ISSN: 2229-7359 Vol. 11 No. 11s, 2025 https://theaspd.com/index.php

EFFECT OF DIFFERENT HYBRIDS, SPACING AND FERTILIZER DOSES ALONG WITH THEIR INTERACTION (2 WAY) ON GROWTH AND YIELD OF BROCCOLI (*Brassica oleracea* var. *italica* L.)

Priya Thakur¹, Amit Saurabh*², Ruksana Khan³, Tanvi Verma⁴, Surbhi Jagota⁵, Kanupriya⁶

- ^{1,3}Ph.D. Research Scholar, Department of Horticulture, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur (H.P.)-173101
- ²Associate Professor and Head, Department of Horticulture, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur (H.P.)-173101
- ^{4,5,6}M.Sc. Student, Department of Horticulture, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur (H.P.)-173101
- *dramitsaurabh@gmail.com

ABSTRACT

The present study was conducted to evaluate the effect of different hybrids, spacing and fertilizer doses along with their interaction (2 way) on growth and yield of broccoli (Brassica oleracea var. italica L.) at Department of Horticulture, Eternal University, Baru Sahib (Sirmaur). The experiment was conducted using a Factorial Randomized Block Design with three replications. The research trial consisted of three different hybrids (Saki, Diana, Besty), three spacings levels (60 × 30 cm, 60 × 45 cm and 60 × 60 cm) and three different fertilizer doses (75% RDF, 100% RDF, 125% RDF). The experimental results revealed that hybrid, spacing, fertilizer and their interaction showed significant effect on the vegetative characters and yield of broccoli. Among different hybrid, H3 (besty) recorded maximum plant height, plant spread, leaf area, stem girth and stem diameter. Whereas, number of leaves per plant and curd yield/m² found under hybrid H_2 (diana). In case of spacing levels, maximum plant height and curd yield/m² was observed under spacing S_1 (60 × 30 cm). Whereas, S₃ (60 × 60 cm) recorded maximum plant spread, number of leaves per plant, leaf area, stem girth and stem diameter. Among different fertilizer doses, maximum value of all vegetative and yield parameters was found from the highest dose of fertilizer F₃ (125% RDF) in both the years and pooled data. In respect of F×H interaction maximum plant height, plant spread, leaf area, stem girth and stem diameter were found under F3H3. Whereas, F_3H_2 recorded highest number of leaves per plant and curd yield/m². For F×S interaction maximum plant spread, number of leaves per plant, leaf area, stem girth and stem diameter were found under F_3S_3 . Whereas, F_3S_1 recorded highest plant height and curd yield/ m^2 . In case of H×S interaction, H₃S₁ recorded highest plant height, curd yield/m² was recorded highest under H₂S₁ and maximum number of leaves per plant was found under H₂S₃. Whereas, maximum plant spread, leaf area, stem girth and stem diameter were obtained from the treatment combinations H₃S₃. Keywords: Broccoli, Fertilizer, Growth, Hybrid, Interaction, Spacing, Yield

INTRODUCTION

Broccoli (*Brassica oleracea* var. *italica* L.) is one of the winter vegetable crops, which is more nutritious and profitable than other cole crops (Thomson and Kelly, 1985). It belongs to family Cruciferae with the chromosome number (2n=18) (Kumar *et al.* 2021). In India, broccoli is typically referred to as "green sprouting broccoli" or "calabrese". It is also known as heading or Italian or winter broccoli (Tejaswini *et al.* 2018). There are green, white and purple-coloured cultivars of broccoli which are highly nutritious (Thapa *et al.* 2016). There are two kinds of Broccoli: Headed Broccoli and Sprouting Broccoli (green and purple). The most popular variety of broccoli is called heading, it is similar to cauliflower and produces a big, central head while italian or sprouting broccoli produces several florets or little heads, but not a solid head. Tender sections of the higher stem and immature, completely differentiated flower buds make up the plant's edible component (Abhijithnaik *et al.* 2022). All cole crops grow best in hardy and cool weather (Quratul *et al.* 2016). In world the area under cultivation of broccoli is 1.12 million hectare with annual production of 20.88 million tonnes (Anonymous, 2015). In India broccoli are grown over an area of 369

ISSN: 2229-7359 Vol. 11 No. 11s, 2025 https://theaspd.com/index.php

thousand ha with annual production 6745 thousand tonnes (Anonymous, 2015). Sprouting broccoli is widely grown in Himachal Pradesh. India is world's 2nd largest broccoli producer (Kumar et al. 2021). In India, it is used as a fresh vegetable. It is eaten as a cooked vegetable, along with being a mixed vegetable and added to soup. It is usually boiled, but may be consumed raw as salad. It is also used to prepare curry, pie and casserole etc. If broccoli is boiled for longer than 10 minutes, the vegetable loses a lot of its anticancer properties. However, other methods of preparation like steaming, frying and microwaving had no impact on the constituent compounds (Jeffery, 2005). Broccoli is an important health food as it has antioxidant properties and it contains a lot of "sulphoraphane," which may lower the chance of developing cancer and also beneficial in heart disease (Kumar et al. 2021). Compared to other Cole crops, broccoli is the most nutrient dense. It has 22 times more vitamin A than cabbage and 130 more than cauliflower (Rana, 2008). Hybrids respond differently under different climatic conditions. It is very important to identify the hybrids that are suitable for a particular agro-climatic region. It is sold at higher rate due to availability of many hybrids in the market having different quality features, farmers are unable to decide which hybrid to purchase as there is no standard package of practices regarding the same, farmers are unable to decide the hybrid in a particular agro-climatic zone (Gosavi and Bhagat 2009). The identification of suitable hybrids is of prime significance for the effective cultivation of any type of crop in any area (Bhangre et al. 2011). There are no recommendations regarding the suitability of a particular hybrid for a specific region. As a result, in order to help growers, a specific recommendation must be made in order to produce scientific evidence about the compatibility of particular types during a particular season (Singh et al. 2006, Yadav et al. 2016). Spacing is another important component that is going to affect the growth, yield and quality of broccoli (Amare and Gebremedhin, 2020). Proper spacing allows more amount of sunlight, provides proper nutrients to the plants and better yield and better quality of broccoli (Meena et al. 2022). It is very important to grow broccoli at suitable planting distance. Larger plants grow more vigorously and produce of greater quality when they are spaced farther apart, but plants that are close together compete more with one another for nutrients, air and light (Singh et al. 2012). Plant need nitrogen as a primary and vital ingredient at every stage of their development. Phosphorus is a primary nutrient for plants. Potassium is a vital nutrient for plants, as it has multiple contributing roles. Potassium helps control how much water the plant takes in and its distribution, which lessens the effects of dryness (Rani et al. 2021). One of the most vital components in increasing crop productivity is plant nutrition. As a cole crop, in terms of plant nutrition, broccoli is a major feeder. As a result, nitrogen, phosphorus and potassium effect the meristematic activity, mineral fertilizer increases broccoli growth and output (Thapa et al. 2016). So, farmer is unable to decide which spacing suits best for a particular hybrid. We are also going to optimize the used of the fertilizer. By giving the optimum dosage of fertilizer, we could avoid the wastage of fertilizer by means of leaching and avoiding any toxic effect on the soil environment and also saves the money of farmer as less fertilizer leads to decrease in cost price of produce. Keeping these things in our mind we had planned the research so that farmers must know the best hybrid, suitable spacing and optimum fertilizer dose providing us the maximum yield and profit.

Materials and Methods

2.1 Experimental site

The present study was carried out in two consecutive years 2023-2024 and 2024-2025 at Chhapang Research Farm, Department of Horticulture, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmaur, Himachal Pradesh. The experimental site was located at an altitude of 912 m high from mean sea level at altitude of 30°44'20" North and a longitude of 77°18'53" East. The experimental site has blazing summers and frigid winters because it is located in a semi-temperate, semi-humid mid hill agroclimatic zone of Himachal Pradesh. The area of experiment had an average temperature among 2023 ranges from 11.58°C - 25.66°C with relative humidity ranges from 61.48% - 78.40% and a rainfall ranges from 0 mm - 0.27 mm. While during 2024, temperature ranges from 13.48°C - 27.56°C with relative humidity ranges from 63.38% - 80.30% and a rainfall ranges from 0.04 mm - 0.47 mm. The details are mentioned in table 2.1.

ISSN: 2229-7359 Vol. 11 No. 11s, 2025 https://theaspd.com/index.php

Selection of hybrid

Selection of hybrid is an important component in experiment. We had used three hybrids of private sectors which are mostly being grown by the farmers of Sirmaur district. We had used the hybrids Saki, Diana and Besty in the research. Saki is a hybrid broccoli variety from Sakata. It's known for its compact heads, tender florets and early maturity. Diana broccoli hybrid is a broccoli variety from Kalash that produces large heads and is a great producer. It is sweet, crunchy and hardy. Besty is a hybrid broccoli variety from Syngenta that is known for its high yield and compact green curds.

Table 2.1. Average monthly climate records

N .1	V	Temperatur	e (°C)	DII (0/)	D: (11/	
Months	Year	Minimum	Minimum Maximum Mean		RH (%)	Rainfall (mm)
September	2023	19.64	31.64	25.66	78.40	0.27
	2024	21.54	33.54	27.56	80.30	0.47
October	2023	12.89	28.14	20.53	68.96	0.16
	2024	14.79	30.04	22.43	70.86	0.36
November	2023	9.18	24.13	16.67	69.96	0.01
	2024	11.08	26.03	18.57	71.86	0.02
December	2023	5.17	20.54	12.87	66.74	0
	2024	7.07	22.44	14.77	68.64	0.04
January	2024	3.94	19.17	11.58	61.48	0.05
	2025	5.84	21.07	13.48	63.38	0.07

2.3 Raising of nursery and transplanting

Broccoli seedlings were raised in 3 different seed beds having dimension of 1 m × 1 m. The soil was properly prepared and transformed into a loose, friable state to achieve good tilth. In each seedbed, we had sown 1000 hybrids seeds each on 1st September 2023 and 2024, the seeds were placed in the seedbeds. Seeds were sown and completed light soil was applied over them. To give seedlings a healthy environment for growth, weeding and light watering were done as needed in the nursery beds. Healthy and uniform seedlings that were 30 to 35 days old were transplanted into the experimental plots in the afternoon after uprooting from the seed bed during the morning hours. The seedlings were transplanted on 4th October 2023 and 30th September 2024, and all of these kept at a depth of 2 cm. To reduce harm to the roots, the seedbed was irrigated before the seedlings were pulled out from nursery beds. After transplanting the light irrigation was done twice a day during the initial days.

