitoring without instantaneous errors. Factors such as body temperature, blood pressure and 
humidity, which can affect BGL measurement values, have not been adequately considered in the 
literature. Additionally, cost-effective and portable solutions for continuous glucose monitoring have not 
been properly addressed. 
Achieving accurate glucose measurement within the range of 40 mg/dl to 450 mg/dl continues to be a 
significant challenge. Additionally, effectively integrating glucometers with the IoMT for continuous 
cloud-based data logging has not yet been fully addressed. Developing a mathematical model for automatic 
insulin secretion based on real-time glucose readings within an internet framework still requires improved 
solutions. Privacy and security concerns related to insulin and blood glucose measurement systems also 
remain unresolved. Finally, efficient power management mechanisms for continuous glucose 
measurement with insulin delivery systems need further development. 
 
VI. CONCLUSION 
The study provides an overview of BG measurement, controlling mechanisms, and continuous 
monitoring strategies. Numerous methods have been described in the state of the art as proofs-of-concept, 
demonstrating a strong connection between device response and the reference value for blood glucose. 
Some techniques are not implemented for commercial purposes. Some approaches are neither accurate 
nor cost-effective solutions. The prior technologies are discussed with design strategies, observed issues, 
and measurement limitations. Due to the limitations and issues, advancements have also been discussed 
in terms of solutions. The main focus of the paper is to demonstrate various techniques with 
corresponding issues and solutions, along with advancements. Optical detection uses short NIR, which 
has been considered a future appliance or prototype device that should be more efficient in various zones 
to facilitate ongoing health surveillance and viable solutions to reduce the shortcomings of all other 
techniques. Various methodologies may be utilized in the future for precise glucose monitoring. 
Consumer devices need to be highly effective across different areas to facilitate continuous health 
monitoring. They should be regularly used as portable devices for real-time applications. Future devices 
should be low-cost and user friendly for continuous health monitoring systems. 
VII. Future work:  
The future plan for a non-invasive BGL measurement device is highlighted in Fig. 33, which represents 
the future milestone with significant features. There is a requirement to develop a portable, durable, and 
user-friendly device so that it can be used on a large scale all over the world. The upcoming non-invasive 
devices should be able to check blood glucose for all age pepole precisely. The patient’s data should be 
safe and confidential. Access to the data is restricted to patients and medical professionals only. The 
upcoming device should be low-power and send a warning signal to patients after reaching at alarm level. 
These expected features are future milestones. An advanced IoMT framework integration for the device 
is necessary. This cutting-edge IoMT framework will connect the future measuring device with all nearby 
diabetes care centers for optimum care. Combining food intake and glucose measurement of particular 
can significantly provide the root cause and corresponding treatment for smart healthcare [119]. The 
future of technology expects reliable, portable, and user-friendly devices. The feature of borderline cross 
indication on the device should be explored in future measuring devices. Everyone will be aware to check 
their own BG level to analyze the body’s proper function. For future advancements, it is essential to have 
a secured device with comprehensive user control and authentication. A security framework based on 
Physical Unclonable Function (PUF) is beneficial for IoMT devices [118], [120]. The potential of an 
appropriate H-CPS that incorporates blockchain-based data and device management should also be 
evaluated [121], [122]. Glucose metres could be combined with wearables and food diaries to track 
individual reactions to various meals and activities. This would enable people to customize their diet and 
exercise routines for better performance and health. 
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