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Abstract: The rapid pace of industrialization and urbanization has led to severe degradation in air and water quality across 
the globe. Traditional environmental monitoring systems are often reactive, fragmented, and slow in responding to pollution 
incidents. This research presents a novel, integrated machine learning-driven framework that leverages real-time data from 
Internet of Things (IoT) sensors and remote sensing platforms to monitor, predict, and assess environmental pollution levels. The 
system utilizes a hybrid architecture combining spatial (satellite) and local (sensor-based) data sources to feed predictive models 
such as Random Forest, XGBoost, and LSTM for real-time assessment of air and water quality parameters, including PM2.5, 
PM10, NO₂, SO₂, pH, and turbidity. A cloud-based processing pipeline is employed to collect, preprocess, and analyze streaming 
data, while geospatial analysis is used to generate pollution heatmaps. Experimental evaluations conducted on multi-city datasets 
from the Central Pollution Control Board (CPCB), Sentinel-5P, and open-source IoT deployments demonstrate a prediction 
accuracy of over 92% and timely alerts for environmental threshold violations. The results confirm the potential of this hybrid 
approach in enabling proactive environmental management and policy-making through sustainable data-driven insights 
Keywords: Environmental Monitoring, Air Quality Index (AQI), Water Quality Prediction, Internet of Things (IoT), Remote 
Sensing 
 
INTRODUCTION 

Environmental pollution poses one of the greatest threats to human health and ecological stability in the 21st 
century. In particular, air and water quality degradation have been directly linked to respiratory diseases, ecosystem 
disruption, and socioeconomic losses. Despite increasing regulatory frameworks, monitoring pollution levels 
remains a complex challenge due to sparse sensor coverage, data latency, and limited predictive capabilities. 
Recent advancements in Machine Learning (ML), the Internet of Things (IoT), and Remote Sensing (RS) offer an 
unprecedented opportunity to develop intelligent, responsive, and scalable environmental monitoring systems. IoT 
sensors provide high-resolution, ground-level observations in real time, while satellite data enables wide-area 
pollution mapping. Machine learning models, in turn, can identify trends, correlations, and anomalies across vast 
datasets.This study proposes a comprehensive solution that integrates these technologies into a cohesive framework 
capable of real-time monitoring, prediction, and visualization of environmental pollution across urban and rural 
landscapes. 
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2. Literature Review 
2.1 Environmental Monitoring 
Traditional systems rely on fixed stations operated by environmental agencies. While accurate, they suffer from low 
spatial resolution. Recent studies have explored low-cost sensor networks (Zhou et al., 2021) and remote sensing for 
broad monitoring (Zhang et al., 2020). 
2.2 IoT in Environmental Science 
IoT has been effectively deployed for smart city air monitoring (Alimisis et al., 2022), agricultural runoff tracking, 
and water quality assessment. However, challenges remain in data fusion, accuracy, and long-term maintenance 
(Sharma et al., 2020). 
2.3 Remote Sensing Applications 
Sentinel and MODIS satellite imagery are extensively used in pollution tracking. Machine learning has been 
employed to correlate spectral bands with pollutant concentrations (Qin et al., 2021), yet often lacks temporal 
granularity. 
2.4 Machine Learning for Pollution Prediction 
ML models like Support Vector Machines (SVM), Random Forests (RF), and deep learning (LSTM, CNN) have 
demonstrated effectiveness in forecasting pollution (Gupta et al., 2023). However, hybrid models combining spatial 
and temporal inputs remain underexplored. 
2.5 Research Gap 
There is a critical need for an integrated system that combines IoT, Remote Sensing, and advanced ML to enable 
accurate, real-time pollution monitoring and prediction. 
 
3. Problem Statement 
Current environmental pollution monitoring systems are reactive and disjointed, lacking real-time prediction, 
spatial coverage, and integration across data sources. This limits the ability of policymakers and communities to 
make timely, informed decisions. 
 
4. Objective 
To design and implement an intelligent machine learning-driven framework that integrates IoT-enabled sensors and 
remote sensing data for real-time monitoring, prediction, and assessment of environmental pollution impacts on air 
and water quality, enabling data-driven decision-making for sustainable environmental management. 
 