2.4 Experimental details

We had used three different hybrids viz., (Saki, Diana, Besty), three spacing levels namely (60 × 30 cm, 60 × 45 cm, 60 × 60 cm) and three different fertilizer doses (75% RDF, 100% RDF, 125% RDF). The experiment was laid out in Factorial Randomized Block Design with three replications. The plot size was $1.8\text{m} \times 1.8\text{m}$. There were 27 treatment combinations. The details are mentioned in table 2.2.

2.5 Measurement of vegetative and yield parameters

- 1. Plant height (cm): It was measured from the bottom to the top of the tallest leaf on five randomly chosen plants using metre scale in centimetre and their average value was determined.
- **2. Plant spread (cm):** It was measured at the time of harvest, recording polar and equatorial diameter of the plant and average was worked out in centimetre.
- **3. Number of leaves per plant:** Five randomly collected plants leaves were counted at harvest. The average of these counts was then taken.
- **4. Leaf area** (cm²): The fourth leaf from the top of each sample plants was collected and it was measured by using leaf area metre. The average was calculated and expressed in cm².
- **5. Stem girth (cm):** The girth of stem of individual sample plants was recorded at the base of each individual plant and expressed in centimetre.

- **6. Stem diameter (cm):** The central stem was cut off, at which point the diameter of the stem was measured. The stem's diameter was measured in 3 dimensions by scale, with the mean of the 3 figures being converted to centimetres (cm).
- 7. Curd $yield/m^2$ (kg): In each treatment combinations, yield from all plants from all the pickings was calculated.

Table 2.2. Details of the treatment combinations : The details of the treatment combinations used in experiment are given below.

Treatment Code	Treatment combinations	Treatment details
T_1	$H_1S_1F_1$	Saki + 60 × 30 cm + 75 % RDF
T_2	$H_1S_1F_2$	Saki + 60 × 30 cm + 100 % RDF
T_3	$H_1S_1F_3$	Saki + 60 × 30 cm + 125 % RDF
T_4	$H_1S_2F_1$	Saki + 60 × 45 cm + 75 % RDF
T ₅	$H_1S_2F_2$	Saki + 60 × 45 cm + 100 % RDF
T_6	$H_1S_2F_3$	Saki + 60 × 45 cm + 125 % RDF
T_7	$H_1S_3F_1$	Saki + 60 × 60 cm + 75 % RDF
T_8	$H_1S_3F_2$	Saki + 60 × 60 cm + 100 % RDF
T ₉	$H_1S_3F_3$	Saki + 60 × 60 cm + 125 % RDF
T_{10}	$H_2S_1F_1$	Diana + 60 × 30 cm + 75 % RDF
T ₁₁	$H_2S_1F_2$	Diana + 60 × 30 cm + 100 % RDF
T_{12}	$H_2S_1F_3$	Diana + 60 × 30 cm + 125 % RDF
T_{13}	$H_2S_2F_1$	Diana + 60 × 45 cm + 75 % RDF
T ₁₄	$H_2S_2F_2$	Diana + 60 × 45 cm + 100 % RDF
T_{15}	$H_2S_2F_3$	Diana + 60 × 45 cm + 125 % RDF
T_{16}	$H_2S_3F_1$	Diana + 60 × 60 cm + 75 % RDF
T_{17}	$H_2S_3F_2$	Diana + 60 × 60 cm + 100 % RDF
T_{18}	$H_2S_3F_3$	Diana + 60 × 60 cm + 125 % RDF
T_{19}	$H_3S_1F_1$	Besty + 60 × 30 cm + 75 % RDF
T_{20}	$H_3S_1F_2$	Besty + 60 × 30 cm + 100 % RDF
T_{21}	$H_3S_1F_3$	Besty + 60 × 30 cm + 125 % RDF
T_{22}	$H_3S_2F_1$	Besty + 60 × 45 cm + 75 % RDF
T_{23}	$H_3S_2F_2$	Besty + 60 × 45 cm + 100 % RDF
T_{24}	$H_3S_2F_3$	Besty + 60 × 45 cm + 125 % RDF
T_{25}	$H_3S_3F_1$	Besty + 60 × 60 cm + 75 % RDF
T_{26}	$H_3S_3F_2$	Besty + 60 × 60 cm + 100 % RDF
T ₂₇	H ₃ S ₃ F ₃	Besty + 60 × 60 cm + 125 % RDF

Fig 1 Overall view of experimental trial

ISSN: 2229-7359 Vol. 11 No. 11s, 2025 https://theaspd.com/index.php

2.6 Statistical analysis

Analysis of variance and means comparison from each treatment combination by using general linear model. Mean values were compared using DMRT at a significance level 0.05 using SPSS version 20.00.

1. Results and Discussion

3.1 Effect of different hybrids on vegetative and yield characters

Different characters like plant height, plant spread, number of leaves per plant, leaf area, stem girth, stem diameter and curd yield/m² were analysed by LSD at 5% level of significance.

Table 3.1. Effect of different hybrids on vegetative and yield characters

Source	Dependent Variable	Hybrid	2023	2024	Pooled
	_		Mean	Mean	Mean
		H_1	56.19	62.83	59.51
	Plant height	H_2	49.07	50.60	49.83
		H_3	60.60	63.99	62.30
		H_1	65.43	67.99	66.71
	Plant spread	H_2	69.61	70.59	70.10
		H_3	75.80	78.93	77.37
		H_1	18.40	22.51	20.45
	Number of leaves per plant	H_2	18.91	23.04	20.97
		H_3	16.93	19.78	18.35
		H_1	409.25	425.68	417.47
Hybrid	Leaf area	H_2	411.59	456.08	433.83
		H_3	424.26	461.53	442.89
		H_1	7.45	10.13	8.79
	Stem girth	H_2	7.61	11.16	9.39
		H_3	8.19	12.15	10.17
		H_1	4.47	4.70	4.59
	Stem diameter	H_2	4.44	4.74	4.59
		H_3	4.56	4.93	4.75
		H_1	2.62	3.23	2.93
	Curd yield/m²	H_2	2.96	3.49	3.23
		H_3	1.67	2.35	2.01

^{*}H₁- Saki, H₂- Diana, H₃- Besty

Table 3.2. Tests of between subjects

Source	Dependent Variable	2023		2024	2024		
		F Cal	p Value	F Cal	p Value	F Cal	p Value
	Plant height	107.164	.000	345.750	.000	383.408	.000
	Plant spread	40.066	.000	180.228	.000	139.822	.000
	Number of leaves per plant	74.163	.000	126.586	.000	199.342	.000
Hybrid	Leaf area	4.449	.016	94.550	.000	38.985	.000
	Stem girth	52.244	.000	147.871	.000	185.308	.000
	Stem diameter	3.414	.040	13.007	.000	13.808	.000
	Curd yield/m²	78.548	.000	126.307	.000	199.639	.000

All the hybrids of broccoli exhibited significant variation in their performance in terms of yield attributes. In 2023, 2024 and pooled data for hybrid, all vegetative characters were highly significant as value of p was less than 0.05. The details are mentioned in table 3.2. The result of the experiment revealed that maximum value of plant height (60.60 cm, 63.99 cm, 62.30 cm), plant spread (75.80 cm, 78.93 cm, 77.37 cm), maximum leaf area (424.26 cm², 461.53 cm², 442.89 cm²), stem girth (8.19 cm, 12.15 cm, 10.17 cm) and stem diameter (4.56 cm, 4.93 cm, 4.75 cm) were recorded hybrid H₃. Whereas, hybrid H₂ recorded maximum number of leaves per plant (18.91, 23.04, 20.97) and highest curd yield/m² (2.96 kg, 3.49 kg, 3.23 kg). This is due to presence of some enzymes in the hybrid which could have led to enhanced cell

ISSN: 2229-7359 Vol. 11 No. 11s, 2025 https://theaspd.com/index.php

division, cell enlargement eventually resulting in the maximum value of characters in the hybrids. The similar results were also found by Bhangre et al. 2011, Giri et al. 2013, Zaki et al. 2015, Tejaswini et al. 2018, Hossain et al. 2020, Singh et al. 2021, Kumar et al. 2021, Verma et al. 2022, Verma et al. 2023, Yadav et al. 2023 and Kaur and Rampal (2024). The details are mentioned in table 3.1.

In case of multiple comparisons, among different hybrids (H₁- Saki, H₂- Diana, H3- Besty) there were significant difference among different hybrids. Maximum difference was recorded between hybrid H₃ (besty) with hybrid H₂ (diana) for plant height. Highest difference was observed between besty with saki for plant spread, diana with besty for number of leaves per plant, besty with saki for leaf area, stem girth and stem diameter. Whereas, maximum difference was recorded between diana with besty for curd yield/m². It depicts that hybrid H₃ (Besty) is having maximum difference from either of the two hybrids which means that hybrid H₃ recorded maximum value with respect to vegetative and quantitative characters. Which could probably due to presence of favourable genes that could have interacted with the favourable environment condition prevailing at that time which might have led to maximum cell division, enlargement ultimately leading to maximum vegetative and yield characters. Results with similar to Bhangre et al. 2011, Giri et al. 2013, Zaki et al. 2015, Tejaswini et al. 2018, Hossain et al. 2020, Singh et al. 2021, Kumar et al. 2021, Verma et al. 2022, Verma et al. 2023, Yadav et al. 2023 and Kaur and Rampal (2024). The details are mentioned in table 3.3.

