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Abstract 
The rapid development of technology in agriculture has opened the door to data-driven solutions to increase crop 
productivity and sustainability. This paper introduces a machine learning-based method for crop prediction through 
deep learning models such as long short-term memory (LSTM) and gated recurrent units (GRU). By exploiting 
environmental factors such as soil content, temperature, moisture, and nutrient levels, the suggested model accurately 
suggests the most suitable crops for a specific area. Preprocessing operations such as feature scaling, principal 
component analysis (PCA), and one-hot encoding are applied to the dataset derived from Kaggle, which enhance the 
prediction effectiveness. Experimental results reflect the model’s ability to optimize crop choices and, subsequently, 
reduce the associated risks from unknown climate changes, soil degradation, and less efficient use of resources. This 
work highlights the impact of deep learning in agricultural decision-making that supports higher productivity and 
sustainability. 
Index Terms—Crop Prediction, Machine Learning, Deep Learning, LSTM, GRU, Precision Agriculture, Sustainable 
Farm- ing, Climate Resilience, Resource Optimization, AI in Agricul- ture. 
 
INTRODUCTION 
Agriculture is perhaps the most important industry for human survival, providing livelihoods, raw 
materials, and food for billions of people around the world. With the world popula- tion projected to reach 
nearly 10 billion by 2050, maintaining food security has become a major concern [1], [2]. Traditional 
farming methods are becoming increasingly unreliable due to challenges such as climate change, soil 
degradation, water scarcity, and pest threats. To address these challenges, modern agriculture is looking 
for data-intensive solutions that increase productivity and sustainability. Crop forecasting is perhaps the 
most significant development in the field, as it plays a significant role in increasing agricultural 
productivity [3].Crop forecasting uses scientific and technological tools to identify suitable crops for 
planting in a given area based on soil type, weather patterns, temperature, moisture, and nutrient 
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availability. Accurate crop forecasting helps farmers make smart choices, reduce the chance of crop failure, 
and increase overall productivity [4]. By using past data and current environmental models, farmers are 
able to select the most ideal crops for the land, avoiding the risks associated with inappropriate crop 
selection. This allows for the establishmentof optimal sowing dates, irrigation rates and fertilizer use, 
ensuring favorable conditions for crops to grow [5].Climate change has made agriculture more uncertain, 
with extreme weather patterns such as heat waves, floods and droughts threatening crop production. 
Traditional farming methods are unable to cope with these rapid changes and many farmers are suffering 
great losses [6]. However, crop forecasting models use weather data and weather forecasts to enable 
farmers to predict adverse conditions and avoid losses [7]. This allows them to switch to more resistant 
crops, modify planting calendars and use better water management practices to reduce risks.Pest and 
disease infestations are also a significant agri- cultural problem. Once an infestation is detected, farmers 
adopt response strategies such as the use of pesticides, but this leads to crop loss and excessive chemical 
consumption [8]. Crop forecasting models based on machine learning and deep learning can predict 
potential infestations by examining environmental conditions and past pest trends. Farmers can take steps 
such as biological pest control or changing planting plans to reduce the risk of infestation while conserving 
the use of toxic chemicals. 
Another benefit of crop forecasting is efficient resource management. One of the most valuable assets 
in agriculture is water, yet many farmers operate under inefficient irrigation strategies. By combining 
crop forecasting with smart irrigation technologies, farmers can maximize water use with real-time 
monitoring of soil moisture and weather forecasts. Fertilizer use can also be optimized to provide plants 
with the nutrients they need without overuse, which can have a negative impact on the soil after years 
of cultivation [9].The economic contribution of crop forecasting is also high because it helps farmers 
reduce losses and increase profits. Farmers can accurately predict their crop yields, so that they can 
devise better strategies for harvesting, storage, and marketing. This reduces post-harvest losses and 
protects them from selling their produce at the wrong time for low prices. Furthermore, governments 
and policymakers can use crop forecasting data to design more effective agricultural policies, allocate 
resources more efficiently, and help farmers make better decisions [10]. 
Over time, crop forecasting will become more sophisticated,incorporating advanced tools such as satellite 
imagery, Inter- net of Things (IoT) sensors, and real-time analytics. These new technologies will continue 
to increase the precision of agriculture, allowing it to be more resilient, more efficient, and more 
sustainable. The future of agriculture lies in using the power of data and technology to make better choices 
and ensure food security for future generations while protecting the environment. 
 