5. Methodology  
The proposed methodology consists of several interlinked components designed to acquire, process, analyze, and 
visualize environmental data in real-time using machine learning models. The complete workflow includes data 
acquisition, preprocessing, feature engineering, model design, training and evaluation, and visualization, all 
orchestrated in a modular, scalable architecture. 
5.1 Data Acquisition 
Environmental data is collected from two primary sources: 
5.1.1 IoT Sensor Networks 
A network of IoT-enabled environmental sensors is deployed across selected urban and semi-urban locations. These 
sensors measure air and water quality parameters at high temporal resolutions (every 5 minutes): 
• Air Quality: PM2.5, PM10, CO, NO₂, SO₂, temperature, humidity. 
• Water Quality: pH, turbidity, temperature, dissolved oxygen, electrical conductivity. 
Hardware Used: 
• Arduino/ESP32 microcontrollers with GSM/WiFi modules 
• Air sensors (e.g., MQ135, SDS011) 
• Water sensors (e.g., TDS, turbidity, pH sensors) 
• Solar-powered power supply (for rural deployments) 
Sensor data is transmitted via LoRaWAN or 4G modules to a centralized cloud platform (AWS IoT Core or 
ThingsBoard). 
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5.1.2 Remote Sensing Data 
Satellite datasets are obtained through Google Earth Engine (GEE), providing wide-area environmental coverage: 
• Sentinel-5P: For NO₂, CO, SO₂, and aerosol optical depth (AOD) 
• Landsat 8 / Sentinel-2: For water body detection using spectral indices 
• MODIS: For NDVI and land surface temperature (LST) 
Temporal synchronization is handled using timestamp matching between ground sensors and satellite overpasses. 
5.2 Data Preprocessing 
Before feeding data into machine learning models, several cleaning and preprocessing steps are conducted: 
5.2.1 Cleaning and Noise Reduction 
• Missing Value Handling: Interpolation and KNN imputation techniques are used to fill missing sensor 
data. 
• Noise Filtering: Kalman filters and moving averages are applied to smooth time-series data. 
• Anomaly Detection: Isolation Forest is used to remove spurious values due to sensor drift or environmental 
anomalies. 
5.2.2 Temporal and Spatial Alignment 
• IoT and Satellite Fusion: Data is aligned using timestamps and geographic coordinates (latitude/longitude). 
• Resampling: Data is aggregated to hourly or daily frequency depending on analysis type (forecasting vs 
classification). 
5.3 Feature Engineering 
To enhance the predictive capacity of ML models, the following engineered features are extracted: 
• Derived Pollution Indices: AQI, Water Quality Index (WQI), Pollution Load Index (PLI) 
• Spectral Indices from RS: NDWI, NDVI, AOD, surface reflectance bands 
• Time-based Features: Hour of day, day of week, month, seasonal indicator 
• Environmental Interactions: Temperature × humidity, wind speed × pollutant levels. All features are 
normalized using min-max scaling or z-score standardization before feeding them into the models. 
5.4 Machine Learning Model Design 
Three primary types of models are developed: 
5.4.1 Pollution Classification Model 
• Goal: Predict pollution level categories (e.g., Low, Moderate, High) 
• Algorithms Used: Random Forest, XGBoost, LightGBM 
• Target Labels: Derived from government-specified AQI and WQI breakpoints 
• Evaluation Metrics: Accuracy, F1-score, precision, recall 
5.4.2 Time-Series Forecasting Model 
• Goal: Predict next 24–72 hours of pollutant levels (e.g., PM2.5, pH, turbidity) 
• Model: Long Short-Term Memory (LSTM) neural networks 
• Input: Lag features, historical pollutant data, temporal indicators 
• Evaluation: RMSE, MAE, R² score 
5.4.3 Spatiotemporal Pollution Mapping 
• Goal: Estimate pollutant levels at unmonitored locations 
• Approach: Geostatistical Kriging + ML regression (RF/XGBoost) 
• Spatial Interpolation: Inverse Distance Weighting (IDW) + GIS mapping 
5.5 Model Training and Optimization 
5.5.1 Model Training 
• Data is split into 70% training and 30% testing. 
• 5-fold cross-validation is used for generalization. 
• GPU acceleration (NVIDIA RTX 3060) is used for deep learning model training. 
5.5.2 Hyperparameter Tuning 
• Random Forest: n_estimators, max_depth, min_samples_split 
• XGBoost: learning_rate, subsample, max_depth, colsample_bytree 
• LSTM: number_of_units, dropout_rate, batch_size, epochs 
Bayesian Optimization and Grid Search are employed using the Optuna and Scikit-learn libraries. 
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5.6 System Architecture 
The system operates in the following layers: 
• Data Collection Layer: IoT sensors and APIs for satellite data 
• Data Ingestion Layer: Apache Kafka + RESTful APIs 
• Processing Layer: Python-based ML engine + Spark for batch processing 
• Storage Layer: PostgreSQL/PostGIS for structured and geospatial data 
• Visualization Layer: Dash/Streamlit dashboard + Tableau/ArcGIS heatmaps 
• Alert System: Email/SMS alerts via Twilio when pollution exceeds limits 
5.7 Visualization and Decision Support 
A web-based dashboard displays: 
• Real-time pollution status 
• Forecast graphs for next 72 hours 
• Geospatial heatmaps 
• Threshold alerts and warnings 
• Explainable AI (XAI) Components: SHAP & LIME plots for feature contribution 
These outputs empower environmental decision-makers with timely and interpretable insights. 
 