Table 3.3. Multiple comparisons of hybrids for different vegetative and yield characters

LSD		_	2023			2024			Pooled		
Dependent	(I) H	(J) H	Mean	Std.	Sig.	Mean	Std.	Sig.	Mean	Std.	Sig.
Variable			Difference	Error		Difference	Error		Difference	Error	
			(I-J)			(I-J)			(I-J)		
	ΤT	H_2	7.119 [*]	.7872	.000	12.230 [*]	.5780	.000	9.667*	.4827	.000
	H_1	H_3	4.415 [*]	.7872	.000	-1.163*	.5780	.049	-2.785^*	.4827	.000
Dlane haidhe	Ш	H_1	·7.119*	.7872	.000	-12.230*	.5780	.000	·9.667*	.4827	.000
Plant height	Π_2	H_3	-11.533*	.7872	.000	-13.393*	.5780	.000	·12.452*	.4827	.000
	H_3	H_1	4.415 [*]	.7872	.000	1.163*	.5780	.049	2.785^{*}	.4827	.000
	П3	H_2	11.533 [*]	.7872	.000	13.393*	.5780	.000	12.452*	.4827	.000
	H_1	H_2	4.181 [*]	1.1470	.001	-2.596 [*]	.7179	.001	·3.389*	.6839	.000
	Π_1	H_3	-10.370*	1.1470	.000	-10.937*	.7179	.000	-10.663*	.6839	.000
Plant spread	П	H_1	4.181 [*]	1.1470	.001	2.596 [*]	.7179	.001	3.389 [*]	.6839	.000
r iaiit spread	112	H_3	-6.189*	1.1470	.000	-8.341 [*]	.7179	.000	·7.274*	.6839	.000
T.	H_3	H_1	10.370*	1.1470	.000	10.937*	.7179	.000	10.663*	.6839	.000
	1 13	H_2	6.189 [*]	1.1470	.000	8.341*	.7179	.000	7.274 [*]	.6839	.000
	H_1	H_2	.511 [*]	.1823	.007	526 [*]	.2208	.021	.515 [*]	.1492	.001
		H_3	1.470 [*]	.1823	.000	2.730 [*]	.2208	.000	2.104 [*]	.1492	.000
Number of leaves per	П	H_1	.511 [*]	.1823	.007	.526 [*]	.2208	.021	.515 [*]	.1492	.001
plant	112	H_3	1.981*	.1823	.000	3.256 [*]	.2208	.000	2.619 [*]	.1492	.000
F	H_3	H_1	-1.470 [*]	.1823	.000	-2.730 [*]	.2208	.000	·2.104*	.1492	.000
	1 13	H_2	-1.981*	.1823	.000	-3.256 [*]	.2208	.000	·2.619*	.1492	.000
	H_1	H_2	-2.333	5.7459	.686	-30.415*	2.8976	.000	·16.374*	3.2206	.000
	111	H_3	-14.996 [*]	5.7459	.012	-35.848 [*]	2.8976	.000	·25.411*	3.2206	.000
Leaf area	H_2	H_1	2.333	5.7459	.686	30.415 [*]	2.8976	.000	16.374*	3.2206	.000
Lear area	1 12	H_3	-12.663*	5.7459	.032	-5.433	2.8976	.066	·9.037*	3.2206	.007
ī	H_3	H_1	14.996*	5.7459	.012	35.848 [*]	2.8976	.000	25.411 [*]	3.2206	.000
	1 13	H_2	12.663*	5.7459	.032	5.433	2.8976	.066	9.037*	3.2206	.007
	H_1	H_2	159 [*]	.0790	.049	-1.030*	.1158	.000	.581 [*]	.0736	.000
Stem girth	111	H_3	726 [*]	.0790	.000	-2.022*	.1158	.000	·1.378*	.0736	.000
_	H_2	H_1	.159*	.0790	.049	1.030*	.1158	.000	.581 [*]	.0736	.000
	112	H_3	567 [*]	.0790	.000	.993 [*]	.1158	.000	.796 [*]	.0736	.000

ISSN: 2229-7359 Vol. 11 No. 11s, 2025 https://theaspd.com/index.php

	T T	H_1	.726*	.0790	.000	2.022*	.1158	.000	1.378 [*]	.0736	.000
	H_3	H_2	.567 [*]	.0790	.000	.993*	.1158	.000	.796*	.0736	.000
	П	H_2	.037	.0467	.431	026	.0501	.607	.011	.0337	.743
	H_1	H_3	.078	.0467	.101	233 [*]	.0501	.000	.159*	.0337	.000
Stem	П	H_1	037	.0467	.431	.026	.0501	.607	.011	.0337	.743
diameter	H_2	H_3	.115 [*]	.0467	.017	207*	.0501	.000	.148*	.0337	.000
	H_3	H_1	.078	.0467	.101	.233*	.0501	.000	.159*	.0337	.000
	113	H_2	.115*	.0467	.017	.207*	.0501	.000	.148*	.0337	.000
	П	H_2	.344 [*]	.1074	.002	259*	.0857	.004	.315*	.0633	.000
	H_1	H_3	.933*	.1074	.000	.889*	.0857	.000	.907*	.0633	.000
Curd	ы	H_1	.344*	.1074	.002	.259*	.0857	.004	.315 [*]	.0633	.000
yield/m²	H_2	H_3	1.278 [*]	.1074	.000	1.148*	.0857	.000	1.222*	.0633	.000
	П	H_1	.933 [*]	.1074	.000	889*	.0857	.000	.907*	.0633	.000
	H_3	H_2	-1.278 [*]	.1074	.000	-1.148*	.0857	.000	-1.222 [*]	.0633	.000

3.2 Effect of different spacing levels on vegetative and yield characters

In both the years and pooled data for spacing, all vegetative characters were highly significant. The results revealed that spacing level S_1 (60 × 30 cm) found maximum value of plant height (56.79 cm, 61.84 cm, 59.32 cm) and highest curd yield/m² (2.50 kg, 3.10 kg, 2.80 kg). This might be due to the cumulative effect of higher plant population per unit area, that had led to maximum plant height and highest curd yield/m². These findings are in close accordance with the findings of Agarwal et al. 2007, Rahman et al. 2007 in cauliflower, Saikia et al. 2010, Bhangre et al. 2011, Fabek et al. 2011, Hossain et al. 2011, Khatun et al. 2011, Solunke et al. 2011, Gogoi et al. 2016, Khatan et al. 2016, Vinod et al. 2017, Kaur et al. 2021 and Kande et al. 2024 in broccoli. Whereas, maximum plant spread (74.85 cm, 77.54 cm, 76.20 cm), highest number of leaves per plant (18.44, 22.41, 20.43), maximum leaf area (433.99 cm², 467.03 cm², 450.51 cm²), stem girth (8.16 cm, 11.87 cm, 10.01 cm) and stem diameter (4.66 cm, 5.10 cm, 4.88 cm) were recorded under spacing S_3 (60 × 60 cm). This may be due to better availability of spacing, air, soil moisture, nutrient, sunlight, a smaller number of plants per plot and less competition among plants. The similar results were reported by Bhangre et al. 2001, Munro et al. 2007, Kumar et al. 2007, Saikia et al. 2010, Solunke et al. 2011, Thirupal et al. 2014, Roni et al. 2017, Kumar et al. 2021, Kaur et al. 2021 and Kande et al. 2024 in broccoli. The details are mentioned in table 3.4 & 3.5.

Table 3.4. Effect of different levels of spacing on vegetative and yield characters

Source	Dependent	Spacing	2023	2024	Pooled
	Variable		Mean	Mean	Mean
		S_1	56.79	61.84	59.32
	Plant height	S_2	56.72	60.09	58.40
		S_3	52.34	55.49	53.92
		S_1	65.95	68.19	67.07
	Plant spread	S_2	70.06	71.78	70.92
		S_3	74.85	77.54	76.20
	NY 1 (1	S_1	17.69	21.55	19.62
	Number of leaves	S_2	18.10	21.37	19.73
Spacing	per plant	S_3	18.44	22.41	20.43
		S_1	386.89	428.90	407.90
	Leaf area	S_2	424.22	447.36	435.79
		S_3	433.99	467.03	450.51
		S_1	7.49	10.79	9.14
	Stem girth	S_2	7.60	10.79	9.20
		S_3	8.16	11.87	10.01
	C4 . 1'	S_1	4.43	4.56	4.50
	Stem diameter	S_2	4.38	4.71	4.54

ISSN: 2229-7359 Vol. 11 No. 11s, 2025 https://theaspd.com/index.php

	S_3	4.66	5.10	4.88
	S_1	2.50	3.10	2.80
Curd yield/m²	S_2	2.49	3.08	2.78
	S_3	2.27	2.90	2.58

 $*S_{1}$ 60 × 30 cm, S_{2} 60 × 45 cm, S_{3} 60 × 60 cm

Table 3.5. Tests of between subjects

Source	Dependent Variable	2023		2024		Pooled	Pooled	
		F Cal	p Value	F Cal	p Value	F Cal	p Value	
	Plant height	20.551	.000	67.556	.000	74.863	.000	
	Plant spread	29.204	.000	122.833	.000	99.061	.000	
	Number of leaves per plant	9.764	.000	12.884	.000	19.648	.000	
Spacing	Leaf area	42.177	.000	92.106	.000	109.962	.000	
	Stem girth	44.236	.000	56.120	.000	92.304	.000	
	Stem diameter	21.665	.000	66.355	.000	75.510	.000	
	Curd yield/m ²	3.089	.054	4.109	.022	7.193	.002	

Among different spacing levels ($S_{1^{\circ}}$ 60 × 30 cm, $S_{2^{\circ}}$ 60 × 45 cm, $S_{3^{\circ}}$ 60 × 60 cm), there were significant difference among S_1 with S_2 and S_3 , S_2 with S_3 , here maximum difference was recorded between S_1 with S_3 for plant height. Highest difference was observed between S_3 with S_1 for plant spread, number of leaves per plant, leaf area and stem girth. Whereas, maximum difference was recorded between S_3 with S_2 for stem diameter and S_1 with S_3 for curd yield/ m^2 . It is evident from the pair wise comparisons that in all the characters maximum difference is coming with respect to spacing level S_3 which means that S_3 recorded maximum value of different vegetative and yield characters which might be due to more terminal increase in closer spaced plant. Wider spacing, which might be due to more availability of sunlight, nutrients and water. Results with similar to Tejaswini et al. 2018. While spacing level S_1 recorded maximum yield/ m^2 because of a greater number of plants in the plot and cumulative effect of all the plants could have led to maximum yield/ m^2 in particular spacing level. The details are mentioned in table 3.6.