METHODOLOGY 
Dataset 
In this paper, we have used the crop recommendation dataset obtained from Cagle and its aim is to 
help predict the most suitable crop for planting given environmental and soil conditions. It includes a 
wide range of attributes such as important agronomic parameters such as nitrogen (N), phosphorus (P), 
potassium (K), temperature, moisture, soil pH and rainfall. In addition, the data includes information 
about crop water requirements, market price per kilogram and average water requirements, thereby 
increasing its value for crop planning and decision-making. A row in the data represents a specific 
combination of such input attributes and a target variable, which indicates the recommended crop type, 
e.g., rice, wheat, chickpea, pigeon pea or watermelon. The dataset is well-structured and balanced, making 
it suitable for training machine learning models such as LSTM and GRU for crop recommendation 
purposes. Its practical applicability and rich feature set make it a useful tool for farmers, researchers and 
data scientists to optimize farming practices using data- driven insights. 
Pre-processing data 
Feature cleaning and selection help to refine the dataset by keeping only the most important information. 
The process begins by separating the target variable or crop type from the rest of the dataset. This is 
done to ensure that the model can learn from independent features without being biased by the output 
labels while training. Another column related to water requirements is checked for deletion with a 
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conditional check. If the column exists, it is dropped along with the target variable. This process ensures 
that only the necessary numeric and categorical features are left, eliminating duplicates or unnecessary 
information that would add noise to the model.The crop type classification is in text form, it needs 
to be converted to numeric format before being input into the model. This is achieved through label 
encoding, where each distinct crop name gets a specific integer value. But treating the categorical data as 
numeric values makes the model assume that these have an ordinal relationship, which is not the case. 
To avoid this, one-hot encoding is used. This process converts the numerical labels into vectors of binary 
values, where each crop type gets a different set of 0s and 1s. Using one-hot encoding, the model treats 
all crop types as individual classes without assuming any ranking among them internally.Feature scaling 
ensures that all numerical features affect the model equally and prevents some variables from overshadow- 
ing others due to their large values. Standardization is used here using a standard scaler, where the data 
is transformed so that each feature has a mean value of zero and a standard deviation of one. This process 
helps to reduce the differences between scales for different features, so that the model can learn efficiently. 
Standardization is mostly used in deep learn- ing models such as LSTMs and GRUs because it speeds up 
training convergence and increases the stability of the overall model. 
Feature Extraction 
Feature extraction is an important preprocessing step that helps reduce the complexity of a dataset 
while preserving key information. Here, feature extraction is done using Principal Component 
Analysis (PCA). PCA is a dimensionality reduc- tion method that reduces the number of new features, 
called principal components, from the original set of features. These elements select the greatest 
variation in the data, that is, they retain the most complex patterns and remove unnecessary or less 
useful information.PCA is used in this process to handle 95% of the variation in the dataset. That is, 
instead of using all the original features, the algorithm selects the most informative ones, filtering out 
noise and redundancy. The number of components selected depends on how well they explain the 
variation in the dataset. With this, the model gains advantages in several aspects: it reduces 
computational complexity, avoids overfitting, and makes training more efficient. 
After PCA transforms the dataset, the extracted features are reshaped to fit the input format of 
deep learning models such as LSTM and GRU. Since these models require a three- dimensional input 
structure, the data is reshaped before being fed into the network. Feature extraction using PCA 
provides the most compact and relevant representation of the dataset to the model, resulting in 
improved performance and efficiency. 
LSTM-GRU 
The LSTM-GRU model is designed to analyze agricultural and environmental data to recommend the 
most suitable crop for a given set of conditions. By utilizing deep learning, this model processes time-
dependent factors such as soil nutrients, rainfall, temperature, and humidity, ensuring that historical 
trends and real-time data contribute to accurate predictions. The combination of Long Short-Term 
Memory (LSTM) net- works and Gated Recurrent Units (GRU) allows for effective handling of both 
long-term and short-term dependencies in the dataset. LSTM layers capture long-term trends in 
climate and soil conditions, while GRU layers refine these predictions by efficiently managing recent 
fluctuations in environmental parameters.LSTM networks use a memory cell mechanism that controls 
information flow through three primary gates: the forget gate, input gate, and output gate. The forget 
gate determines how much past information should be retained by computing a 

