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Abstract: This article uses the application of Convolutional Neural Networks (CNN) and transfer learning models 
to discover Papaya Ringspot Virus (PRSV) in papaya plants, a critical concern for papaya cultivation in Malaysia. 
The study compares the performance of CNN with three pre-trained models: VGG16, ResNet50, and InceptionV3. 
Each model employs the Adam optimizer with a learning rate of 0.001. Models were trained and evaluated 
utilizing a dataset comprising 1,524 images of papaya fruits and leaves affected by PRSV. CNN, trained for 10 
epochs without fine-tuning, achieved a final accuracy of 99.22%, starting from an initial accuracy of 81.91%. In 
contrast, the pre-trained models demonstrated superior performance. InceptionV3 consistently achieved a perfect 
final accuracy of 100% across various configurations, with initial accuracies ranging from 92.52% to 96.02%. 
VGG16 also attained 100% accuracy after fine-tuning. ResNet50 showed robust performance, achieving 100% 
accuracy in all configurations, with initial accuracies improving with extended training periods. The experimental 
results indicate that pre-trained models significantly outperform the custom CNN in PRSV detection, highlighting 
the benefits of transfer learning. InceptionV3, with its efficient architecture and fewer parameters than VGG16, 
demonstrated the highest performance, making it the most suitable model for this task. The results highlight to 
ability of deep learning models to enhance and discover crop disease and support sustainable agriculture in 
Malaysia. 
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1. INTRODUCTION 
According to preliminary findings discovered by the Food and Agriculture Organization (FAO), plant 
diseases account for more than a third of the overall yearly loss in agricultural production [1]. Plant-
infectious diseases might cause rapid spread and significant losses.  Thus, identification and diagnosis of 
these diseases are very important.  Plant disease identification was traditionally done by agricultural 
professionals, and it called for great knowledge.  This was labor-intensive, difficult task prone to errors 
[2]. Conventional approaches for detecting plant diseases that rely on manual feature extraction are 
intricate and ineffective.  Progress in computer vision and artificial intelligence, especially in the realm 
of deep learning, provides answers to many challenges across several domains, including agriculture, 
yielding more precise outcomes than conventional techniques [3]. 

The fleshy fruit of the Carica papaya plant, often known as a papaya, papaw, or pawpaw, is a major fruit 
export for Malaysia [4].  Its rapid growth and early maturation allow for quick returns on investment. 
The PRSV, or papaya ringspot virus, is a positive-sense RNA virus that belongs to the Potyviridae family 
and the genus Potyvirus. It may infect papayas [5].  In contrast to other viruses affecting papaya, PRSV 
spreads rapidly poses the possible dispersion scenarios. Since its 1991 discovery in Johor, the destructive 
PRSV virus has cut down on papaya production in the southern areas, necessitating a shift of 
cultivation to central and northern areas [6]. One of Malaysia's most important economic sectors, 
agriculture accounts for around 8.9 percent of the country's GDP [7]. Crop diseases significantly impact 
crop yield and quality, highlighting the need for effective disease detection methods [8]. Vitamins C, A, 
magnesium, folate, fiber, and antioxidants are abundant in papaya [9]. Additionally, papaya's versatility 
extends to high-end cuisine to proteolytic enzyme, papain, finds applications in industries ranging from 
pharmaceuticals for anti-inflammatory treatments to cosmetics for exfoliating and rejuvenating skincare 
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products [10]. Hence, papaya has been selected as the focus of this project over other tropical fruits 
available in Malaysia. 

