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Abstract: Diabetes is a persistent illness in which a person's body malfunctions to metabolize the glucose in blood
effectively. The absence of insulin in the human body is source of diabetes. The most crucial component of health care
is the ongoing checking of blood sugar. The majority of effective glucose level monitoring devices rely on blood pricking
technique. For frequent measurement, however, this kind of approach might not be the best choice. The comprehensive
review of glucose testing methods is presented in this study. The study discusses several non-invasive glucose testing
techniques as well as smart medical technology for glucose management. The configuration of an accurate
measurement instrument is required to meet the necessity for non-intrusive and painless blood sugar level checking
system. The issue of repeatedly puncturing blood samples for blood samples is solved by non-invasive glucoselevel
checking devices for clinical tests. To provide continuous health monitoring, a Smart Healthcare framework based on
the IoMT (Internet-Medical Things) integrated H-CPS (Healthcare Cyber-Physical System) is needed for glucose
measurement. In addition, a few consumer products and a few cuttingedge glucose measurement techniques are
covered in the study. The study also included a list of unresolved issues and challenges related to measuring glucose.

Keywords: Diabetes, Glucose monitoring, Non-invasive, Smart Healthcare, Internet of Medical Things, Artificial
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INTRODUCTION

Glucose is a crucial energy source that allows the body to work well. When our blood sugar levels are
within the normal range, we typically don't notice them. However, when these levels deviate from the
recommended limits, we experience negative effects on our daily functioning. Glucose is a simple sugar,
classified as a monosaccharide, which means it consists of a single sugar molecule. Other monosaccharides
include fructose, glycogen, and D-ribose. In addition to fats, glucose is one of the body's preferred energy
sources. We obtain glucose from foods containing gluten, fruits, vegetables and dairy products. While we
eat, our body signals the pancreas to release necessary amount of insulin in response to the rise in glucose
levels. Some individuals cannot produce sufficient insulin naturally, so they require insulin injections to
manage their glucose levels.Approximately, there are now 463 million adults with diabetes worldwide and
by 2045, that figure is projected to increase up to 700 million. The prevalence of diabetes is growing
rapidly in many of the countries. Seventy-nine percent of grown-up person having diabetes reside in low-
to-middle-income countries. Among people under 65, diabetes affects one in five, and one in two people
with diabetes are undiagnosed. Diabetes claimed 4.2 million lives in 2019 and led to in healthcare costs
of minimum 760 billion dollars, accounting for 10% of total disbursing on grown-up people. One in six
live births has diabetes during pregnancy, and more than 1.1 million children and young people have
type 1 diabetes. Additionally, 374 million persons are having an elevated risk of growing type 2 diabetes.
Diabetes is primarily categorized into three types (see Fig. 1). In Type 1 diabetes, the pancreas fails to
produce insulin, leading to a compromised immune system and an inability to generate insulin naturally.
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When enough insulin is not produced by the pancreas to maintain a proper glycemic profile, the type 2
diabetes occurs. Gestational diabetes typically develops in women during the later pregnancy phases.
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Fig 1: Different kinds of diabetes and their symptoms.

People with diabetes are at risk for chronic issues affecting essential organs and the neurological system.
It's recommended that diabetic patients see an eye specialist regularly for comprehensive check-ups.
Diabetes significantly enhances the risk of cataracts, which cloud the eye's lens and glaucoma, which raises
the risk of diabetic retinopathy, impacting the back of the eye. Patients should have their urine tested for
protein annually, as protein in urine stipulates kidney disease. High blood pressure can also lead to kidney
problems, so it's important to monitor blood pressure during healthcare visits. Individuals with diabetes
have a higher risk of heart disease and strokes which are the leading causes of death in diabetic patients.
Managing other risk factors, such as hypertension and high cholesterol, along with blood sugar levels, is
crucial. High blood sugar can lead to poor circulation and nerve damage, causing slow wound healing,
severe pain, and loss of sensation in the feet. In severe cases, this may necessitate the amputation of toes
or even the leg. Elevated blood sugar levels can affect the entire nervous system, leading to various types
of neuropathy.

Neuropathy in diabetics includes:

Peripheral neuropathy: Damages peripheral nerves, impacting extremities.

Gastroparesis: Disrupts the normal movement of food through the stomach.

Postural hypotension: Causes a drop in blood pressure due to changes in body position.

Uncontrolled diarrhea.