 
Algorithm 1 Principal Component Analysis (PCA)  

1: Load the dataset 
2: Extract feature matrix X (excluding target variable) 
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σ 

3: Standardize the features 
4: Compute mean µ and standard deviation σ for each feature 
5: Normalize: Xscaled = X−µ 
6: Compute the covariance matrix 

The updated memory cell is computed as: 

Ct = ft ∗ Ct−1 + it ∗ C˜t (4) 
where Ct stores information that influences future predic- tions. The final output from the LSTM 

layer is determined by the output gate: 
7: Covariance matrix: Σ =  1 (XT Xscaled) 

n scaled 
8: Compute eigenvalues and eigenvectors 
9: Solve: Σv = λv 

10: λ (eigenvalues) represent variance, v (eigenvectors) define principal components 
11: Sort eigenvalues and eigenvectors 
12: Rank eigenvalues in descending order 
13: Select top k eigenvectors corresponding to the highest 

                   ot = σ(Wo · [ht−1, xt] + bo) (5) and updates the hidden state as: 
ht = ot ∗ tanh(Ct) (6) 

This hidden state is then passed to the next layer of the model, helping in learning the 
relationship between different 

eigenvalues 
Σ λ environmental factors and crop yield. 

14: Retain components that preserve 95% variance: Σ 

0.95 
15: Transform the dataset 
16: Project Xscaled onto selected principal components: 
17: Xpca = XscaledVk 
18: Output transformed dataset 
19: Use Xpca for model trainingi 

λtotal 
On the other hand, GRU layers streamline this process by replacing the three gates of LSTM with just 
two: the reset gate and the update gate. The reset gate is defined as: 
 

rt = σ(Wr · [ht−1, xt] + br) (7) 
determining how much past information should be for- gotten. If the reset gate value is small, older 
information is ignored, making GRUs particularly useful when recent 
sigmoid activation function on the concatenation of the previ- ous hidden state and the current input. 
This is mathematically represented as: 

ft = σ(Wf · [ht−1, xt] + bf ) (1) 
conditions, such as sudden rainfall or drought conditions, are more relevant than past data. The 
update gate is given by: 

zt = σ(Wz · [ht−1, xt] + bz) (8) which balances the retention of old 
information with new 

≥ 
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where Wf 
represents trainable weights, h 
t−1 
is the hidden 
inputs, ensuring that the model adapts dynamically to changing environmental factors. The hidden state 
is then computed as: 
state from the previous step, and xt is the current input data. 
If the forget gate outputs a value close to 1, the previous information is retained; if it is close to 0, it 
is discarded. This ensures that only relevant historical trends, such as seasonal changes in soil fertility or 
temperature fluctuations, are remembered for crop recommendation. 
The input gate then regulates the addition of new informa- tion by computing another sigmoid function: 
 

it = σ(Wi · [ht−1, xt] + bi) (2) and a candidate memory content 

C˜t = tanh(WC · [ht−1, xt] + bC) (3) 

                       ht = (1 − zt) ∗ ht−1 + zt ∗ h̃ t  (9) 

where h̃ t  represents the candidate activation. Unlike LSTM, GRU reduces the computational 
complexity by eliminating the memory cell and instead directly updating the hidden state, making it 
more efficient for real-time crop prediction. 
Once the LSTM and GRU layers extract relevant features from the environmental data, the output is 
passed through fully connected dense layers. These layers apply an activation func- tion, typically ReLU 
(Rectified Linear Unit) for hidden layers and softmax for the output layer, to classify and recommend 
the most suitable crop. The softmax function converts the final output into probability values, ensuring 
that the model assigns 

a confidence score to each possible crop type. The equation for softmax is given by: 

ezi 
Algorithm 2 LSTM-GRU Model for Crop Classification  
1: Input: Preprocessed feature matrix Xtrain, Xtest, and one-hot encoded labels ytrain, ytest 