Table 3.6. Multiple comparisons of spacing for different vegetative and yield characters

LSD			2023			2024	2024			Pooled		
Dependent Variable	(I) S	(J) S	Mean Difference (I-J)	Std. Error	Sig.	Mean Difference (I-J)	Std. Error	Sig.	Mean Difference (I-J)	Std. Error	Sig.	
	C	S_2	.074	.7872	.925	1.759 [*]	.5780	.004	.904	.4827	.067	
	S_1	S_3	4.452 [*]	.7872	.000	6.352 [*]	.5780	.000	5.400 [*]	.4827	.000	
D1 1 . 1 . 1 .	C	S_1	074	.7872	.925	-1.759*	.5780	.004	.904	.4827	.067	
Plant height	\mathfrak{S}_2	S_3	4.378 [*]	.7872	.000	4.593 [*]	.5780	.000	4.496 [*]	.4827	.000	
	C	S_1	4.452 [*]	.7872	.000	-6.352*	.5780	.000	·5.400*	.4827	.000	
	S_3	S_2	4.378*	.7872	.000	-4.593 [*]	.5780	.000	4.496 [*]	.4827	.000	
	C	S_2	4.107*	1.1470	.001	-3.593 [*]	.7179	.000	·3.848*	.6839	.000	
	S_1	S_3	8.900 [*]	1.1470	.000	-9.352*	.7179	.000	·9.115*	.6839	.000	
D1	C	S_1	4.107 [*]	1.1470	.001	3.593 [*]	.7179	.000	3.848 [*]	.6839	.000	
Plant spread	\mathcal{S}_2	S_3	4.793*	1.1470	.000	-5.759 [*]	.7179	.000	·5.267*	.6839	.000	
	c	S_1	8.900 [*]	1.1470	.000	9.352*	.7179	.000	9.115 [*]	.6839	.000	
	S_3	S_2	4.793 [*]	1.1470	.000	5.759 [*]	.7179	.000	5.267 [*]	.6839	.000	
	c	S_2	.407*	.1823	.030	.185	.2208	.405	.122	.1492	.416	
Number of	\mathcal{S}_1	S_3	.744*	.1823	.000	859 [*]	.2208	.000	.811 [*]	.1492	.000	
leaves per	c	S_1	.407*	.1823	.030	185	.2208	.405	.122	.1492	.416	
plant	\mathcal{O}_2	S_3	.337	.1823	.070	-1.044*	.2208	.000	689*	.1492	.000	
	S_3	S_1	.744 [*]	.1823	.000	.859 [*]	.2208	.000	.811*	.1492	.000	

ISSN: 2229-7359 Vol. 11 No. 11s, 2025 https://theaspd.com/index.php

		-	T	1000	1	*	2222	1	<*	1	1
		S_2	.337	.1823	.070	1.044*	.2208	.000	.689*	.1492	.000
	S_1	S_2	-37.333 [*]	5.7459	.000	-18.441*	2.8976	.000	·27.896*	3.2206	.000
	\mathcal{S}_1	S_3	47.107*	5.7459	.000	-38.122 [*]	2.8976	.000	42.611 [*]	3.2206	.000
Leaf area S	c	S_1	37.333 [*]	5.7459	.000	18.441 [*]	2.8976	.000	27.896*	3.2206	.000
Lear area	S_2	S_3	-9.774	5.7459	.095	-19.681*	2.8976	.000	·14.715*	3.2206	.000
	C	S_1	47.107 [*]	5.7459	.000	38.122 [*]	2.8976	.000	42.611 [*]	3.2206	.000
53	S_3	S_2	9.774	5.7459	.095	19.681*	2.8976	.000	14.715*	3.2206	.000
	C	S_2	107	.0790	.179	.004	.1158	.975	044	.0736	.548
	S_1	S_3	656 [*]	.0790	.000	-1.078*	.1158	.000	.859*	.0736	.000
C4 1	c	S_1	.107	.0790	.179	004	.1158	.975	.044	.0736	.548
Stem girth	S_2	S_3	548 [*]	.0790	.000	-1.081*	.1158	.000	.815 [*]	.0736	.000
	C	S_1	.656*	.0790	.000	1.078*	.1158	.000	.859*	.0736	.000
	S_3	S_2	.548 [*]	.0790	.000	1.081*	.1158	.000	.815*	.0736	.000
	C	S_2	.067	.0467	.159	.152*	.0501	.004	.059	.0337	.084
	S_1	S_3	230*	.0467	.000	.552*	.0501	.000	.400*	.0337	.000
Stem	c	S_1	067	.0467	.159	.152*	.0501	.004	.059	.0337	.084
diameter	S_2	S_3	296 [*]	.0467	.000	400 [*]	.0501	.000	.341*	.0337	.000
	C	S_1	.230*	.0467	.000	.552*	.0501	.000	.400*	.0337	.000
	S_3	$\overline{S_2}$.296*	.0467	.000	.400*	.0501	.000	.341*	.0337	.000
	C	S_2	.026	.1074	.810	.000	.0857	1.000	.019	.0633	.771
	S_1	S_3	.241*	.1074	.029	.196*	.0857	.026	.219*	.0633	.001
Curd	C	S_1	026	.1074	.810	.000	.0857	1.000	.019	.0633	.771
yield/m²	S_2	S_3	.215	.1074	.050	.196*	.0857	.026	.200*	.0633	.003
	C	S_1	241 [*]	.1074	.029	.196*	.0857	.026	.219*	.0633	.001
	S_3	S_2	215	.1074	.050	.196*	.0857	.026	.200*	.0633	.003

3.3 Effect of different fertilizer doses on vegetative and yield characters

Among the different fertilizer levels, in 2023 the result revealed that plant height, number of leaves per plant, leaf area, stem girth, stem diameter and curd yield/m² were significant whereas plant spread was non significant as the value of p is more than 0.05. In 2024 and pooled data, all characters were responded significantly as the value of p was less than 0.05. The details are mentioned in table 3.8.

Table 3.7. Effect of different fertilizer doses on vegetative and yield characters

ource	Dependent Variable	ertilizer	023	024	ooled
			1 ean	1 ean	1 ean
		1	4.20	7.40	5.80
	lant height	2	3.47	9.25	6.36
		3	8.18	0.77	9.47
		1	9.40	0.37	9.89
	lant spread	2	0.44	3.25	1.84
		3	1.01	3.89	2.45
	T 1 (1	1	7.72	1.51	9.61
ertilizer	Number of leaves per	2	8.22	1.65	9.94
	plant	3	8.29	2.17	0.23
		1	04.27	41.55	22.91
	eaf area	2	17.64	42.59	30.11
		3	23.18	59.14	41.16
		1	.57	0.60	.08
	tem girth	2	.75	1.27	.51
		3	.92	1.58	.75

ISSN: 2229-7359 Vol. 11 No. 11s, 2025 https://theaspd.com/index.php

	1	.43	.63	.53
tem diameter	2	.45	.77	.61
	3	.59	.97	.78
	1	.73	.41	.07
curd yield/m²	2	.07	.78	.42
	3	.46	.89	.67

*F₁- 75% RDF, F₂- 100% RDF, F₃- 125% RDF

Table 3.8. Tests of between subjects

Source	Dependent Variable	2023		2024		Pooled	
		F Cal	p Value	F Cal	p Value	F Cal	p Value
	Plant height	20.282	.000	17.852	.000	35.071	.000
	Plant spread	0.977	.383	19.412	.000	8.474	.001
	Number of leaves per plant	6.822	.002	5.049	.010	9.875	.000
Fertilizer	Leaf area	6.451	.003	24.688	.000	19.840	.000
	Stem girth	10.948	.000	36.565	.000	44.485	.000
	Stem diameter	7.028	.002	23.628	.000	26.558	.000
	Curd yield/m ²	147.393	.000	210.049	.000	353.980	.000

For both the years and pooled data, among various levels of fertilizer doses, F₃ (125% RDF) recorded maximum value of plant height (58.18 cm, 60.77 cm, 59.47 cm), plant spread (71.01 cm, 73.89 cm, 72.45 cm), higher number of leaves per plant (18.29, 22.17, 20.23), maximum leaf area (423.18 cm², 459.14 cm², 441.16 cm²), maximum stem girth (7.92 cm, 11.58 cm, 9.75 cm), stem diameter (4.59 cm, 4.97 cm, 4.78 cm) and highest curd yield/m² (3.46 kg, 3.89 kg, 3.67 kg). It might be due to more vegetative growth, development, photosynthesis, dry matter synthesis and translocation to storage organ that might had led to an increase in all the above mention parameters that attribute to increase the final curd yield/m². These findings are very similar to those of Moniruzzaman et al. 2007, Supe and Marbhal 2008, Prasad et al. 2009 in chinese cabbage, Giri et al. 2013, Kumar et al. 2013, Singh et al. 2015 in broccoli, Haque et al. 2015 in cabbage, Neethu et al. 2015, Roni et al. 2017, Mohanta et al. 2018 in broccoli, Privanka et al. 2023, Akanksha et al. 2023, Chalabi and Ibraheem 2024 in broccoli. The details are mentioned in table 3.7. Among different fertilizer levels (F₁- 75% RDF, F₂- 75% RDF, F₃- 75% RDF), there were significant difference among F_1 with F_2 and F_3 , F_2 with F_3 , here maximum difference was recorded between F_3 with F₂ for plant height. Highest difference was observed between F₃ with F₁ for plant spread, number of leaves per plant, leaf area, stem girth, stem diameter and curd yield/m². Which could probably due to larger amount of nutrient available to the plant in the fertilizer level of F_3 which could have been utilized by the plants for synthesis of photosynthates leading to best result. The results with similar to Roni et al. 2017 and Abhijithnaik et al. 2022. The details are mentioned in table 3.9.