The best approach for managing these complications is to control blood glucose levels and maintain good
overall health. Diabetes occurs because the body is unable to use insulin efficiently or produces
insufficient amounts of it. Insulin is the primary hormone that regulates blood glucose levels. It enables
cells to absorb glucose for energy or storage. However, prolonged high blood glucose levels can lead to
hyperglycemia, while prolonged low levels can cause hypoglycemia. Hyperglycemia can result in severe
health issues such as heart disease, stroke, tissue damage, blindness, kidney failure and even death if
untreated. Hypoglycemia occurs due to inadequate insulin secretion, leading to a rapid drop in blood
glucose levels. Conversely, ineffective insulin use results in hyperglycemia, marked by high blood glucose
levels. Both conditions require lifelong monitoring and treatment, as there is no permanent cure.Current
glucose measurement methods for diabetic patients are mostly painful, invasive, time-consuming and
expensive. The conventional approach makes use of an electrochemical process which requires a blood
sample from a finger prick. A self-monitoring blood glucose device provides information about glucose
levels and sample collection time without requiring any expert support. Continuous glucose monitoring
(CGM) devices offer ongoing glucose level tracking, suitable for patients with high glucose levels.
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However, both methods involve discomfort and pain, with continuous monitoring posing risks of tissue
damage and infection.Since the early 2000s, endeavors have been made to evolve new non-invasive and
minimally invasive devices to reduce the discomfort and pain associated with traditional approaches. The
creation of a non-invasive device would permit millions of patients to check their blood sugar levels using
a non-invasive technology without creating any pain or permanent tissue damage, generating significant
demand. The World Health Organization (WHO) claims that there are currently 450 million diabetic
patients worldwide, projected to reach 700 million by the mid-2040s.Recent advancements have explored
the properties of glucose particles across different electromagnetic spectrum frequencies, including DC,
visible, ultrasound and near-infrared (NIR) regions. Promising results have been observed in the visible
and NIR regions, leading to the design and development of commercial devices. However, many of these
products are no longer in use as a result of subpar accuracy, sensitivity and selectivity. Those available on
the market have not yet matched the accuracy of conventional methods. This presents opportunities for
non-invasive glucose monitoring, such as combining multiple techniques to develop a more dependable
and economical glucose measurement device.Section 2 outlines the presently recognized techniques.
Section 3 details the gadgets and authorized technologies available for non-invasive and minimally
invasive monitoring. Section 4 explores the latest techniques and ongoing research in this field. Section
5 identifies the research gaps associated with these new methods. Finally, Section 6 ties together the
preceding sections, providing a comprehensive vision for future developments. Since 2010, the prevalence
of diabetes has increased worldwide [14]. 9.3% of the world's population (463 million) had diabetes in
2019. By 2030, that number is expected to rise to 10.2% (578 million), and by 2045, it will reach 10.9%
(700 million) [15]. Chronic diabetes is brought on by either insufficient insulin production by the
pancreas or inefficient insulin utilization by the body [16]. Insulin hormone facilitates the absorption of
glucose by body cells. In diabetes, blood glucose levels rise. Type 1, type 2, and gestational diabetes are
the three primary forms of the disease [17]. Untreated diabetes can lead to severe health complications,
including strokes, nerve damage, heart disease, kidney disease, and blindness. Managing diabetes involves
regular physical activity, a proper diet, and appropriate insulin dosages. Oral medications can also help
control diabetes in its early stages. Among adults, 5% of diagnosed cases are type 1 diabetes, while 90-
95% are type 2 diabetes. This highlights the need for devices that measure blood glucose level for quick
and continuous diagnosis [18]. Continuous monitoring of glucose levels is essential in diabetes
management. Repeated finger pricking using existing invasive methods can lead to blood-related
infections and trauma [19]. Therefore, developing real-time non-invasive devices is crucial. Currently,
there are few such devices on the market, and they are often very expensive [20, 21]. As the population
grows and resources become scarcer, the implementation of smart cities, which include smart healthcare,
is increasingly necessary [22]. Technologies such as the Al, big data, cloud computing and IoT use smart
healthcare to enhance effectiveness and user-friendliness [23]. Smart healthcare solutions are needed for
non-invasive diabetes detection, particularly in rural and remote areas where immediate medical facilities
are scarce [24]. Figure 2 illustrates smart healthcare for diabetes.
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Fig 2: Intelligent treatment for diabetes
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The primary challenges in advancing truly non-invasive glucose monitoring technologies include
achieving ease of use, accuracy and suitability for home use across diverse populations. A device that
successfully addresses these issues could significantly enhance the life quality for millions of diabetic
people worldwide [25]. This is particularly important as it reduces the need for frequent bedside visits,
especially for critically ill patients receiving intravenous insulin, which poses risks during pandemics like
COVID-19. For non-critically ill patients, a user-friendly non-invasive device can facilitate self-monitoring
of blood glucose levels for diabetes management [26]. The mHealth application can also transmit glucose
readings to doctors in remote locations. Therefore, creating a continuous glucose monitoring tool that is
practical, economical, secure, and offers real-time readings is the aim. This can be accomplished by
utilizing a non-invasive device paired with advanced post-processing algorithms, and integrating it with a
microcontroller that is programmed with an optimal ML algorithm to ensure quick results and high
accuracy.Previous research on glucose measurement encompasses invasive, non-invasive and minimally
invasive methods. Significant efforts have been made to develop continuous glucose monitoring systems
utilizing non-invasive techniques, both optical and non-optical. Optical methods include Raman
Spectroscopy, NIR Spectroscopy, and the PPG method. Figure 3 illustrates various blood glucose
measurement systems. Following data acquisition from sensors, researchers have focused on refining
computational models for accurate glucose level prediction. For example, Sejdinovic et al. developed an
artificial neural network to classify prediabetic and type 2 diabetic patients [27], testing the model with a
specific sample ratio. Ali€ et al. created an expert system using a feed-forward artificial neural network
(ANN) to classify metabolic syndrome (MetS) [28]. Another ANN was applied to predict lactose
intolerance [29], and a physiological behavior model was developed to simulate the glucose-insulin
regulatory mechanism [30]. Various neural networks have also been introduced for other medical
purposes, such as differentiating between cancer and non-cancer patients [31].The PPG method, a non-
invasive technique, employs sensors similar to those in pulse oximeters to record PPG signals. Paul et al.
developed a PPG-based blood glucose monitoring system using a pulse oximeter, where light intensity
variations at the receiver were used to predict glucose levels based on voltage changes with glucose
concentration [22]. Similarly, Monte-Moreno designed a PPG-based sensor for estimating blood glucose
using machine learning models [32]. Efforts in continuous glucose monitoring have also explored
wearable microsystems with minimally invasive approaches, including the first wearable device for
extracting glucose from the skin [33]. Optical Coherence Tomography (OCT), another non-invasive
method, estimates glucose based on the OCT slope [34]. Raman Spectroscopy, which relies on chemical
and molecular interactions, has been investigated for glucose estimation [35]. Attempts have also been
made to use saliva for non-invasive glucose detection [36, 37]. Ramashyamam et al. proposed NIR
spectroscopy-based glucose estimation using PPG with specific wavelengths (935 nm, 950 nm, and 1070
nm) and FPGA with an Artificial Neural Network [38]. A microcontroller-based, painless blood glucose
measurement system was explored [39]. Insulin pump-integrated diabetes management systems were
developed for improved glycemic control, and pulsed laser diodes were presented to collect photoacoustic
signals for glucose estimation [40]. The intelligent Glucometer iGLU, utilizing optical methods and
machine learning models, was built with the Internet of Medical Things (IoMT) framework for remote
monitoring [24]. This NIR spectroscopy-based gadget uses regression models to interpret three-channel
data in order to monitor glucose.Despite these advancements, many solutions face accuracy challenges.
The PPG method, which measures light intensity variations with blood volume, may not yield precise
glucose values. Wearable microstrip solutions are often too bulky for continuous glucose measurement.
OCT techniques can be time-consuming for glucose concentration estimation and may lack specificity
and sensitivity. Raman Spectroscopy solutions require significant space, affecting portability. Saliva-based
glucose detection is unreliable due to sample variability. Laser-based solutions are not ideal for frequent
glucose monitoring. Thus, short-wavelength NIR spectroscopy is taken the most effective method for

continuous glucose measurement, addressing many of these limitations.
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Fig 3: An outline of methods for measuring blood glucose

An overview of blood glucose measuring system measurement methods is provided in Fig. 3.