P (yi) = 
j 
(10) 
2: Output: Trained LSTM-GRU model and classification predictions 
where zi is the output of the last dense layer before activa- tion, and P (yi) represents the probability 
of recommending a particular crop. The crop with the highest probability is selected as the final 
recommendation. 
This entire process is optimized through categorical cross- entropy loss, which is computed as: 

L = − 
Σ 

yi log(yˆi) (11) 
i 

where yi is the actual label, and yˆi is the predicted probability from the softmax function. The model is 
trained using the Adam optimizer, which updates weights based on the computed loss, ensuring that the 
recommendation system improves over multiple training epochs. By integrating both LSTM and GRU, 
the model effectively learns patterns in soil fertility, climate variations, and previous crop yields. It 
ensures that historical trends (captured by LSTM) and recent changes (managed by GRU) collectively 
influence the final crop recommendation. This makes the system robust, adaptive, and efficient in 
recommending the best crops for sustainable agriculture. 
 
EXPERIMENTAL RESULTS 
The results demonstrate that the model effectively learns from the dataset and achieves high classification 
accuracy in recommending suitable crops. The feature correlation heatmap provides valuable insights into 
relationships between agricul- tural parameters, which can be useful for further optimization. The 

Σ 
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confusion matrix highlights the model’s strengths and weaknesses, helping refine the recommendation 
system by addressing misclassifications. The loss and accuracy trends indicate stable training with no 
significant overfitting, con- firming that the model is well-optimized for predicting suit- able crops based 
on environmental and soil conditions. The results presented in the visualizations provide insights into 
the model’s performance and data relationships in the crop recommendation system. Here is a detailed 
explanation of each visualization: 
Feature Correlation Heatmap 
The feature correlation heat map shows the correlation between different variables in a dataset. The 
correlation co- efficient between two variables is represented by each cell in the matrix, which ranges from 
-1 to 1. A positive correlation (close to 1) means that as one variable increases, the other also increases, 
while a negative correlation (close to -1) means that there is an inverse relationship. For example, nitrogen 
(N) has a high positive correlation with water requirements, which indicates that crops with high nitrogen 
demands also have relatively high water demands. Temperature and humidity also have significant 
correlations with other environmental factors, 

3: Begin 
4: Initialize Sequential Model 
5: Add LSTM Layer 
6: Set number of units to 64 
7: Define input shape as (timesteps = 1, features = 

number of PCA components) 
8: Set return sequences = True 
9: Add Dropout Layer (Drop probability = 0.2) 

10: Add GRU Layer 
11: Set number of units to 64 
12: Set return sequences = False 
13: Add Dropout Layer (Drop probability = 0.2) 
14: Add Fully Connected Dense Layer 
15: Set number of neurons to 128 
16: Use ReLU activation function 
17: Add Dropout Layer (Drop probability = 0.2) 
18: Add Output Dense Layer 
19: Set number of neurons = number of classes 
20: Use softmax activation function 
21: Compile Model 
22: Set optimizer = Adam 
23: Set loss function = categorical cross-entropy 
24: Set metric = accuracy 25: Display Model Summary 26: Train 
Model 
27: Fit model using Xtrain and ytrain 
28: Set batch size = 32 
29: Set epochs = 100 
30: Use 20% validation split 
31: Evaluate Model 
32: Compute test loss and accuracy using Xtest and ytest 
33: Make Predictions 
34: Use trained model to predict labels on Xtest 
35: Convert predicted probabilities to class labels 
 36: End  
which demonstrate their control over crop growth. A heat map can help determine redundant traits 
and how different traits affect crop yield and suitability. 