The best hope for autonomously developing important and unique traits lies in deep learning 
approaches, particularly CNNs.   A large number of convolutional layers are utilized in deep learning 
(DL) to capture features from datasets [11], [12]. Recognition of plant diseases may be achieved by a 
deep-learning model [13].  Deep learning has several disadvantages, since it needs substantial quantities 
of data for network training.  The performance deteriorates when an available dataset lacks sufficient 
pictures.  Transfer learning has set of benefits; for instance, it does not need a substantial volume of 
data to train the network.  Transfer learning enhances the acquisition of a new task by using 
information obtained from a previously learnt, analogous activity. Numerous research used machine 
and deep learning in their methodologies for several fields such as humen medical [14], [15], 
geographical [16], [17], [18], agriculture [19], and etc.  Transfer learning displays advantages such as less 
training duration, minimised generalisation error, and lower computing expenses in developing a deep 
learning model [20]. 

CNN models excel at handling image data and can automatically extract key features from images, such 
as color, texture, and shape, which are crucial for distinguishing the ripeness and freshness of papaya 
fruit [21]. Through training, the model can learn the subtle differences between good and bad fruits, 
achieving highly accurate classification. Using CNN models, unmarketable fruits can be quickly 
screened out in the early stages, ensuring that only high-quality papaya reaches the market, thereby 
enhancing consumer satisfaction. By using transfer learning, we may assign certain weights to models 
that have already been trained on massive picture datasets like VGG16, ResNet50, and InceptionV3. 
This enables us to apply these models to new tasks with much less data and computing resources 
required for training [22]. 

Therefore, the purpose of this paper is to construct multiple CNN and transfer learning models to 
classify papaya fruits as healthy or diseased (unsuitable for sale) by learning the implicit features in the 
image pixels, thereby reducing the need for manual sorting of papaya fruits. 

The contributions of this work to the corpus of knowledge are as follows: 

1. The study thoroughly evaluates four notable architectures: —Custom CNN, VGG16, ResNet50 and 
InceptionV3, on their efficacy in detecting papaya is healthy or diseased. 

2.  This study depends  a The original photos were sourced from various sources, such as publications, 
journals, and internet sites as a dataset.  Among the raw photographs gathered, there are a total of 
181 fruit images and 200 leaf images. 

2. RELATED WORKS 
A. S. Chaithanya et al. presents a Resnet-50 architecture-based transfer learning model for damaged 
papaya leaf recognition and classification.  The model makes use of a dataset consisting of 2159 
pictures, which includes both healthy and diseased leaves, including examples of anthracnose, bacterial 
spot, curl, and ringspots.  When tested on a 220 image dataset, the model outperforms several basic 
models, including CNN, VGG 16, Inception V3, ResNet-50, DenseNet 121, MobileNet V2, and 
EfficientNet B0. Its accuracy rate is an outstanding 87.95% [23]. 

V. Kumar et al. proposed approach using neural networks using convolution, CNNs, and Random 
Forest algorithms to classify leaf diseases of papaya fruit. The research assesses illness classification 
efficacy across various groups, including PRSV, Dusty Mildew, bacterial Leaves Spot, Cercospora The 
leaves Spot, and Angular Leaf Spot. The algorithm performs well, with precision values consistently 
exceeding 93% for each disease class. The high recall values of the model reach 92%, indicating its 
ability to detect true positive occurrences. The F1-score, which assesses the balance of recall and 
accuracy, frequently exceeds 94%, proving the persistence of the categorization model. The paper 
highlights the model's ability to differentiate between a variety of papaya leaf diseases with an accuracy 
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of 94.49% [24]. 

T. A. Mir et al presented six sets of arranged plants according destect diseases in leaf papaya using 
Random Forest (RF) and Convolutional Neural Networks (CNN) "Healthy," "Papaya Ringspot Virus 
(PRSV)," "Papaya Leaf Curl Virus (PLCV)," "Powery Mildew," "Papaya Mosaic Virus (PapMV)," and 
"Leaf Spot Diseases." The concept classifies plants into six categories.    The model evaluates its capacity 
to separate these categories using many criteria, including accuracy, recall, and F1-score.    The accuracy 
of the model almost between 94.44% and 96.22%, which means it achieves proof positive result, and 
the recall is almost between 94.12% to 96.13%, which means it can recognize accurately between 
different situations, and F1-score 95.48%, that proof good perfomance and the last score is 95.49%, the 
model considers effictice in detect of papaya leaf diseases that be usefull in care of crops agricultural 
[25]. 