Table 3.9. Multiple comparisons of fertilizer for different vegetative and yield characters

LSD			2023			2024		Pooled			
Dependent	(I) F	(J) F	Mean	Std.	Sig.	Mean	Std.	Sig.	Mean	Std.	Sig.
Variable			Difference	Error		Difference	Error		Difference	Error	
			(I-J)			(I-J)			(I-J)		
	Е	F_2	.726	.7872	.361	-1.844*	.5780	.002	.570	.4827	.243
	F_1	F_3	·3.978*	.7872	.000	·3.367*	.5780	.000	·3.681*	.4827	.000
m1 1 1 .	С	F_1	.726	.7872	.361	1.844*	.5780	.002	.570	.4827	.243
Plant height	F_2	F_3	4.704 [*]	.7872	.000	-1.522*	.5780	.011	·3.111*	.4827	.000
	С	F_1	3.978 [*]	.7872	.000	3.367*	.5780	.000	3.681 [*]	.4827	.000
	F_3	F_2	4.704*	.7872	.000	1.522*	.5780	.011	3.111*	.4827	.000
	С	F_2	1.033	1.1470	.372	·2.878*	.7179	.000	-1.952*	.6839	.006
Plant spread	Γ_1	F_3	1.607	1.1470	.167	-3.522*	.7179	.000	-2.567 [*]	.6839	.000
	$\overline{F_2}$	F_1	1.033	1.1470	.372	2.878*	.7179	.000	1.952*	.6839	.006

ISSN: 2229-7359 Vol. 11 No. 11s, 2025 https://theaspd.com/index.php

		F ₃	.574	1.1470	.619	.644	.7179	.373	.615	.6839	.373
	Е	F_1	1.607	1.1470	.167	3.522*	.7179	.000	2.567*	.6839	.000
	F_3	F_2	.574	1.1470	.619	.644	.7179	.373	.615	.6839	.373
	г	F_2	504*	.1823	.008	.144	.2208	.516	.348*	.1492	.023
NY 1 C	F_1	F_3	.570*	.1823	.003	.663*	.2208	.004	630*	.1492	.000
Number of	г	F_1	.504*	.1823	.008	.144	.2208	.516	.348*	.1492	.023
leaves per	Γ_2	F_3	.067	.1823	.716	.519*	.2208	.023	281	.1492	.065
plant	С	F_1	.570*	.1823	.003	.663*	.2208	.004	.630*	.1492	.000
	F_3	F_2	.067	.1823	.716	.519*	.2208	.023	.281	.1492	.065
	Г	F_2	·13.378*	5.7459	.024	1.033	2.8976	.723	-7.215*	3.2206	.029
	F_1	F_3	·18.919*	5.7459	.002	·17.585*	2.8976	.000	-18.248*	3.2206	.000
T £	С	F_1	13.378 [*]	5.7459	.024	1.033	2.8976	.723	7.215*	3.2206	.029
Leaf area	Leaf area F_2 F_3	F_3	-5.541	5.7459	.339	-16.552*	2.8976	.000	-11.033*	3.2206	.001
		F_1	18.919*	5.7459	.002	17.585*	2.8976	.000	18.248*	3.2206	.000
	Гз	F_2	5.541	5.7459	.339	16.552*	2.8976	.000	11.033*	3.2206	.001
	Е	F_2	·.189*	.0790	.020	.663*	.1158	.000	407*	.0736	.000
	F_1	F_3	.352*	.0790	.000	.978*	.1158	.000	652*	.0736	.000
C4:41-	F_2	F_1	.189*	.0790	.020	.663*	.1158	.000	.407*	.0736	.000
Stem girth		F_3	.163 [*]	.0790	.044	.315*	.1158	.009	244*	.0736	.002
	Г	F_1	.352*	.0790	.000	.978*	.1158	.000	.652*	.0736	.000
	F_3	F_2	.163*	.0790	.044	.315*	.1158	.009	.244*	.0736	.002
	Е	F_2	011	.0467	.813	.130*	.0501	.012	096 [*]	.0337	.006
	F_1	F_3	.141*	.0467	.004	.330*	.0501	.000	252*	.0337	.000
Stem	Е	F_1	.011	.0467	.813	.130*	.0501	.012	.096*	.0337	.006
diameter	F_2	F_3	.130 [*]	.0467	.007	.200*	.0501	.000	156 [*]	.0337	.000
	Г	F_1	.141*	.0467	.004	.330*	.0501	.000	.252*	.0337	.000
	F_3	F_2	.130*	.0467	.007	.200*	.0501	.000	.156*	.0337	.000
	Г	F_2	.330*	.1074	.003	.374*	.0857	.000	.348*	.0633	.000
	F_1	F_3	·1.726*	.1074	.000	-1.485*	.0857	.000	-1.604*	.0633	.000
Curd	Г	F_1	.330*	.1074	.003	.374*	.0857	.000	.348*	.0633	.000
yield/m²	F_2	F_3	·1.396*	.1074	.000	1.111*	.0857	.000	-1.256*	.0633	.000
	С	F_1	1.726*	.1074	.000	1.485*	.0857	.000	1.604*	.0633	.000
	F_3	F_2	1.396*	.1074	.000	1.111 [*]	.0857	.000	1.256*	.0633	.000

3.4 Effect of fertilizer × hybrid on vegetative and yield characters

In 2023, 2024 and pooled data for Fertilizer × Hybrid, all vegetative characters were significant. The result revealed that maximum value of plant height (63.82 cm, 66.86 cm, 65.34 cm), plant spread (79.02 cm, 82.72 cm, 80.87 cm), maximum leaf area (444.01 cm 2 , 479.17 cm 2 , 461.59 cm 2), stem girth (8.38 cm, 12.66 cm, 10.52 cm) and stem diameter (4.71 cm, 5.02 cm, 4.86 cm) were observed under F $_3$ H $_3$. Which might to be interaction of some favourable genes which might be favouring the absorption of nutrients at higher fertilizer dose and have resulting in maximum absorption of nutrients by the plants. Whereas, F $_3$ H $_2$ recorded maximum number of leaves per plant (19.13, 23.61, 21.37) and highest curd yield/m 2 (4.11 kg, 4.45 kg, 4.28 kg). This might be due to the availability of greater amount of nutrient to the plant, favourable genes which might to be governing the characters. Similar findings have also been reported by Giri et al. 2013, Zaki et al. 2015, Hossain et al. 2020, Singh et al. 2021 and Abhijithnaik et al. 2022. The details are mentioned in table 3.10 & 3.11.

Table 3.10. Effect of Fertilizer × Hybrid on vegetative and yield characters

Fertilizer * Hybrid		2023	2024	Pooled	
Dependent Variable	F	H	Mean	Mean	Mean
Plant height	F_1	H_1	55.59	62.27	58.93

		H_2	48.90	48.63	48.77
		H_3	58.11	61.31	59.71
		H_1	55.11	62.64	58.88
	г		+		
	F_2	H_2	45.44 59.87	51.29	48.37
		H ₃		63.81	61.84
	г	H_1	57.86	63.58	60.72
	F_3	H_2	52.85	51.88	52.37
		H ₃	63.82	66.86	65.34
	-	H_1	66.28	66.32	66.30
	F_1	H_2	66.10	69.07	67.58
		H ₃	75.83	75.72	75.78
		H_1	65.70	70.60	68.15
Plant spread	F_2	H_2	73.06	70.80	71.93
		H ₃	72.56	78.34	75.45
		H_1	64.32	67.06	65.69
	F_3	H_2	69.69	71.90	70.79
		H_3	79.02	82.72	80.87
		H_1	17.65	21.78	19.72
	F_1	H_2	18.70	23.27	20.99
Number of leaves per plant		H_3	16.80	19.47	18.14
		H_1	19.05	22.99	21.02
	F_2	H_2	18.89	22.23	20.56
		H_3	16.73	19.74	18.24
		H_1	18.49	22.76	20.62
	F_3	H_2	19.13	23.61	21.37
		H_3	17.24	20.14	18.69
		H_1	400.87	404.13	402.50
	F_1	H_2	400.06	461.33	430.70
		H_3	411.88	459.20	435.54
		H_1	421.19	425.52	423.35
Leaf area	F_2	H_2	414.85	456.04	435.45
		H_3	416.87	446.21	431.54
		H_1	405.70	447.39	426.54
	F_3	H_2	419.84	450.87	435.36
		H_3	444.01	479.17	461.59
		H_1	7.17	9.08	8.13
	F_1	H_2	7.33	10.78	9.06
		H_3	8.21	11.93	10.07
		H_1	7.40	10.47	8.93
Stem girth	F_2	H_2	7.89	11.47	9.68
U] ~	H_3	7.98	11.86	9.92
		H_1	7.78	10.85	9.31
	F_3	H_2	7.62	11.24	9.43
		H_3	8.38	12.66	10.52
		H_1	4.32	4.40	4.36
	F_1	H_2	4.46	4.60	4.53
Stem diameter	* 1	H_3	4.52	4.90	4.71
otem manifeter		H ₁	4.41	4.76	4.58
	F_2				
	Γ_2	H_2	4.50	4.68	4.59