Confusion Matrix 
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The confusion matrix evaluates the performance of a trained model by comparing the true and 
predicted labels. The row represents the actual class and the column represents the predicted class. 
Diagonal values show correct classifications, while off-diagonal values show incorrect classifications. A 
large number of correct classifications (dark blue along the diagonal) shows that the model is classifying 
most crops correctly. But some incorrect classifications can be seen, for example, mungbean with 
other crops. This means that 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
Fig. 2. Feature Correlation Heatmap 

 
some crop classes have similar characteristics and are difficult to distinguish. The confusion matrix 
helps to find specific categories where the model performs poorly and therefore may have specific 
improvements, such as feature engineering or more training data. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4. Training and Validation Loss & Accuracy 
 
CONCLUSION 
In this paper, we propose a crop prediction model based on LSTM and GRU to examine 
environmental variables and suggest suitable crops. The proposed method effectively ad- dresses 
contemporary agricultural problems such as climate change, resource control, and infestation. The 
high accuracy and ability to generalize from different agricultural situations prove the effectiveness of 
the model as a decision support tool for farmers and policy makers. Future updates will in- clude real-
time data streams, satellite imagery, and IoT-based monitoring to further enhance accuracy. The use 
of artificial intelligence in agriculture is a bright direction for sustainable agriculture, which will 
provide food security for the growing world population. 
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Fig. 3. Confusion Matrix 
 
Training and Validation Loss & Accuracy 
The loss and accuracy plots give us an idea of the learning process of the model over several epochs. In 
the loss plot, the training loss gradually decreases, which means that the model is reducing the error over 
time. The validation loss also tends to follow the same direction, which means that the model generalizes 
well to new data without overfitting. 
In the accuracy plot, both the training and validation accura- cies increase strongly in the early epochs, 
then reach a plateau above 90%. This shows that the model learns well from the input features and can 
make good crop recommendations. The closeness of the training and validation accuracy curves to each 
other indicates that the model is not overfitting and has good generalization ability. 
REFERENCES 

[1] M. Venkatanaresh and I. Kullayamma, “Deep learning based concurrent excited gated recurrent unit for crop 
recommendation based on soil and climatic conditions,” Multimedia Tools and Applications, vol. 83, no. 24, 
pp. 64 109–64 138, 2024. 

[2] S. Poonkuzhali, K. Akilesh, and R. Arya, “Development of efficient forecasting models for climate-resilient crop 
rotation based on deep learning techniques,” in International Conference on Smart Computing and Communication. 
Springer, 2024, pp. 445–462. 

[3] J. Padmapriya and T. Sasilatha, “Deep learning based multi-labelled soil classification and empirical estimation 
toward sustainable agriculture,” Engineering Applications of Artificial Intelligence, vol. 119, p. 105690, 2023. 

[4] X.-B. Jin, N.-X. Yang, X.-Y. Wang, Y.-T. Bai, T.-L. Su, and J.-L. Kong, 
“Hybrid deep learning predictor for smart agriculture sensing based on empirical mode decomposition and gated 
recurrent unit group model,” Sensors, vol. 20, no. 5, p. 1334, 2020. 

[5] E.-S. M. El-Kenawy, A. A. Alhussan, N. Khodadadi, S. Mirjalili, and 
M. M. Eid, “Predicting potato crop yield with machine learning and deep learning for sustainable agriculture,” Potato 
Research, pp. 1–34, 2024. 

[6] J. Padmapriya and T. Sasilatha, “Deep learning based multi-labelled soil classification and empirical estimation 
toward sustainable agriculture,” Engineering Applications of Artificial Intelligence, vol. 119, p. 105690, 2023. 

[7] M. Eftekhari, C. Ma, and Y. L. Orlov, “Applications of artificial intelligence, machine learning, and deep learning 
in plant breeding,” 
p. 1420938, 2024. 

[8] D. Elavarasan and P. D. Vincent, “Crop yield prediction using deep reinforcement learning model for sustainable 
agrarian applications,” IEEE access, vol. 8, pp. 86 886–86 901, 2020. 

[9] M. Mohamed, “Agricultural sustainability in the age of deep learning: current trends, challenges, and future 
trajectories,” Sustainable Machine Intelligence Journal, vol. 4, pp. 2–1, 2023. 

[10] K. Kumari and A. M. Nafchi, “Sustainable agriculture with ai, machine learning, deep learning, and iot for future 
farming,” in 2024 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 
2024, p. 1. 

https://theaspd.com/index.php