Suryavanshi and the team proposed an intelligent tool using a convolutional neural network and 
federated learning to find a solution to the spread problem of papaya leaf diseases. The system achieved 
an accuracy of 80.32% (for cy_1-fe_1) and 90.37% (for cy_5-fe_5) from local data for five types of 
papaya leaf diseases. They evaluated the model using different measures like accuracy, recall, and F1-
score, which proved that it was a strong and flexible model across various versions. Cy_5 gave the best 
results [26]. 

S. Mehta et al. presented a new approach named  Federated Learning (FL) using a Convolutional 
Neural Network (CNN) to detect disease in papaya leaves and classify it. Having five main papaya leaf 
diseases under their scope, the study split each into five degrees of disease severity. With accuracy 
ranging from 87% in powdery mildew to 92% in Papaya Leaf Distortion Mosaic Virus, the CNN model 
had an overall classification accuracy of 92%.  The result implies that further work is required to 
enhance data management and model resilience in many agricultural environments [27]. 

The purpose of this study is to provide an AI-based solution to the problem of papaya plant disease in 
Malaysia's agricultural industry.  We gathered 225 pictures, split them into three categories: Healthy, 
Ring Spot, and Black Spot, from various Google sources and real-life photos.  We got 600 photos after 
doing all the necessary preprocessing and augmentation.  After a 10-epoch run via Google Colab, 
InceptionV3 was determined to have the highest validation accuracy and was therefore selected as the 
best base model.  In order to optimize the hyperparameters, we extracted 2048 output features from the 
final model layer and stored them in NumPy arrays.  After 50 iterations using the SGD optimizer, a 
batch size of 4, and a learning rate of 0.01 the trained data attained a validation accuracy of 1.0.  A 
validation accuracy of 0.96 and a training accuracy of 1.0 were produced by a fully trained model using 
training photos.  In order to test the app's accuracy, we imported 15 photos from each class. The results 
showed an accuracy, recall, f1-Score, and precision of 0.8889 [28]. 

The study explores the use of Vision Transformers (ViTs) in deep learning for the precise identification 
of papaya diseases. The paper shows in terms of computational efficiency and classification accuracy 
ViTs' better performance than conventional convolutional neural networks (CNNs).  Emphasizing the 
need of using sophisticated models like ViTs for disease control and sustainable agricultural practices, 
the research helps to progress computer vision methods in agriculture.  With ViTs used in real-world 
situations, early disease identification, better crop management methods, and contribution to food 
security and sustainable agriculture acheaved 91% accuracy stands promise [29]. 

Using federated learning, CNN, and the FedAvg algorithm, S. Mehta and R. Kumar propose a novel 
method to classify four key illnesses impacting papaya plants and their leaves.  Its accuracy is 91%; its 
recall is 90%; its F-Measure is 90%.  With a 5% F1-score, the response accuracy overall to disease 
classification is 92%.  By lowering presented data and privacy concerns, the federated learning approach 
decreases training bandwidth by up to 76% for various models [30]. 

Using federated learning and convolutional neural networks (CNN), S. Malhotra et al. offers a fresh 
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approach for spotting and categorizing illnesses in papaya leaves.  Using data from four customers, the 
study focuses on four degrees of bad health in papaya leaves.  In identifying disorders, clients SV_1 and 
SV_2 shown varying performance.  With a better weighted average and average score, Client SV_2 
scored higher overall.  Client SV_3 gave a good average and weighted score.  With an average of 92.89 
for all macro components and 92.74 for tiny micro parts linked to it, client SV_4 showed excellent 
performance [31]. 