ISSN: 2229-7359 Vol. 11 No. 11s, 2025 https://theaspd.com/index.php

		H_3	4.45	4.88	4.66
		H_1	4.69	4.94	4.81
	F_3	H_2	4.37	4.94	4.66
		H_3	4.71	5.02	4.86
		H_1	1.66	2.43	2.04
	F_1	H_2	2.23	2.81	2.52
		H_3	1.31	1.99	1.65
		H_1	2.13	2.94	2.53
Curd yield/m²	F_2	H_2	2.54	3.21	2.88
		H_3	1.53	2.18	1.86
		H_1	4.09	4.32	4.20
	F_3	H_2	4.11	4.45	4.28
		H_3	2.18	2.89	2.53

Table 3.11. Tests of between subjects

Source	Dependent Variable	2023				Pooled	
		F Cal	p Value	F Cal	p Value	F Cal	p Value
	Plant height	2.751	.038	2.749	.038	3.406	.015
	Plant spread	5.288	.001	8.490	.000	8.316	.000
TT 1 .: 1	* Number of leaves per plant	3.775	.009	4.740	.002	7.180	.000
Hybrid Fertilizer	Leaf area	2.661	.043	20.215	.000	7.460	.000
rertilizer	Stem girth	6.674	.000	10.294	.000	13.966	.000
	Stem diameter	5.992	.000	3.922	.007	5.520	.001
	Curd yield/m²	10.747	.000	8.130	.000	19.627	.000

3.5 Effect of fertilizer × spacing on vegetative and yield characters

The results revealed that in both the years and pooled data for Fertilizer × Spacing, all vegetative and yield characters were highly significant. The experimental result revealed that F_3S_1 recorded maximum value of plant height (60.44 cm, 64.18 cm, 62.31 cm) and highest curd yield/m² (3.84 kg, 4.18 kg, 4.01 kg). This might be due to more terminal increase in closer spaced plant, where lateral growth is more along with more availability of plants. These findings are in close accordance with the findings of Tejaswini et al. 2018. Whereas, maximum plant spread (76.19 cm, 81.10 cm, 78.64 cm), maximum number of leaves per plant (18.91, 22.92, 20.91), leaf area (441.80 cm², 473.07 cm², 457.44 cm²), stem girth (8.61 cm, 12.80 cm, 10.71 cm) and stem diameter (4.75 cm, 5.18 cm, 4.96 cm) were observed under treatment combination F_3S_3 . Higher vegetative growth of broccoli plant under wider spacing with higher dose of fertilizer, in the investigation may be because of wider spacing provided less competition for sunlight and nutrients which ultimately resulted in more growth of plants by receiving maximum sun light and more photosynthesis as well as less interplant competition for nutrient and availability of more nutrients could have led to maximum value of these characters. The similar results were reported by Ahmed et al. 2011, Roni et al. 2017, Abhijithnaik et al. 2022 and Verma et al. 2023. The details are mentioned in table 3.12 & 3.13.

Table 3.12. Effect of fertilizer × spacing on vegetative and yield characters

Fertilizer * Spacing			2023	2024	Pooled
Dependent Variable	F	S	Mean	Mean	Mean
I		S_1	53.42	58.42	55.92
	F_1	S_2	59.53	60.48	60.01
		S_3	49.65	53.31	51.48
m1 1 + 1.		S_1	56.51	62.93	59.72
Plant height	F_2	S_2	51.60	58.66	55.13
		S_3	52.31	56.16	54.23
	F_3 S_1 S_2	S_1	60.44	64.18	62.31
		S_2	59.02	61.12	60.07

		S ₃	55.07	57.01	56.04
		S_1	68.50	65.64	67.07
	F_1	S_2	66.12	68.24	67.18
	1	S_3	73.59	77.22	75.41
		S_1	63.97	70.91	67.44
Plant spread	F_2	S_2	72.58	74.53	73.56
		S_3	74.77	74.30	74.54
		S_1	65.38	68.01	66.69
	F_3	S_2	71.47	72.57	72.02
		$\overline{S_3}$	76.19	81.10	78.64
		S_1	17.70	21.71	19.71
	F_1	$\overline{S_2}$	17.70	21.05	19.37
		S_3	17.76	21.76	19.76
		S_1	17.93	20.90	19.42
Number of leaves	per_{F_2}	$\overline{S_2}$	18.09	21.49	19.79
plant		S_3	18.65	22.56	20.60
		S_1	17.44	22.04	19.74
	F_3	S_2	18.51	21.56	20.03
		S_3	18.91	22.92	20.91
		S_1	366.14	422.93	394.53
	F_1		427.70	442.52	435.11
	1	$\frac{S_2}{S_3}$	418.98	459.22	439.10
		S_1	397.41	418.87	408.14
Leaf area	F_2	S_2	414.32	440.11	427.22
		$\overline{S_3}$	441.19	468.79	454.99
		S_1	397.12	444.91	421.01
	F_3	S_2	430.63	459.45	445.04
		S_3	441.80	473.07	457.44
		S_1	7.21	10.59	8.90
	F_1	S_2	7.62	10.34	8.98
	1	S_3	7.88	10.87	9.37
		S_1	7.66	10.69	9.18
Stem girth	F_2	S_2	7.62	11.17	9.40
3		$\overline{S_3}$	7.98	11.93	9.95
		S_1	7.59	11.09	9.34
	F_3	S_2	7.57	10.86	9.22
		S_3	8.61	12.80	10.71
		S_1	4.47	4.37	4.42
	F_1	$\overline{S_2}$	4.21	4.48	4.35
	1	S_3	4.62	5.05	4.83
		S_1	4.41	4.49	4.45
Stem diameter	F_2	$\overline{S_2}$	4.31	4.75	4.53
		S_3	4.63	5.08	4.85
		S_1	4.41	4.83	4.62
	F_3	S_2	4.62	4.89	4.75
	ľ	S_3	4.75	5.18	4.96
		S_1	1.61	2.39	2.00
Curd yield/m²	F_1	S_2	2.11	2.78	2.45
,	*	S_3	1.48	2.06	1.77

ISSN: 2229-7359 Vol. 11 No. 11s, 2025 https://theaspd.com/index.php

	S_1	2.05	2.73	2.39
F_2	S_2	2.22	2.97	2.59
	S_3	1.93	2.64	2.29
	S_1	3.84	4.18	4.01
F_3	S_2	3.14	3.48	3.31
	S_3	3.39	4.01	3.70

Table 3.13. Tests of between subjects

Source	Dependent Variable	2023				Pooled	
		F Cal	p Value	F Cal	p Value	F Cal	p Value
	Plant height	10.657	.000	6.316	.000	17.769	.000
	Plant spread	4.169	.005	16.919	.000	8.255	.000
	Number of leaves per plant	3.497	.013	2.784	.036	3.720	.010
Spacing Fertilizer	Leaf area	3.232	.019	2.762	.037	3.943	.007
rerunzer	Stem girth	7.182	.000	10.203	.000	12.581	.000
	Stem diameter	4.527	.003	3.044	.025	3.098	.023
	Curd yield/m ²	5.946	.001	15.315	.000	18.505	.000

3.6 Effect of hybrid × spacing on vegetative and yield characters

The interaction Hybrid \times Spacing, for all vegetative and yield characters were responded significantly in both the years and pooled data. The result revealed that H_3S_1 recorded maximum value of plant height (63.36 cm, 67.00 cm, 65.18 cm) because of presence of genes in hybrid H_3 and closer plant spacing increases the plant height which might the accelerating the process of cell division, cell enlargement along with presence of gene in hybrid provided by the soil at F_3 concentration i.e. 125% RDF might have led to greater number of leaves per plant. These results were in conformity with the results of Bhangre et al. 2011, Gurjeet (2016) in broccoli, Moniruzzaman et al. 2011 in cabbage and Tejaswini et al. 2018.

Table 3.14. Effect of hybrid × spacing on vegetative and yield characters

Hybrid * Spacing			2023	2024	Pooled
Dependent Variable	Н	S	Mean	Mean	Mean
		S_1	53.86	64.16	59.01
	H_1	S_2	58.36	65.11	61.73
		S_3	56.35	59.22	57.78
		S_1	53.16	54.38	53.77
Plant height	H_2	S_2	50.76	50.97	50.86
		S_3	43.28	46.46	44.87
	H_3	S_1	63.36	67.00	65.18
		S_2	61.04	64.18	62.61
		S_3	57.40	60.80	59.10
		S_1	63.77	64.03	63.90
Plant height	H_1	S_2	65.44	67.31	66.38
		S_3	67.09	72.63	69.86
	H_2	S_1	64.11	67.23	65.67
Plant spread		S_2	68.88	71.63	70.26
		S_3	75.86	72.90	74.38
		S_1	69.97	73.30	71.63
	H_3	S_2	75.84	76.40	76.12
		S_3	81.60	87.09	84.35
		$\overline{S_1}$	18.18	21.59	19.88
Number of leaves per plant	H_1	S_2	18.87	22.78	20.83
		S_3	18.14	23.16	20.65

International Journal of Environmental Sciences ISSN: 2229-7359 Vol. 11 No. 11s, 2025 https://theaspd.com/index.php