 
6. Implementation 
The proposed framework integrates real-time IoT-based sensing, remote sensing data acquisition, machine learning 
modeling, and cloud-based analytics into a cohesive, scalable, and responsive system. The implementation is divided 
into the following major components: 
6.1 Hardware and Sensor Network Deployment 
6.1.1 IoT Node Configuration 
Table 1: A set of environmental sensing nodes was custom-built using modular microcontroller-based systems, 
focused on both air and water quality monitoring 

Parameter Sensor Type Interface Accuracy 
PM2.5/PM10 Nova SDS011 UART ±15% 
CO, NO₂, SO₂ MQ135, MiCS-2714 Analog/I²C Medium 
Temperature/Humidity DHT22 Digital ±0.5°C / ±2% 
pH Analog pH Sensor Analog ±0.1 pH 
Turbidity DFROBOT SEN0189 Analog ±5% 
EC & DO Gravity sensors I²C Medium 

• Microcontroller: ESP32 (built-in Wi-Fi + Bluetooth) 
• Data Transmission: Wi-Fi (urban) and LoRaWAN (rural) 
• Power: Solar panel with battery backup (12V, 5000mAh) 
Sensor data is collected every 5 minutes and sent to the gateway or cloud via MQTT. 
6.1.2 Edge Gateway 
• Device: Raspberry Pi 4 (4GB RAM) 
• Software: Node-RED + Mosquitto MQTT Broker 
• Local Analytics: Basic preprocessing and alert triggering 
• Fail-safe Storage: 24-hour buffer using SQLite if offline 
6.2 Remote Sensing Data Integration 
Using Google Earth Engine (GEE) and Sentinel Hub API, satellite data was ingested for the same regions monitored 
by IoT sensors: 
• Sentinel-5P: NO₂, SO₂, AOD, UVAI (resolution: 7×3.5 km) 
• Sentinel-2: RGB + NIR bands for NDVI, NDWI (10m resolution) 
• MODIS: Daily surface reflectance + land surface temperature 
Custom JavaScript scripts in GEE extract relevant bands and indices. Data is pulled via Python using the gee and 
sentinelsat APIs and synchronized with sensor data every 24 hours. 
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6.3 Backend Infrastructure 
6.3.1 Cloud Storage and Processing 
• Cloud Provider: Amazon Web Services (AWS) 
• Data Storage: 
o Sensor Data: AWS RDS (PostgreSQL + PostGIS extension) 
o Satellite Data: AWS S3 (GeoTIFF and CSV files) 
• Stream Processing: Apache Kafka (real-time data ingestion) 
• Batch Processing: Apache Spark + Pandas (hourly data joins and aggregations) 
6.3.2 Machine Learning Engine 
• Environment: Python 3.11 with virtual environment 
• Libraries Used: 
o scikit-learn, xgboost, lightgbm, tensorflow, keras 
o geopandas, rasterio, shapely for spatial analysis 
o matplotlib, seaborn, plotly for visual analytics 
• Training Mode: 
o Classification models trained on merged datasets (satellite + IoT) 
o LSTM models trained per location using historical AQI/pH/turbidity 
Each model is persisted using joblib or SavedModel format and deployed via REST API. 
6.4 Real-Time Prediction and Alerting Pipeline 
6.4.1 Data Pipeline Architecture 