Using a machine learning model, S. J. Banarase and S. D. Shirbahadurkar show a novel method for 
spotting illnesses in papaya fruits and leaves.  The model uses hyperparatunning of machine learning 
classifiers along with grey level co-occurrence matrix (GLCM) feature extraction.  Extensively using 
GLCM, the model analyzes eight classes of healthy and sick papaya leaf and fruit to extract sixteen 
attributes.  More exact outcomes come from machine learning techniques such Random Forest (RF) 
and Hyperparatunning using Support Vector Machine (SVM).  With SVM with hyperparatunning 
attaining 91.47% accuracy and RF at 90.22% , the method's general accuracy is higher than that of 
current approaches [32]. 

Table 1 summary studies: 

Table 1: Summmery Related Works 
Ref Method Measure Result Finding 

[23] 
Transfer Learning 
(ResNet-50) 

Accuracy 87.95% 
Outperformed base models (CNN, 
VGG16, etc.) in classifying 5 
diseases. 

[24] 
CNN + Random 
Forest 

Precision, 
Recall, F1-score 

Precision >93%, 
Recall 92%, F1 >94% 

High efficacy in classifying PRSV, 
mildew, and leaf spots. 

[25] 
CNN + Random 
Forest 

Accuracy, Recall, 
F1-score 

Accuracy 94.44–
96.22%, F1 95.48% 

Reliable for 6 disease classes; 
suitable for real-world farming. 

[26] 
Federated Learning + 
CNN 

Precision, 
Accuracy 

Precision 80–90% 
(varies by client) 

Decentralized approach with 
robust metrics across clients. 

[27] 
Federated Learning + 
CNN 

Accuracy 
92% (range: 87–92% 
per disease) 

FL effective but needs robustness 
improvements. 

[28] 
InceptionV3 
(Transfer Learning) 

Precision, 
Recall, F1, 
Accuracy 

All metrics 88.89%, 
Val. accuracy 96% 

High accuracy but potential 
overfitting (training accuracy 
100%). 

[29] 
Vision Transformers 
(ViTs) 

Accuracy 91% 
ViTs outperformed CNNs in 
accuracy and computational 
efficiency. 

[30] FL + CNN + FedAvg 
Accuracy, Recall, 
F1 

Accuracy 91%, Recall 
90%, F1 90% 

Privacy-preserving; reduced 
training bandwidth by 76%. 

[31] 
Federated Learning + 
CNN 

Weighted Avg. 
Scores 

Client SV_4: 92.89% 
(macro), 92.74% 
(micro) 

Client-specific performance 
variability in disease classification. 

[32] 
GLCM + SVM/RF 
(Hyperparameter 
Tuned) 

Accuracy 
SVM: 91.47%, RF: 
90.22% 

GLCM feature extraction + tuned 
classifiers outperformed existing 
methods. 

3. METHODOLOGY 
In this section, we first address data collection, data preprocessing, and the design of our own CNN 
network model, as well as introduce the architecture of three transfer models that we have adopted. 

3.1 Dataset Collection 
To diagnose Papaya Ringspot Virus (PRSV) disease, a well-prepared dataset containing pictures of the 
papaya tree's affected areas is necessary. This research focuses on the papaya fruit and leaves. The 
preparation procedures used to obtain the dataset for use in Convolutional Neural Network (CNN) 
model and transfer learning techniques will be discussed here. The two major sections of the papaya 
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tree, the leaf and the fruit, impacted by PRSV have been assigned as separate labels. The original photos 
were sourced from various sources, such as publications, journals, and internet sites.  Among the raw 
photographs gathered, there are a total of 181 fruit images and 200 leaf images. Figure 2 shows the 
samples of dataset original images of papaya fruit with ringspot virus. 

 

 
Figure 2: Sample of Dataset 

3.2 Preprocessing 
To enhance the dataset and the model's reliability, data augmentation techniques have been employed. 
Three different kinds of transformations were applied to each image: rotation, horizontal flipping, and 
vertical flipping. The dataset's size was practically quadrupled during this augmentation process. 
Following augmentation, there are a total of 724 photos of fruits and 800 photos of leaves. 