		<u></u>	10.54	h2 50	21.07
	H_2	~	+		21.07
	H_2	<u> </u>	+		20.28
		1	+		21.57
					17.91
	H_3				18.09
					19.06
		S_1		390.89	374.78
	H_1	S_2		420.75	425.89
		S_3	438.05	465.40	451.73
		S_1	390.72	437.99	414.35
Leaf area	H_2	S_2	423.13	463.56	443.34
		S_3	420.92	466.70	443.81
		S_1	411.28	457.83	434.55
	H_3	S_2	S3 438.05 465.40 S1 390.72 437.99 S2 423.13 463.56 S3 420.92 466.70 S1 411.28 457.83	438.13	
		S_3	443.00	468.98	455.99
		S_1	7.36	9.60	8.48
Leaf area Stem girth Curd yield/m²	H_1	$\overline{S_2}$	7.19	9.34	8.26
		S_3	7.80	11.46	9.63
		S_1	7.29	10.75	9.02
	H_2	S_2	7.45	11.09	9.27
			8.09	11.65	9.87
			7.81		9.92
	H_3	2	8.18	11.94	10.06
		S_3	8.57	12.49	10.53
			4.51	4.53	4.52
	H_1		4.45		4.46
					4.78
			S ₃ 19.51 23.63 S ₁ 16.36 19.47 S ₂ 16.76 19.43 S ₃ 17.67 20.45 S ₁ 358.67 390.89 S ₂ 431.04 420.75 S ₃ 438.05 465.40 S ₁ 390.72 437.99 S ₂ 423.13 463.56 S ₃ 420.92 466.70 S ₁ 411.28 457.83 S ₂ 418.49 457.77 S ₃ 443.00 468.98 S ₁ 7.36 9.60 S ₂ 7.19 9.34 S ₃ 7.80 11.46 S ₁ 7.29 10.75 S ₂ 7.45 11.09 S ₃ 8.09 11.65 S ₁ 7.81 12.02 S ₂ 8.18 11.94 S ₃ 8.57 12.49 S ₁ 4.51 4.53 S ₂	4.45	4.34
Stem diameter	H_2				4.61
					4.83
		S_1	+		4.63
	H_3	\overline{S}_{2}			4.56
					5.05
		_			2.77
	H_1				3.28
	1				2.74
Curd yield/m²					3.47
	H_2				3.06
The field, ill	* * 2		+		3.15
					2.16
	H_3				2.01
	113				1.86
		\wp_3	1.72	4.91	1.00

Table 3.15. Tests of between subjects

Source	Dependent Variable	2023		2024		Pooled	
		F Cal	p Value	F Cal	p Value	F Cal	p Value
	Plant height	11.168	.000	3.296	.018	13.360	.000
Hybrid	* Plant spread	2.934	.029	12.189	.000	5.128	.001
Spacing	Number of leaves per plant	5.612	.001	7.288	.000	8.359	.000
	Leaf area	7.758	.000	25.569	.000	21.315	.000

ISSN: 2229-7359 Vol. 11 No. 11s, 2025 https://theaspd.com/index.php

Stem girth	2.512	.053	11.359	.000	7.851	.000
Stem diameter	12.528	.000	3.631	.011	6.557	.000
Curd yield/m²	5.297	.001	5.329	.001	9.656	.000

Whereas, maximum plant spread (81.60 cm, 87.09 cm, 84.35 cm), leaf area (443.00 cm², 468.98 cm², 455.99 cm²), stem girth (8.57 cm, 12.49 cm, 10.53 cm) and stem diameter (4.88 cm, 5.21 cm, 5.05 cm) were observed under treatment combination H_3S_3 . H_2S_3 recorded maximum number of leaves per plant (19.51, 23.63, 21.57). The wider plant spacing due to the availability of more space and light, less competition for nutrients. The crop might have a greater number of leaves per plant, maximum plant spread, leaf area, stem girth and stem diameter and also due to genetic makeup of the variety. These findings are in accordance with the findings of Hill (2000) in Chinese cabbage, Singh (2005) in cauliflower, Agarkar et al. 2010 in broccoli, Bhangre et al. 2011, Solunke et al. 2011, Vinod et al. 2017, Singh et al. 2021, Kumar et al. 2021, Verma et al. 2022, Verma et al. 2023 and Yadav et al. 2023. Whereas, highest curd yield/ m^2 (3.20 kg, 3.74 kg, 3.47 kg) was observed under H_2S_1 . This was due to the reality that as plant spacing decreases, total plant population increases and this in turn contributes to increase in total curd yield. The current result agreed with works of Hossain et al. 2011. The details are mentioned in table 3.14 & 3.15.

CONCLUSION

Among different hybrid H_3 (Besty), spacing level S_3 (60 × 60 cm) and fertilizer level F_3 (125% RDF) recorded maximum plant spread, leaf area, stem girth and stem diameter. Whereas hybrid H_2 , spacing level S_1 and fertilizer doses F_3 observed maximum curd yield/ m^2 . Among different interaction F_3H_3 , F_3S_3 , H_3S_3 recorded maximum plant spread, leaf area, stem girth and stem diameter. Whereas, F_3H_2 , F_3S_1 , H_2S_1 observed maximum curd yield/ m^2 . Hence hybrid H_3 , spacing level S_3 and fertilizer doses F_3 must be recommended to farmers.

REFERENCES

- 1. Agarwal A, Gupta S and Ahmed Z (2007) Nitrogen nutrition and plant density influencing marketable head yield of broccoli in cold arid desert of Ladakh. *Acta Hortic.* **756**: 299 –307.
- 2. Agarkar UR, Dadmal KD, Nikas NS, Piwlatkar GK (2010) Effect of nitrogen levels and spacing on growth and yield of broccoli (Brassica oleracea var. Italica L.). Green Far 1 (5): 477-479.
- 3. Ahmed M, Mondal MF, Ashrafi R, Kamruzzaman M and Ikbal MK (2011) Effects of different levels of NK fertilizers and plant spacing on growth and yield of broccoli (*Brassica oleracea L.*). 15-18.
- 4. Anonymous (2015) National Horticulture Board. http://www.nhb.gov.in.
- Amare G and Gebremedhin H (2020) Effect of plant spacing on yield and yield components of tomato (Solanum lycopersicum L.) in Shewarobit, Central Ethiopia. Scientifica https://doi.org/10.1155/2020/8357237.
- Abhijithnaik S, Srinivasappa KN, Hanumantharaya BG, Rajshree G, Budensha B, Vijaykumar BT and Shaurya P (2022)
 Effect of spacing and nutrient on growth of broccoli (*Brassica oleracea* var. italica) under open field condition. The Pharma Innov. J. 11 (11): 1489-1493.
- 7. Akanksha, Singh G, Dhillon NS, Verma LK (2023) Impact of Nitrogen on Growth and Yield of Broccoli (*Brassica oleracea* L. var. *italica*) under Open and Protected Environment. *Environ. Eco.* 41 (4D): 3049-3053.
- 8. Bhangre KK, Sonawane PC and Warade SD (2011) Effect of different varieties and spacing on growth and yield parameters of broccoli (*Brassica oleracea* var. *italica*) under Pune conditions. *Asian J. Hort.* 6 (1): 74-76.
- 9. Chalabi ATM and Ibraheem FFR (2024) Assessment of best fertilizer combination and planting distance for growth and productivity of broccoli (*Brassica oleracea*). *J. Breed. Genet.* **56** (1): 332-341.
- 10. Fabek S, Toth N, Benko B and Peic I (2011) The effect of plant density on morphological traits and yield of broccoli. *Glasnik Zastite Bilja.* 34 (1): 22-29.
- 11. Gosavi SP and Bhagat SB (2009) Effect of nitrogen levels and spacing on yield attributes, yield and quality parameters of baby corn (Zea mays). Ann. Agric. Res. 30 (3-4): 125-128.
- 12. Giri RK, Sharma MD, Shakya SM, Dhoj YGC, Kandel TP (2013) Growth and yield responses of broccoli cultivars to different rates of nitrogen in western Chitwan, Nepal. *Agric. Sci.* **4** : 8-12.
- 13. Gogoi S, Millu R, Das P, Bora N and Das BK (2016) Effect of sowing dates and spacing on broccoli (*Brassica oleracea* var. *italica*) seed production. *Indian J. Agric. Res.* **50** (4): 350-353.
- 14. Gurjeet K (2016) Growth, yield and quality of broccoli (Brassica oleracea var. italica). As influenced by nitrogen and plant population under different dates of sowing. M.Sc. Thesis. Punjab Agricultural university, Ludhiana.