Technique for Glucose Measurement:

Currently, glucose monitoring is done either through laboratory-based techniques or home-based
monitoring, both of which are invasive and involve blood pricking. This process is inconvenient and
uncomfortable for users, often requiring multiple blood samples throughout the day, leading many
patients to avoid it. As a result, notable modifications in glycemic profiles may go overlooked due to
unexpected side effects and low patient conformity, potentially causing improper insulin dosages and
unrecognized food ingredient impacts. Despite their drawbacks, these methods are reliable because of
their high sensitivity and accuracy in glucose measurement.In recent years, novel approaches for glucose
measurement have been explored, focusing on physical detection principles rather than traditional
chemical methods. Non-invasive techniques, which do not require blood samples, utilize interstitial fluid
(ISF) to detect glucose molecules. Various attempts have been made to measure glucose through saliva,
sweat, tears, and the skin surface. However, achieving precise measurement, good sensitivity, and
reliability remains a significant challenge. Non-invasive methods could be ideal for Continuous Glucose
Monitoring (CGM) and self-monitoring purposes, allowing frequent daily measurements for better
glucose control and essential preventive measures for people with hypoglycemia and hyperglycemia. These
methods also aid dietitians and healthcare providers in preparing appropriate diet plans based on glucose
fluctuations.Following sensor data collection, numerous researchers have focused on developing optimal
computer models to accurately predict glucose levels.A multitude of novel research projects have surfaced,
necessitating a continuous updating of the existing data. As seen in Figure 4, one of these novel
techniques makes use of photoplethysmography (PPG).
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Fig 4: Methods for Measuring Blood Glucose.
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Methods for Measuring Glucose Levels: A General Outline

An overview of the several invasive, non-invasive, and minimally invasive glucose-level measuring
techniques is given in this section. Significant work has been done in these areas, particularly with non-
invasive techniques, which rely on both non-optical and optical techniques. Raman spectroscopy, NIR
spectroscopy, and the PPG method are a few of the optical approaches.

Invasive Techniques:

Economical electrochemical sensors are used in a large number of commercial continuous blood glucose
measuring devices to respond quickly for glucose detection in blood [42]. Lancets are used to prick the
blood for primary blood glucose monitoring in various commercial devices [44]. This process can be
distressing due to the need to prick the fingertip multiple times a day for regular observation [45].
Minimal-invasive biosensors for the purpose of monitoring glucose have been created using glucose
oxidase, requiring about Imm penetration into the skin for measurement [46]. Photometric techniques
have also been used to identify glucose in little amounts of blood [47].

Low-Invasive Techniques:

Low-invasive methods include the development of prototype sensors for frequent glucose tissue
monitoring [48]. These sensors are wearable and implanted on a membrane containing immobilized
glucose oxidase. Implantable devices for glucose monitoring have also been developed [49], as well as
biosensors designed for semi or minimal invasive glucose monitoring [50]. Wearable microsystems have
been explored for frequent glucose measurement [51]. Continuous glucose monitoring has been
attempted with microfabricated biosensors using a transponder chip [52] and semi-invasive Dexcom
sensors use the transponder chip's signal for calibration [53]. Glucose sensors have been integrated with
artificial pancreas systems for better diabetes control [54]. However, minimally invasive approaches often
face limitations in accuracy and may have shorter monitoring lifespans. One such wearable microsystem
for ongoing blood glucose monitoring, a minimally invasive technique is employed with a micro-actuator
containing shape memory alloy (SMA) to extract blood samples from the skin [55]. Despite its feasibility
and performance, the device is large and inconvenient.

Non-Invasive Methods:

Non-invasive measurement methods aim to provide painless and accurate solutions, avoiding the issues
associated with invasive and minimally invasive methods [56], [57]. For smart healthcare, portable non-
invasive glucose measuring devices have been created. These methods are more convenient for continuous
glucose measurement compared to invasive and semi-invasive methods [56], [57]. Optical methods for
non-intrusive glucose estimation like Raman spectroscopy, near-infrared spectroscopy, polarimetric,
scattering spectroscopy [60], and photoacoustic spectroscopy [61], are considered reliable and precise.
Researchers believe that a non-invasive estimation device would be much more user-friendly [62], [63].
For continuous glucose monitoring devices to be accurate, blood glucose must be calibrated to interstitial
glucose dynamics [64], [65]. Numerous calibration algorithms have been created and applied for portable
devices [66]. Significant efforts have been made to develop self-monitoring systems for glucose
measurement [67]. The Invasive and Non-invasive approaches for glucose measurement is shown in Fig 5

below.
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Fig 5: Invasive versus Noninvasive Glucose Measurement.

Invasive Versus Non-Invasive Glucose Measurements: The Trade-Offs

Current glucose estimation methods, widely used by the rising number of people with diabetes globally
are invasive, time-consuming, and unpleasant. They also require numerous disposable items, adding to
household expenses. Non-invasive glucose measurement techniques address these limitations and have
therefore become a major focus of research. However, there are trade-offs between these two methods, as

illustrated in Figure 6.
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Fig 6: Invasive and non-invasive glucose measurement: trade-offs.

Serum Glucose versus Capillary Glucose for Non-invasive Measurement

Serum glucose levels provide more precise readings that closely match actual blood glucose levels
compared to capillary glucose levels. Traditional methods can quickly measure capillary glucose, but
determining serum glucose is more challenging. Typically, capillary glucose levels are higher than serum
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glucose levels. Accurate blood glucose measurement is crucial for effective treatment decisions, making
serum glucose a more trustworthy indicator for prescription drugs. Despite this, measurement of capillary
blood glucose is more commonly used for diabetic patients. However, serum glucose measurement offers
better blood glucose control if done regularly, though it is not feasible for continuous monitoring. Serum
blood is also necessary for the laboratory examination of glycosylated hemoglobin (HbAlc), which
represents blood glucose levels over a period of 6-8 weeks. In non-invasive methods, Optical spectroscopy
is used to measure both serum and capillary glucose. This technique relies on detecting IR light absorption
and scattering by blood vessel glucose molecules. The fundamental process is comparable for both kinds,
but post-processing computational models differ to estimate blood glucose levels.

Non-invasive Technique for Estimating Salivary Glucose Levels:

Saliva-based glucose measurement [68] is highly convenient for both children and adults. There are two
types of saliva: total saliva and gland-specific saliva, collected from glands like the parotid, submandibular,
minor salivary glands and sublingual. This method is informed by patient history, including risk factors,
age, family history, diabetes duration, sex and associated illnesses. Other glucose measurement techniques
use photometric glucometers, requiring minimal sample volumes [69]. These rely on chemical test strips
reacting with the sample, capturing reflections from the test area to estimate glucose levels. This method
requires validation across a large patient population.

Methods for Non-invasive Assessment of Glucose Levels:

This segment delves into various noninvasive glucose-level monitoring methods, primarily using optical
techniques based on different spectroscopy methods. A comparative summary of noninvasive methods is
provided in Table 1.