 
Figure 1: Data flow pipeline architecture 
• MQTT messages are parsed in real time and feature-extracted in AWS Lambda. 
• ML inference is triggered through REST API calls (Flask/TF Serving). 
• Threshold breaches generate real-time SMS and email alerts. 
6.4.2 Prediction Modes 
• Hourly Forecasting using LSTM model 
• Pollution Classification updated every 5 minutes 
• Daily Satellite and IoT fusion for geospatial modelling 
6.5 Visualization and User Dashboard 
A multi-panel dashboard was built using Streamlit and deployed on an EC2 instance: 
Dashboard Features: 
• Real-time Charts: Line plots of pollutant levels over time 
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• Forecast Tab: 24/48/72-hour AQI and pH forecasts with confidence intervals 
• Geospatial Heatmaps: Leaflet + GeoPandas map showing pollution levels 
• XAI Module: SHAP and LIME graphs showing top contributors to pollution predictions 
• Alert Panel: Current alerts, last trigger time, location, and type 
Additional tools such as Tableau and ArcGIS Pro were used to generate high-resolution static maps for publications. 
6.6 Testing and Validation 
• Deployment Duration: 3 months of continuous deployment across 5 cities. 
• Data Collected: Over 1.2 million sensor records and 250+ satellite image tiles 
• Uptime: 98.6% system availability 
• Latency: Average of 3.5 seconds from sensor reading to prediction 
Stress testing was done using Locust for API endpoints, and end-to-end traceability was ensured with Prometheus + 
Grafana logs. 
 
7. RESULTS 
The implemented framework was evaluated over a deployment period of 3 months across 5 geographically diverse 
cities using real-time sensor and satellite data. Performance was assessed using multiple machine learning models, 
covering both classification and forecasting tasks. 
7.1 Evaluation Metrics Used 
• Classification Tasks (Pollution Level Prediction): 
o Accuracy 
o Precision, Recall, F1-score 
o Confusion Matrix 
• Regression Tasks (Forecasting pollutant levels): 
o Root Mean Squared Error (RMSE) 
o Mean Absolute Error (MAE) 
o Coefficient of Determination (R²) 
• Explainability & Feature Importance: 
o SHAP (SHapley Additive exPlanations) 
o LIME (Local Interpretable Model-Agnostic Explanations) 
7.2 Quantitative Results Summary 
Quantitative results for different models on air pollution classification and time-series forecasting, highlighting 
XGBoost’s superior classification and LSTM’s accurate regression performance. 
Table 2: Performance Comparison of Machine Learning Models 

Model / Task Metric Random Forest XGBoost LSTM (Time-Series) 
Air Quality Classification Accuracy 91.2% 93.6% — 
 F1-score 90.4% 92.9% — 
PM2.5 Forecasting (24hr) RMSE (µg/m³) — — 4.21 
 R² Score — — 0.912 
Water pH Forecasting RMSE — — 0.23 
Alert Precision  92.5% 94.1% 95.2% 
System Latency End-to-end delay ~3.5 seconds ~3.5 s ~5.0 s 

7.3 Confusion Matrix (Air Quality Classification) 
Table 3: This matrix illustrates how well the model classified air pollution levels based on AQI categories. 

 Predicted: Low Predicted: Moderate Predicted: High 
Actual: Low 512 27 6 
Actual: Moderate 35 689 41 
Actual: High 10 39 428 

• Observation: XGBoost performed better in differentiating between Moderate and High AQI levels, where 
Random Forest showed slight confusion due to overlapping pollutant values. 
•  
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7.4 SHAP Feature Importance (XGBoost) 
SHAP plots show the impact of each feature on model prediction: 
Top 5 influential features for air quality classification: 
1. NO₂ concentration 
2. PM2.5 levels 
3. AOD (Aerosol Optical Depth) from Sentinel-5P 
4. Temperature 
5. NDVI (Vegetation cover indicator) 
Interpretation: Areas with high NO₂ and low NDVI consistently corresponded to higher predicted AQI levels. 
7.5 LIME Interpretability Example 
A sample prediction for a high-pollution day was analyzed using LIME: 
• Prediction: “High” AQI 
• Contributing Features: NO₂ (+0.35), PM2.5 (+0.29), low humidity (+0.12), high temperature (+0.08) 
• Confidence: 97.8% 
Interpretation: The model's prediction aligned with environmental behavior expected during thermal inversions and 
industrial spikes. 
7.6 Time-Series Forecasting Results (LSTM) 
PM2.5 Prediction Plot (24 hours ahead) 
• Forecast closely followed the observed trend with minimal lag and underfitting. 
• Highest deviation seen during wind bursts and rainfall due to sudden dispersion. 
pH Level Forecasting (Water) 
• Actual range: 6.8–8.2 
• Forecast RMSE: 0.23 
• Model successfully predicted abnormal pH dips associated with stormwater inflow and urban runoff. 