- 15. Hill TR (2000) Effect of plant spacing and nitrogenous fertilizers on the yield of Chinese cabbage (*Brassica campestris* sp. pekinensis). Aust. J. Experim. Agric. 30 (3): 437-439.
- 16. Hossain MF, Ara N, Uddin MR, Dey S and Islam MR (2011) Effect of time of sowing and plant spacing on broccoli production. *Trop. Agric. Res. Ext.* **14** (4): 90-92.
- 17. Haque FA, Islam MN, Islam MN, Ullah A, Sarkar MD (2015) Growth, yield and profitability of cabbage (*Brassica oleracea L.*) as influenced by applied nitrogen and plant spacing. *The Agriculturists.* 13 (1): 35-45.
- 18. Hossain MI, Ali M, Mehedi NH, Hasan M, Sarkar MJ and Toma NI (2020) Effect of variety and nutrient sources on growth and yield of broccoli in southern belt of Bangladesh. Arch. Agric. Environ. Sci. 5 (3): 313-319.
- 19. Jeffery (2005) Maximizing the anti-cancer power of broccoli. Science daily. www.sciencedaily.com/releases/2005/03/050326114810.htm.
- 20. Kumar N, Praskash V and Srivastva AK (2007) Effect of transplanting dates and geometries on broccoli (*Brassica oleracea* var. *italica*) under mid hill conditions of North-West Himalaya. *Indian J. Agric. sci.* 77 (7): 448-450.
- 21. Khatun K, Saha SR and Mostrain T (2011) Growth and yield of broccoli as influenced by plant spacing. *Int. J. sustain. Agric. Tech.* 7 (12): 7-12.
- 22. Kumar M, Das B, Prasad KK and Kumar P (2013) Effect of integrated nutrient management on growth and yield of broccoli (*Brassica oleracae* var. *itlaica*) under Jharkhand conditions. Veg. sci. 40 (1): 117-120.
- 23. Khatun K, Saha SR and Mostrain T (2016) Growth and yield of broccoli as influenced by plant spacing. *Int. J. sustain. Agric. Tech.* 7 (12): 7-12.
- 24. Kaur G, Kaur A and Dhillon NS (2021) Effect of spacing and mulching on growth, yield and quality of sprouting Broccoli (Brassica oleracea var. italica). J. Pharmacogn Phytochem. 10 (1): 389-392.
- 25. Kumar P, Kumar S, Meena ML, Kumar R, Rawat R and Yadav S (2021) Influence of varieties and spacing on yield and quality of sprouting broccoli (*Brassica oleracea L.*). Ann. Plant Soil Res. 23 (1): 108-111.
- 26. Kumar SA, Kumar PR, Meena ML, Kumar RA, Rawat RA and Yadav S (2021) Influence of varieties and spacing on growth characters of sprouting broccoli (*Brassica oleracea L.*). Ann. Plant Soil Res. 23 (1): 99-103.
- 27. Kande KB, Bhosale AM, Jawale SA, Sarvade PB and Lahade JS (2024) Effect of dates of planting and plant spacing on growth and yield of broccoli (*Brassica oleracea L. var. italica*) cv. green magic under Marathwada condition. *Int. J. Adv. Biochem. Res.* 8 (11): 991-995.
- 28. Kaur AP and Rampal VK (2024) Performance and Preference of Broccoli Varieties Grown under District Fatehgarh Sahib. Int. J. Curr. Microbiol. App. Sci. 13 (10): 84-89.
- 29. National Research Council (1982) Committee on Diet, Nutrition, Cancer. Washington, DC: The National Academies Press.
- 30. Moniruzzaman M, Rahman SML, Kibria MG, Rahman MA and Hossain MM (2007) Effect of Boron and Nitrogen on Yield and hollow stem of Broccoli. J. Soil. Nature. 1 (3): 24-29.
- 31. Munro DC, Mackay DC and Cutcliffe JA (2007) Relation of nutrient content of broccoli and brussels sprouts leaves to maturity and fertilization with N, P and K fertilizer. Can. J. Plant Sci. 58: 385-94.
- 32. Moniruzzaman M (2011) Effect of plant spacing on the performance of hybrid cabbage (*Brassica oleracea* var. *capitata* L.) varieties. *Bangladesh J. Agric. Res.* **36** (3): 495-506.
- 33. Mohanta R, Nandi AK, Mishra SP, Pattnaik A, Hossain MM and Padhiary AK (2018) Effects of integrated nutrient management on growth, yield, quality and economics of sprouting broccoli (*Brassica oleracea* var. *italica*) cv. Shayali. *J. Pharmacogn. Phytochem.* 7 (1): 2229-2232.
- 34. Meena A, Solanki RM, Parmar PM and Chaudhari S (2022) Effect of spacing and nitrogen fertilization on growth, yield and economics of fodder maize (Zea mays L.). *Pharm. Innov.* 11 (4): 1732-1735.
- 35. Neethu TM, Tripathi SM, Narwade AV and Sreeganesh S (2015) Effect of N and P levels on growth and yield parameters of broccoli (*Brassica oleracea L. var. italica*) under Gujarat. *Int. J. Trop. Agric.* 33: 913-917. http://www.cabdirect.org/abstracts/20153336357.html.
- 36. Prasad PH, Bhunia P, Naik A and Thapa U (2009) Response of nitrogen and phosphorus levels on the growth and yield of Chinese cabbage (*Brassica campestris* L. var. *pekinensis*) in the gangetic plains of West Bengal. J. Crop Weed. 5 (2): 75-77.
- 37. Priyanka, Bhatt L, Singh D, Singh PK, Gautam P and Singh UK (2023) Influence of NPK on growth, yield and nutrient content in broccoli (*Brassica oleracea L. var. italica*) under drip and conventional irrigation system. *The Pharma Innov. J.* 12 (8): 2051-2056.
- 38. Quratul A, Gohar A, Mohammad I, Manzoor A, Farzana B, Luqman, Ammara S, Mohammad IK and Kamran S (2016) Response of broccoli to foliar application of zinc and boron concentrations. *Pure Appl. Biol.* **5** (4): 841-846.
- 39. Rahman MU, IqbalJilani MS and Waseem K (2007) Effect of different plant spacing on the production of cauliflower (*Brassica oleracea* var. *botrytis*) under the agro-climatic conditions of D.I. Khan. *Pak. J. Biol. Sci.* 10 (24): 4531-4534.
- 40. Rana MK (2008) Olericulture in India. Kalvani Publishers, New Delhi. Pp. 301.
- 41. Roni MS, Zakaria M, Hossain MM and Siddiqui MN (2014) Effect of plant spacing and nitrogen levels on nutritional quality of broccoli (*Brassica oleracea L.*). Bangladesh J. Agric. Res. 39 (3): 491-504.
- 42. Roni MS, Zakaria M, Hossain MM and Rasul MG (2017) Effects of plant spacing and nitrogen levels on the growth and yield of broccoli. *Int. J. Nat. Soc. Sci.* 4 (2): 24-29.
- 43. Rani P, Saini I, Singh N, Kaushik P, Wijaya L, Al- Barty A and Noureldeen A (2021) Effect of potassium fertilizer on the growth, physiological parameters, and water status of *Brassica juncea* cultivars under different irrigation regimes. *Plos One* 16 (9): 1-10.

- 44. Singh RV (2005) Response of late cauliflower to plant spacing nitrogen and phosphorus fertilization. J. Res. 17: 223-226.
- 45. Singh R, Chaursasia SNS and Singh SN (2006) Response of nutrient sources and spacing on growth and yield of broccoli (Brassica oleracea var. italica). Veg. sci. 33:198-200.
- 46. Supe VS and Marbhal SK (2008) Effect of organic manure with graded levels of nitrogen on growth and yield of cabbage (Brassica oleracea var. capitata L.). Asian J. Hort. 3 (1): 48-50.
- 47. Saikia P, DB and Brahma S (2010) Effect of time of planting and planting densities on growth, yield and economic production of broccoli (*Brassica oleracea* var. *italica*) cv. Pusa Broccoli KTS-1. *J. Hill Agric.* 1 (2): 135-139.
- 48. Solunke BG, Wagh AP, Dod VN, Nagre PK (2011) Effect of dates of planting and spacing on growth and yield of broccoli. *Asian J. Hort.* 6 (2): 294-296.
- 49. Singh P, Singh K, Yadav C and Ganga J (2012) Effect of intra-row spacing and pruning on yield, water use and economics of tomato production under naturally ventilated bamboo polyhouse, Pantnagar. *J. Res.* 10 (1): 91-95.
- 50. Singh MK, Chand T, Kumar M, Singh KV, Lodhi SK and Singh VP (2015) Response of Different Doses of NPK and Boron on Growth and Yield of Broccoli (*Brassica oleracea* var. *italica*). *Int. J. Bioresour. Stress Manag.* 6 (1): 108-112.
- 51. Singh S, Kumar S, Yadav S, Singh SP, Yadav S and Singh A (2021) Interaction effect of plant spacing and cultivar on sprouting broccoli. *The Pharma Innov. J.* 10 (12): 1312-1315.
- 52. Thompson HC and Kelly WC (1985) Vegetable Crops. Fifth edition, McGraw Hill. Book Co. New York, Toronto, London, P. 307.
- 53. Thirupal D, Madhumathi C, Reddy SSP (2014) Effect of planting dates and plant spacings on growth, yield and quality of broccoli under Rayalaseema zone of Andhra Pradesh, India. *Plant Arch.* 14 (2): 1095-1098.
- 54. Thapa U, Prasad PH and Rai R (2016) Studies on Growth, Yield and Quality of Broccoli (*Brassica Oleracea L.Var Italica* Plenck) as Influenced by Boron and Molybdenum. *J. Plant Nutr.* 39 (2): 261–267.
- 55. Tejaswini T, Varma LR, Verma P, Thakur DM and Vani FB (2018) Studies on Effect of Different Plant Spacing with Respect to Growth, Yield and Quality of Broccoli (*Brassica oleracea* var. *italica*. L) under North Gujarat Conditions. *Int. J. Curr. Microbiol. App. Sci.* 7 (5): 34-42.
- 56. Vinod S, Aravindakshan K and Bola PK (2017) Effect of sowing date and spacing on growth, yield and quality of broccoli (Brassica oleracea var. italica) cultivar. Green head. Chem. sci. rev. lett. 6 (21): 209-212.
- 57. Verma S, Ram RB, Kumar S, Kishor B, Veersain and Kumar M (2022) Effect of Different Varieties and Plant Spacing on Growth Yield and Quality Attribute of Sprouting Broccoli (*Brassica oleracea* var. *italica* Plenck). Int. J. Environ. Clim. Chang. 12 (12): 1208-1215.
- 58. Verma S, Maji S, Razauddin, Mayaram, Meena RC (2023) Interaction Effect of Plant Spacing and Varieties on Growth, Yield and Quality of Cabbage (*Brassica oleracea* var. *capitata* L.). *Environ. Eco.* 41 (1): 23-28.
- 59. Yadav LP, Singh A and Malhotra SK (2016) Growth, yield and quality response of organic broccoli to intercrops and crop geometry. *Indian J. Hortic.* 73 (3): 376-382.
- 60. Yadav S, Kumar S, Verma RS, Kumar L, Anushruti, Singh V, Meena D, Shukla U and Sonkar VK (2023) Effect of different varieties and spacings on yield and quality of cabbage (*Brassica oleracea L. var. capitata*). The Pharma Innov. J. 12 (3): 458-461.
- 61. Zaki MF, Saleh SA, Tantawy AS and Dewiny CY (2015) Effect of Different Rates of Potassium Fertilizer on the Growth, Productivity and Quality of Some Broccoli Cultivars under New Reclaimed Soil Conditions. *Int. J. ChemTech Res.* 8 (12): 28-39.