Near-Infrared (NIR) Spectroscopy: This is called "infrared spectroscopy" or “vibration spectroscopy”.
This method involves exposing matter to infrared radiation [70], [71]. It includes reflection, scattering,
and absorption spectroscopy [72]. Infrared absorption causes molecular vibrations, creating a spectrum
band with wavelengths measured in cm™ [73]. NIR light (700-2500 nm) is applied to the skin (e.g., finger
or earlobe) [74], interacting with blood components, leading to scattering, absorption, and reflection [75],
[76]). The Beer-Lambert law [77], [78] states that the intensity of light received changes with the content
of glucose. The recipient measures glucose molecules in blood vessels [79].Comparing Short-Wave and
Long-Wave NIR Spectroscopy: Optical detection offers precise glucose measurement. FIR (Far Infrared)
techniques resonate with OH and CH bonds for the first overtone, performing well in vitro. Additionally,
fiber-optic sensors that use laser-based mid-IR spectroscopy facilitate the measurement of glucose in vitro,
using multivariate calibration for error analysis [80]. FIR has limited penetration depth compared to short-
wave NIR [81], which accurately detects glucose molecules. Specific wavelengths (e.g., 940 nm) have been
effective for precise glucose measurement [82].

NIR Spectroscopy-Based Methods: Literature proposes non-invasive glucose measurement with PPG and
NIR spectroscopy [87]. This involves NIR LEDs, photodetectors and an optode pair. At NIR wavelengths
(935 nm, 950 nm, 1070 nm), PPG signals are obtained via system with an analog frontend. An ANN is
used to estimate glucose levels on an FPGA. A microcontroller facilitates painless, autonomous blood
extraction [88]. The Blood Glucose Measurement system uses a microcontroller for glucose display and
insulin pump tracking for diabetes management. This method involves detecting pressure changes in
sensitive areas, generating sound waves [89]. Higher glucose concentrations produce stronger
photoacoustic signals, which are amplified for processing. Glucose estimation uses photoacoustic
amplitude from signals gathered by pulsed laser diodes and piezoelectric transducers, though this setup is
expensive and large. In previous studies, the stretching of glucose in the near-infrared region [84], [85]
has been identified, and the glucose absorption has been confirmed for the range of 1300 to 1350 nm.
In the investigation, the existence of the glucose component was detected at 1300 nm [86].

The iGLU or non-invasive blood glucose measurement device: The "Intelligent Glucose Meter (iGLU)"
[90] combines NIR spectroscopy [91] and machine learning for data acquisition. This device uses three
channels for data gathering, with 128 samples per second processed by a 16-bit ADC. Data is calibrated,
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validated and stored on the cloud for remote monitoring by patients and doctors using regression
algorithms. This low-cost device offers over 90% accuracy, but no real-time results are provided.

The Reasons NIR Is Suggested Over Other Noninvasive Methods: Numerous non-invasive methods,
including PPG signal analysis, NIR light spectroscopy, and impedance spectroscopy, have been explored.
However, non-optical methods lack precise measurement capabilities. PPG, a promising alternative, varies
with blood concentration [92], [93], limiting its accuracy. Saliva and sweat properties differ among
individuals, making these methods unreliable. Other spectroscopic techniques fail to offer portable, cost-
effective, and accurate glucose prediction. Long-wave NIR lacks sufficient penetration [81] to detect
glucose beneath the skin, whereas short-wave NIR is more effective for real-time detection [83], [94].
Mid-Infrared (MIR) Spectroscopy: MIR spectroscopy [95] effectively detects glucose molecule bending
and stretching. However, it has shallow skin penetration due to high water absorption, mainly measuring
ISF glucose in vivo. Some attempts have been made to measure glucose precisely through palm samples
and saliva.

Blood Glucose Level Measurement using PPG: PPG signals detect changes in blood volume through
light absorption [92] [93]. These changes result from blood volume fluctuations, not glucose molecules,
potentially causing inaccurate measurements. The differences between NIR and PPG are illustrated in
Fig. 7. The iGLU device uses NIR spectroscopy for precise glucose measurement. There are several blood
glucose detection techniques using PPG signals [96]. Various ML models have been used to forecast
blood sugar levels [98] based on PPG signals [97]. For glucose estimation, smart solutions using PPG
signals and intelligent algorithms have also been developed [99], [100], [101].

One advanced optical technique is Photo-Plethysmography (PPG), a non-invasive method for glucose
measurement in healthcare. PPG sensors, similar to pulse oximeters, operate in the near-infrared region
at 920 nm, measuring light absorption changes to obtain PPG signals. Glucose concentration inversely
affects light absorbance, and the resulting photocurrent is filtered and converted into measurable voltage
values. Lab view software processes these indicators for calculating blood glucose levels. Machine learning
techniques and PPG systems have been developed for the non-invasive assessment of glucose. This model
uses an activity detector, a PPG sensor and a signal processing module to analyze PPG waveform features,
correlating them with blood glucose levels.

In PPG, light intensity varies with blood volume changes, which are not specific to glucose molecules,
limiting the system's accuracy [7], [89]. Fig. 7 highlights these differences.
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Fig 7: Non-invasive Glucose Measurement: PPG vs. NIR [7], [89].
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Table 1: a qualitative analysis of various non-invasive methods for measuring blood sugar levels.

SL Techniques Advantages Disadvantages

No.

1. Raman Spectroscopy High specificity, low sensitivity to | Cells may be at risk when a laser radiation
water and temperature source is used for continuous glucose

monitoring (CGM). Furthermore, the
technique's low signal-to-noise ratio (SNR) is
caused by noise interference.

2. Photoacoustic spectroscopy | Compact and simple sensor | The signal is susceptible to interference from
design with non-harmful optical | acoustic noise, temperature changes, and
radiation for tissues. motion. Additionally, it may carry noise

from non-glucose blood components.

3. Optical Coherence | It offers high resolution and | Glucose readings can fluctuate due to skin

Tomography (OCT) excellent  signal-to-noise  ratio | conditions and movement, and the method
(SNR), remaining unaffected by | is affected by tissue inhomogeneity.
blood pressure and cardiac
activity.
4. Near-Infrared (NIR) | Transparent water in the near- | False  readings may  result  from
Spectroscopy infrared  spectrum  Materials | heterogeneous glucose distributions. The
required are rather inexpensive. | concentrations of glucose are too low for
The analyte concentration is | precise detection. elevated level of scattering
directly correlated with the signal | issues  with  glucose  determination's
strength. The bare minimum of | selectivity.
sample preparation is needed.
The method also functions when
there are substances present that
interfere, such as glass or plastic
containers
5. Polarimetry The prediction of glucose levels | It necessitates an external laser source and

remains relatively unaffected by
variations in laser intensity.

demands precise alignment with the eye,
being sensitive to alterations in pH and

temperature.