 
 

8. RESULT ANALYSIS 
8.1 Model Performance Interpretation 
• XGBoost achieved the best balance between accuracy and interpretability in classification tasks. 
• LSTM performed remarkably well in temporal forecasting, outperforming ARIMA and classical time-series 
models. 
• SHAP and LIME contributed to model transparency and trust, critical for adoption in public policy 
environments. 
8.2 Spatiotemporal Pollution Insight 
• Temporal Trends: Pollution peaks observed during morning/evening traffic and post-harvest burning 
seasons (October-November). 
• Spatial Hotspots: Industrial zones and traffic corridors recorded persistently high PM2.5 and NO₂ levels. 
• Water Quality: Downstream sensors reported pH and turbidity changes correlating with storm events and 
domestic wastewater discharge. 
8.3 System Responsiveness 
• End-to-end pipeline delay remained below 5 seconds, ensuring the system is usable for real-time 
environmental alerting. 
• Alert system achieved over 94% precision with negligible false alarms in high-priority zones. 
 
9. Conclusion and Future Scope 
Conclusion 
This research presents a comprehensive, intelligent framework that integrates IoT-enabled sensor networks, remote 
sensing data, and machine learning algorithms to monitor, predict, and assess environmental pollution in real time. 
By bridging the spatial coverage of satellite imagery with the temporal resolution of ground-based IoT sensors, the 
proposed system offers a robust and scalable solution for pollution management in both urban and peri-urban 
environments. 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 10s, 2025 
https://theaspd.com/index.php 
 

 

721  

The hybrid architecture enabled precise classification of pollution levels using XGBoost with over 93% accuracy, 
while LSTM-based time-series models demonstrated high forecasting reliability (RMSE of 4.21 µg/m³ for PM2.5 
and 0.23 for pH). Moreover, the deployment of SHAP and LIME provided interpretability to the black-box ML 
models, enhancing their trustworthiness for regulatory applications. 
The results clearly show that the integration of real-time data sources, geospatial analytics, and AI can revolutionize 
how environmental data is utilized, enabling proactive decision-making, early warning alerts, and sustainable 
resource management. This framework lays the groundwork for smart environmental governance and public health 
protection. 
Future Scope 
Despite its promising results, the current framework can be extended and improved in several future directions: 
1. Inclusion of Additional Pollutants: 
Expand the system to monitor greenhouse gases such as CO₂, CH₄, and O₃ using enhanced satellite missions (e.g., 
Sentinel-6, GHGSat). 
2. Multi-modal Deep Learning Models: 
Introduce multi-stream CNN-LSTM architectures to simultaneously process satellite imagery, temporal sensor data, 
and meteorological information for improved predictions. 
3. Reinforcement Learning for Policy Simulation: 
Apply reinforcement learning to simulate dynamic pollution control strategies and assess the impact of interventions 
such as traffic regulation or emission limits. 
4. Edge-AI for Rural and Remote Monitoring: 
Deploy low-power edge computing devices (e.g., NVIDIA Jetson Nano) in rural areas to perform localized inference, 
reducing cloud dependency and latency. 
5. Integration with Government Dashboards: 
Collaborate with pollution control boards to integrate the system with CPCB/SPCB platforms and automate public 
health alerts. 
6. Climate-Aware Predictive Modeling: 
Extend the framework to account for climate variability factors such as wind speed, monsoon behavior, and urban 
heat islands to provide long-term pollution forecasts. 
7. Citizen Science and Participatory Sensing: 
Incorporate mobile-based participatory data collection from citizens using smartphones or low-cost plug-and-play 
sensors. 
 
8. Policy-Level Impact Assessment: 
Evaluate the economic and health cost savings driven by early alerts and informed policy actions using 
epidemiological and economic models. 
Final Remark: 
The fusion of AI, IoT, and geospatial science offers immense potential to solve environmental challenges. This work 
serves as a reference model for building smart ecosystems that are data-informed, responsive, and sustainable. As 
pollution continues to threaten ecosystems and human lives, such integrated and interpretable frameworks are 
essential tools for a cleaner, safer, and healthier future. 
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