Raman Spectroscopy:

Raman spectroscopy detects changes in the polarization of glucose molecules [101] when they interact
with light. The technique involves the oscillation and rotation of molecules induced by incident LASER
light [102]. Blood glucose levels can be predicted [104] due to these molecular vibrations that affect
scattered light [103] emission. Compared to infrared spectroscopy [105], Raman spectroscopy offers
higher accuracy. Extensive research has validated its precise glucose measurement capabilities, including
in vivo testing. Figures 13 illustrate the basic framework and the use of Raman spectroscopy in
noninvasive glucose measurement.

Spectroscopy via Photoacoustics or Photoacoustic Spectroscopy:

Photoacoustic spectroscopy leverages the photoacoustic effect to generate acoustic pressure waves from
an object [106]. This method allows for the measurement of blood glucose [107] by having the item absorb
modulated light input. The high-intensity absorbed optical light based on the object's optical properties
[108], excites specific molecules at their resonant frequencies [109]. The absorbed light converts to heat,
causing localized temperature increases and thermal expansion [110], which generates acoustic pressure
[111]. These photoacoustic waves [113] are utilized to forecast the amount of glucose present at particular
resonant frequencies, that correspond to glucose molecule vibrations [112]. Prior research utilized 905
nm wavelength [114], [115] optical light for excitation.
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OCT or optical coherence tomography:

OCT relies on the principles of Spectroscopy of reflectance. This method involves passing low-coherent
light across a sample, within an interferometer. The interferometric signal including both backscattered
and reflected light is captured by a photodetector and a moving mirror in the reference arm. The method
produces high-quality 2D images. Glucose concentration is linked to variations in interstitial fluids'
refractive index. The scattering coefficient [101] is changed by variations in the refractive index which
indirectly indicates glucose levels.

Polarimetry

Polarimetry is a highly accurate technique frequently used in clinical laboratories for glucose monitoring
[116]. This method measures the rotation of a light vector influenced by the thickness, temperature, and
concentration of blood glucose. When polarized light travels through a glucose-containing medium, it
can become depolarized due to high scattering through the skin. To mitigate this, polarimetric tests are
conducted through eye, allowing light to go through the cornea. The approach remains unchanged by
variations in temperature and blood pH levels [117].

IV. Related Work and Literature survey:

Tjahjadi, H. et al [1] presented a number of state-ofthe-art non-invasive methods that use
photoplethysmography (PPG) signals to gauge BGL (blood glucose levels). Artificial intelligence
algorithms can be used to carry out these procedures accurately and efficiently. Blood glucose is the most
crucial indicator for determining whether a person has health problems. The PPG signal is a reflection of
blood circulation. PPG-based BGL measurement using Al is a non-invasive measurement technique
because BGL measurement is still invasive nowadays. They studied the information gathered from 2009
to 2022 to investigate how this technology has been developed. It appeared that non-invasive BGL using
PPG signals and Al technologies has a bright future. The results of the methodological mapping in this
evaluation could serve as a guide for future research when selecting which BGL measurement
methodology to employ.

Figure 8 illustrates how the PPG data was collected by employing a finger sensor that is non-invasive.
Every PPG signal is categorized as "normal" or "diabetic" according to the glucose meter measurement
findings. The machine learning algorithm processed the PPG signal to generate a classification for the
patient. After categorization was finished and compared to this categorization produced with a
glucometer, the results were placed into the confusion matrix [9]. PPG functions just as well when using

DL or ML techniques [12].

P =

proosesprenfiN

I Data Collection I

) \
& -
‘\: 400 raw

datasets of

I Invasive Glucometer I PPG from 80

E! QE

Machine
Learning Model

o By

Photoplethysmography
Caberes

300 training
) datasets and 100
i} [R—— testing datasets
N | —J

Fig. 8. An illustration of a non-invasive BGL classification system that detects diabetes early through the
use of ML technique as per PPG data. phases in the processing include data gathering, segmenting it,
labelling it and classifying the outcomes [9].
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Srinivasan, V. B. et al [2] provided a CNN-based Deep Learning classifier as a non-invasive approach. To
diagnose diabetes, they employ the scalograms produced from transmissive PPG signals gathered from
the MIMICHII database. A little altered VGGNet model was trained with 584 patient data from various
sets of inputs. Every patient receives a probabilistic diabetes score from them, which is then utilized to
divide the patient population into those with and without diabetes. Using a combination of PPG signals,
classification of hypertension, age, and gender as inputs, the finest model was able to provide an accuracy
of 76.34% and an AUC of 0.830 on 224 test subjects. They have successfully used as one of the earliest
CNN-based techniques in the literature to use the MIMIC-III waveforms dataset to detect diabetes.

! Probabilistic
¢ Preprocessed f
Raw signal - o - - — . * ‘ score o
8 signal = diabetic vs
) healthy
patients

MIMIC (more data) 2x C2: . . Dense (256)
2x C1: filters=64, filters=128, ﬁltz’r‘sci‘s . f,lt3" c‘;'l , D(E”S)e Classification
i . =256, ilters=512, 10
Input Layer kernel_size=(3,3) ker_nel_slze kernel_size=(3,3) kernel_size=(3,3) taver
PPG Signal length: 30 sec =(3,3) Dense(2)
Convolutional block Fully Connected block

Fig 9: The A CNN-based classifier for predicting diabetes is made up of four parts: a fully connected
block, a convolutional block, a scalogram generator, and preprocessing.

To enable patients and the general public to receive comfortable healthcare services Liu, J.et al [3] created
a glucose monitoring device that is non-invasive employing Edge-Al for connected healthcare. In this
study, a number of predictive algorithm models are used to translate the physical signal value to the actual
blood glucose measurement. They did this by using a self-built infrared research device having a peak
wavelength of 2900 nm and a wavenumber of 3448 cm~'. Separate measurements and analyses are
performed on the transmittance and reflectance signals. According to the results, the transmittance and
reflectance signals (R2=0.990, R2=0.984) both meet performance expectations. EGA (Clarke Error Grid
Analysis) is also used to assess and display the outcomes. According to the EGA data, regions A and B
contain nearly all of the projected values, making them clinically correct and uncritical choices. They
demonstrated how the technology for non-invasive blood glucose monitoring can offer strong technical
support to linked healthcare services by combining smart device and Edge-Al convergence.

Feature Extraction and Scaling
Feature Selection f
Dimensionality Reduction [ Infrared signal ——P—r—e—g!gtf»glucose level ]

Glucose Training Learnin, :
S :
atase Algorithm Final Model
Signals mestal | || L______ )
dataset
Preprocessing \__Learning \___ Evaluation / . Prediction /

l glucose level rise
After Lunch: Data measurement and collection

Data Collection

Model Selection
Cross-Validation
Hyperparameter Optimization

Before Lunch: Data measurement and collectionJ

Fig 10: Measurement system with data collection and predictive model

Mary, L. J. [4] et al offered a process for creating a hybrid Al model that uses patient data to identify
diabetes. The device provides correct and constant details on the wearer's health state by combining body
vitals calculated with a smartwatch that has a bioactive sensor. The hybrid model achieves a high degree
of accuracy in diabetes diagnosis by combining classical Al computations with DL. The framework gathers
information on a wide range of physiological measures, such as pulse, skin conductance, and circulatory
strain—all of which are well-established to be highly correlated with diabetes. Before the collected data is
used to build the hybrid model, it is pre-processed. The regular Al calculation is used to categorize the
data into diabetes or non-diabetic groups, while the profound learning calculation is used to exclude
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important level highlights from the raw data. The hybrid method increases the accuracy of diabetes
localization by fusing the benefits of standard Al with DL.

The advent of photoplethysmography as a non-invasive approach for measuring blood sugar levels in
diabetes care provides a substitute to invasive technologies' drawbacks. It has been demonstrated that
applying Al technology to PPG signals for non-invasive blood glucose level (BGL) measurement using ML
or DL methodologies improve the resulting performance. Susana, E. et al [5] presented a quick overview
of the latest and planned technological advancements in photoplethysmography-based monitoring blood
glucose levels without invasive procedures. The research's main focus is on the prospects and limitations
for furthering this line of inquiry.

Gade, A. et al [6] introduced a novel model based on exhaled breath and NICBGM.
Here the pre-processing work was done using median filtering (MF). Next, the following are extracted: "
Continuous Wavelet Transform (CWT), Improved Discrete Wavelet Transform (DWT), QT intervals, R-
peak detection, Entropy-based feature, PR intervals and short-time Fourier transformation (I-SSTFT)".
Moreover, the best features are selected and run via a hybrid technique that combines "Long Short-Term
Memory (LSTM) and Deep Max out (DMO)". DMO and LSTM then take the mean to get the desired
outcome. To optimize the LSTM weights in this case, the WBU-HGSO or Wild Beest Updated HGSO
model is employed. An analysis demonstrating the WBU-HGSO-based model's superiority is the last

phase.
Input breath

R Feature Extraction

l‘mpm ng H ‘ Improved EWF features

Entropy features
Median filter
R-peak detection
QT inte
PR intervals
- Improved STFT
WHU-HGSO ugomhm St S pee cwr
selection

Hybeid classification
PoLsT™ DMO

Classified result

Fig 11: Diagrammatic model of the selected plan.

Joshi, A. M. et al [7] presented a brand-new non-intrusive wearable consumer gadget known as iGLU 2.0
utilized by customers to accurately track their blood sugar levels over time. We have created a new brief
spectroscopy in the near infrared (NIR) range that is used in this gadget. It incorporates IoMT (Internet
of Medical Things) for intelligent healthcare, in which users and caregivers can access and store healthcare
data on the cloud. The regression model that was optimized and analysed is healthy, prediabetic and
diabetic individuals to verify and adjust the system.. The mechanism for accurate measurement in iGLU
2.0 is then implemented for serum glucose level using the robust regression models. AvgE (Average Error)
and mARD (Mean Absolute Relative Difference) which are computed as 6.09% and 6.07% respectively
for capillary blood glucose prediction and estimated as 4.88% and 4.86% respectively for serum glucose,
are used to validate the performance of iGLU 2.0.
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Fig 12: top-level illustration of the iGLU 2.0 gadget.
For the precise measurement of serum glucose levels, a novel dual NIR spectroscopy system combining

reflection and absorption spectroscopy at 940nm and 1300 nm has been presented in Figure 12 process
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Fig 13: The device's validation and calibration process flow.

Fig. 13 depicts the processes in the calibration and validation procedure. To estimate the performance,
RMSE (Root Mean Square Error), the MAD (Mean Absolute Deviation), mARD, and AvgE are
computed.
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Fig 10: The model utilized for calibration is a Deep Neural Network (DNN).
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Applying sigmoid activation functions to the suggested DNN models has been done. The Levenberg-

Marquardt backpropagation algorithm is used to instruct the models [36]. Figure 10 displays the DNN

model's diagram. The DNN model's overall accuracy was found to be highest when it had ten hidden

layers.

Table 2: A Comparative Analysis of Advanced Techniques for Glucose Measurement

Ref. | Significant Contribution Methodology/Model | Performance Limitations

No. used

(2] creation of a CNN-based classification | CNN-based classifier, | With 224 test patients, | This can be further
algorithm that can dynamically acquire | scalogram creation and | the  optimal = model | enhanced by
the attributes of the diabetes patients | pre-processing. created by combining | incorporating
from PPG scalograms by utilizing PPG signals, gender, age | additional MIMIC-
metadata and PPG signals. and hypertension | III dataset data to

classification as inputs | the training

achieves an accuracy of | dataset, which

76.34%, specificity of | could increase our

76.11%, AUC of 0.830 | model's

and  sensitivity  of | performance and

76.66% enable it to pass the
FPG test.

(3] Utilized a homemade IR measurement | (i)For physical data | The transmittance | The absence of a
device having a wavelength of 2900 nm | collection a  self- | prediction performance | significant no. of
and a peak wavenumber of 3448 cm—1, | developed equipment | of  the  signal is | samples of data is
which determine the value of physical | with mid-infrared | determined by XGBoost | the study's
signal. Then, applied several prediction | diodes is used. (R2=0.990, limitation because
algorithm models to correlate physical | On the transmitting | RMSE=3.300). it can be difficult to
signal with actual amount of blood | end, Arduino | AdaBoost provides the | obtain huge
glucose. Separate measurements and | produces PWM waves | top  performance in | amounts of data
analyses done for the transmittance and | and on the other side, | predictions  for  the | quickly.
reflectance signals. to collect the signal | reflectance signal

and decrease the noise | (R2=0.984,
arduino is utilised. RMSE=4.151).

(4] recommended solution provides | Algorithm for | Achieves MAD | -
continuous, non-invasive  checking | Predicting Blood | 6.82(mg/dl),
method that lowers false positives and | Glucose: i) Gather | mARD10.64(%)
increases accuracy by utilizing ML | patient data  with | RMSE 9.14 (mg/dl) and
algorithms and wearable technologies. | various parameter | AvgE
This yield a sizable quantity of data for | values. 9.033% and CEG(A&B)
study, pinpoint risk factors of diabetes, | ii) Split the collected | 100%

and offer certain therapies to halt the
progression of the illness.

data into two sets, one
for testing and the
other for training the
model.

iii) Using the training
data, build a linear
regression model with
HBCAL1 as the target
variable and other
variables as attributes.
iv) Using the training
data, build a logistic
regression model with
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the  presence of
diabetes as the goal
variable and the other
factors as input
features.

v) Use the subsequent
procedures to merge
the two  models:
In order to predict the
blood glucose level, use
the linear regression
model and the smart
watch's input data.
Identify the presence
of diabetes by
incorporating the
anticipated BGL into
the logistic regression
model as an additional
input  characteristic.
vi) Make use of the test
data to
performance of hybrid
model.

vii) Repeat steps 3-6
with different
combinations of target
variables and input
features to find the
best model.
viii) After the

identification of best

assess the

model, use the model
to predict BGL and the
presence of diabetes in
real time by installing
it on the wristwatch.

i) suggests using the NICBGM model,
which is where attributes like enhanced
STFT, DWT, and CWT, as well as I-
EWEF, R-peak detection, QT intervals,
PR intervals, and entropy-based features
are developed.

ii) the WBU-HGSO algorithm is used to
choose features in the best possible way.
iii) after that, HC (DMO and LSTM) is
used to classify the resulting features.

iv) uses the WBU-HGSO technique to
optimize the LSTM weights.

suggested an exhaled
breath  scheme-based
NICBGM-based

model  where  the
signals pre-
processed using MF.
After that, the
following were
extracted: QT
intervals, PR intervals,
[-LEWF, R-peak
detection, entropy-
based features,
enhanced STFT,
DWT, and CWT.

were

For the maximal
scenario, WBU-HGSO +
HC
accuracy of 0.92; in
contrast, BILGRU, DBN,
RNN, CNN, SVM, HC
+ HGSO, HC + WBHO,
SCMP + HC, and
APEHBE + Ensemble
classifier obtained lower
accuracy. WBU-HGSO
+ HC produced higher
outputs in the mean
scenario.

The WBU-HGSO +HC

achieved an

The primary
disadvantage is that
it monitors

interstitial glucose
levels rather than
blood glucose
levels in real time,
which results in a
gap in the

treatment of
hyperglycemic
patients.  Analysis

of large datasets
have to be taken
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Additionally, the best
features were chosen
and subsequently run
utilizing a hybrid plan
that blends LSTM and

DMO. The final,
superior result was
then obtained by

averaging the LSTM
and DMO values. In
this case, WBU-HGSO
technique was utilized
to optimize the LSTM
weights.

has improved to 98% of
accuracy at the 60th LP.

into consideration
in the future.

i) a novel dual NIR spectroscopy system
combining reflection and absorption
spectroscopy at 940 nm and at 1300 nm
has been presented for the
measurement of serum glucose levels.
ii) new polynomial regression and DNN
models
depending on dual-NIR spectroscopy
and real-life serum data for accurate

exact

have  been  constructed

glucose level prediction.
iii) The acquisition module's design
makes use of NIR LEDs with spectral
wavelengths of 1300 nm and 940 nm to
gather sample.
iv) A continuous glucose monitoring
apparatus is created that can assess blood

glucose levels for all types of diabetics,

ranging from 80 to 420 mg/dL

BGL measurement

depending on the
concept of  Near-
Infrared (NIR) optical
spectroscopy a novel
wearable  glucometer
provides non-intrusive
BGL
Regression analysis
(Multiple Polynomial
Regression (MPR3)) is
utilized to  further
process collected data
for estimation of sugar
levels. With the use of
calibrated ML models
(DNN) and dual NIR

spectroscopy based on

measurement.

absorbance and
reflectance, the
suggested wearable
glucose monitor
delivers an accurate

assessment of serum
glucose levels.

mARD and AvgE are
computed as 6.07% and
6.09% respectively, for
capillary blood glucose
prediction and
calculated as 4.86% and
4.88% and respectively
for serum glucose.

It requires the
development  in
ML models for the
necessary
production for
critically ~ diabetic
patients' automatic
insulin delivery in

insulin

iGLU 2.0
activated.  IoMT
framework that
Investigating  the
effects of

continuous glucose
monitoring using
iGLU by other
important medical
like

seizures

disorders
epileptic
will also be
emphasized. The
confidentiality and
safety of individual
health information
in future, as well as
solutions for the
IoMT-enabled
iGLU device is
needed.

8]

i)A novel method for diagnosing liver
illness has been chosen, which combines
physiological and iris characteristics.
ii) Three hospitals in
Islamabad/Rawalpindi, Pakistan,
provided 879 patients' primary data.
iii) Eleven cutting-edge classifiers from
various classification model families were
examined for the detection of chronic

The
diagnostic for chronic
liver disease that is
being presented uses
an ensemble
classification =~ model
that
physiological and iris
characteristics.

non-invasive

analyzes

iYThe model that was
presented had the best
results, particularly in
terms of F-Score,
specificity, and accuracy.
ii) For the comparative
analysis, eleven different
classifiers were used.
iii) Higher-quality data

iYThe model is
restricted to the
early identification
of chronic
disease. It suggests
consultation with a
medical

professional for the
kind of chronic

liver
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disease.
iv) The ensemble approach, or stack
learning, was used to combine numerous
classifiers in order to boost accuracy.
v) To ensure good data quality, the

liver

physiological characteristics' missing
values were filled in using KNN
technique.

stack
learning was used to
merge eleven distinct
cutting-edge machine
learning methods.

Furthermore,

was obtained through
completing the missed
data in physiological
data utilizing the KNN
algorithm.

liver disease and its
thorough

diagnosis.

ii) The model takes
much time to be
trained.

iii) The intricacy
has increased due
to the stack
learning

combination of
eleven classifiers.
iv) To get 98%
accuracy, the
model needs a
sizable data set.
The classification
of liver disease will
require a large
database.

The diabetes’s causes and classification,
the
intrusive monitoring of blood glucose,
the fundamentals of optical
technologies, are all introduced. The

framework information on non-

fiber laser's fundamentals, construction
and essential properties of light pulse
output are then covered. It is possible to
employ fiber lasers to replace other light
sources regarding non-invasive blood
glucose testing, and five optical methods
are covered in detail. Thirdly, it explains
the techniques for assessing the device's
performance, several crucial algorithms,
and the method of processing electrical
signals for non-invasive blood glucose
testing systems.

This review explains the
methods for evaluating
the non-invasive blood
glucose monitoring
device's performance, as
well  as key
algorithms and electrical
signal processing in the
device.

some

[10]

The viability of employing commercially
available WDs for noninvasive BG level
assessment in diabetic patients is further
supported by this study. By using Al
models, we were able to infer the
association linking glycemic measures
and attributes that may be obtained via
non-invasive Wearable Devices with a
high level of precision.

The study utilised an
open-source  dataset
that had information
on 13 subjects by age
group who  were
diagnosed with WDs.
The dataset included
BGL readings, body
temperature, sweating,
shivering, heart rate,
diastolic and systolic
blood pressure, and
blood oxygen level
(SPO2). feature

engineering, Data

By using Al models, it
to assess the
between
features that may be
extracted from non-
invasive ~ WDs  and
glucose measures with a
high degree of accuracy
and RMSE range from
0.099 to0 0.197.

enables
association
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collection, ML model
construction and
choosing and metrics

calculation and
assessment were all
part of our
experimental design.

[11] Developing, creating, and verifying a | Algorithm: 100% of predictions | ~
wearable [oMT PPG gadget for non- | Gluconet were made in zones A
invasive BGL assessment. | Architecture, (55%) and B (45%) of
A new inputreinforced CNN named the Clarke error grid,

GlucoNet designed and developed to | Device used: with an MAE of 25
calculate PPG signal blood glucose. | PPG sensor, mg/dL and a MAPE of
* GlucoNet's analogy with current 17.8% (£12.8%).
architectures Dataset used: Among | An end-to-end glucose
*  GlucoNet's  deployment and | the 357 participants, | monitoring system with
performance assessment as an edge Al | 88 had pre-diabetes | edge Al that s
mode. and 124 have diabetes; | demographic-agnostic

used for more than | and doesn't require

21,000 glucose | feature engineering.

readings; only time

series PPG signals were

used.

[13] The PIDD dataset and information | ML algorithms | The AUC value of 0.87 | more work be done
gathered from the iGLU, an intelligent | including ~ K-Nearest | for both logistic | to  address  the
glucose monitor, are used for non- | Neighbors (KNN), | regression and random | privacy and
invasive BGL measurement. ML-based | Random Forest, | forest  suggests  the | security concerns
regression techniques are applied. Clarke | Linear SVC, Gradient | effective diabetes | with  continuous
Error Grid examination was conducted | Boosting, Decision | prediction of our model. | glucose

on iGLU dataset to validate the
proposed method's feasibility.
Additionally, the suggested ML model is
compared to other similar studies using
various performance evaluation metrics,
such as Mean Absolute
(MAD), mean Relative Root Mean
Square Error (RMSE) and Absolute
Deviation (mRAD) and Average Error
(AvgE).

Deviation

Tree, Gaussian Naive
Bayes, and Logistic
Regression and NN
were employed to
identify diabetic
samples. Additionally,
XGBoost  Regression,
Multi-Polynomial
Regression,
Regression,
Vector
Decision

Linear
Support
Regression,
Tree,
Random Forest, and
NN were employed to
forecast blood sugar
levels  using  data
collected by the iGLU

device.

A decision tree with

70% accuracy and an
RMSE of 8.56% can also
be employed to predict
the glucose level.

monitoring. Efforts
would also be made
to incorporate a
strong mechanism
for type 1 diabetes
patients'

medication

insulin

delivery.

V. Obstacles in Non-invasive Blood glucose Assessment:

There are many difficulties in commercializing non-invasive assessment of glucose level devices. Several

key issues remain unresolved, which pose significant obstacles to achieving accurate measurement of non-

invasive glucose. These difficulties are illustrated. Researchers have recently focused on addressing the
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precise measurement of glucose in hypoglycemic patients and ensuring long-term continuous glucose
monitoring without instantaneous errors. Factors such as body temperature, blood pressure and
humidity, which can affect BGL measurement values, have not been adequately considered in the
literature. Additionally, cost-effective and portable solutions for continuous glucose monitoring have not
been properly addressed.

Achieving accurate glucose measurement within the range of 40 mg/dl to 450 mg/dl continues to be a
significant challenge. Additionally, effectively integrating glucometers with the IoMT for continuous
cloud-based data logging has not yet been fully addressed. Developing a mathematical model for automatic
insulin secretion based on real-time glucose readings within an internet framework still requires improved
solutions. Privacy and security concerns related to insulin and blood glucose measurement systems also
remain unresolved. Finally, efficient power management mechanisms for continuous glucose
measurement with insulin delivery systems need further development.

VI. CONCLUSION

The study provides an overview of BG measurement, controlling mechanisms, and continuous
monitoring strategies. Numerous methods have been described in the state of the art as proofs-of-concept,
demonstrating a strong connection between device response and the reference value for blood glucose.
Some techniques are not implemented for commercial purposes. Some approaches are neither accurate
nor cost-effective solutions. The prior technologies are discussed with design strategies, observed issues,
and measurement limitations. Due to the limitations and issues, advancements have also been discussed
in terms of solutions. The main focus of the paper is to demonstrate various techniques with
corresponding issues and solutions, along with advancements. Optical detection uses short NIR, which
has been considered a future appliance or prototype device that should be more efficient in various zones
to facilitate ongoing health surveillance and viable solutions to reduce the shortcomings of all other
techniques. Various methodologies may be utilized in the future for precise glucose monitoring.
Consumer devices need to be highly effective across different areas to facilitate continuous health
monitoring. They should be regularly used as portable devices for real-time applications. Future devices
should be low-cost and user friendly for continuous health monitoring systems.

VIL Future work:

The future plan for a non-invasive BGL measurement device is highlighted in Fig. 33, which represents
the future milestone with significant features. There is a requirement to develop a portable, durable, and
user-friendly device so that it can be used on a large scale all over the world. The upcoming non-invasive
devices should be able to check blood glucose for all age pepole precisely. The patient’s data should be
safe and confidential. Access to the data is restricted to patients and medical professionals only. The
upcoming device should be low-power and send a warning signal to patients after reaching at alarm level.
These expected features are future milestones. An advanced IoMT framework integration for the device
is necessary. This cutting-edge IoMT framework will connect the future measuring device with all nearby
diabetes care centers for optimum care. Combining food intake and glucose measurement of particular
can significantly provide the root cause and corresponding treatment for smart healthcare [119]. The
future of technology expects reliable, portable, and user-friendly devices. The feature of borderline cross
indication on the device should be explored in future measuring devices. Everyone will be aware to check
their own BG level to analyze the body’s proper function. For future advancements, it is essential to have
a secured device with comprehensive user control and authentication. A security framework based on
Physical Unclonable Function (PUF) is beneficial for [oMT devices [118], [120]. The potential of an
appropriate H-CPS that incorporates blockchain-based data and device management should also be
evaluated [121], [122]. Glucose metres could be combined with wearables and food diaries to track
individual reactions to various meals and activities. This would enable people to customize their diet and
exercise routines for better performance and health.
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