For this method, an online application was utilized to rotate the images in bulk. The rotations included 
turning the images to the right, down, and left from the raw image orientation. This method tripled the 
quantity of the images acquired earlier, resulting in a total of 1,524 photos being prepared for the 
research as show in Figure 3 the diffrent of number before and after augumentation way. 

Once the raw images for both the fruit and leaf labels were finalized, the images were resized to a 
resolution of 224x224 pixels. For this resizing process, an online application capable of bulk resizing 
was utilized to efficiently resize 1,500 raw images. 

 
Figure 3: The diffrent number of Images before and after augumentation 
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3.3 CNN Custom 
In this study, a custom Convolutional Neural Network (CNN) model is developed to classify papaya 
ringspot virus disease into two categories: fruit and leaf. The architecture of the proposed CNN model 
is illustrated in Figure 4. 

 
Figure 4: Architecture of CNN Custom 

Ten layers make up the convolutional neural network (CNN) model: output, max pooling, flattening, 
dense, and dropout.  To improve computational efficiency, the input pictures are reduced in spatial 
dimensions in the first six layers, which consist of alternating convolutional and max pooling layers. 
These layers gradually extract hierarchical features.  The CNN is able to distinguish between unhealthy 
leaves and fruits because it employs filters of varying sizes to detect relevant patterns in the dataset. 

After the convolutional layers, the flatten layer convert the found feature maps into a one line array, 
making them suitable for fully connected layers. The first dense layer, containing 256 neurons, 
processes these features to learn complex representations, followed by a dropout layer that mitigates 
overfitting by randomly deactivating some neurons during training. Finally, the output layer, consisting 
of a single neuron with a sigmoid activation function, determines whether the given image represents a 
diseased fruit or leaf. 

This CNN structure is created to enhance classification execution while keep computational efficiency, 
ensuring robust and accurate classification of papaya ringspot virus diseases. 

3.4 Transfer Learning 

3.4.1 VGG16 
In order to classify papaya fruits and leaves as containing the Papaya Ringspot Virus (PRSV), this paper 
makes use of transfer learning using the pre-trained VGG16 model.  The Visual Geometry Group at the 
University of Oxford developed VGG16, which is a strong contender for illness diagnosis due to its 
exceptional performance in picture classification challenges [33]. 

The main aim of using VGG16 is to optimize both the efficiency and accuracy of PRSV classification by 
capitalizing on its deep hierarchical feature extraction capability. This model is well-known for its 
structured simplicity and substantial depth. It is designed to process images of size 224×224 pixels in the 
RGB color space. During training, the mean RGB value of each image is computed and fed into the 
VGG16 convolutional network to ensure consistent preprocessing. 

In order to capture complex visual details, VGG16 has 13 convolutional layers that use 3×3 kernel 
filters. The total number of layers in VGG16 is 16.  In addition, max pooling layers are used to 
minimize computational complexity and preserve vital information while reducing the spatial 
dimensions of feature maps.  As a last step in the classification process, fully linked layers distribute the 
collected characteristics among the target classes as a probability.  You may see VGG16's architecture in 
Figure 5. 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 10s, 2025 
https://www.theaspd.com/ijes.php 

455 
 

 
Figure 5: Architecture of VGG16 

3.4.2 ResNet50 
Another proposed approach utilizes the ResNet50 pre-trained model to harness the power of transfer 
learning for identifying PRSV disease. ResNet50, developed by Kaiming He et al. at Microsoft Research 
Asia in 2015, is a deep convolutional neural network that has revolutionized deep learning. It is 
acclaimed for its capability to train exceptionally deep networks with hundreds of layers using residual 
blocks and skip connections. These architectural features enable ResNet50 to retain information from 
earlier layers, facilitating the learning of more effective representations from input data [34]. 

By utilizing ResNet50, the goal is to improve the efficiency and accuracy of PRSV detection in papaya 
fruits and leaves. The model takes a 224x224 RGB image as input, which undergoes preprocessing 
involving the normalization of its RGB values before entering the ResNet50 convolutional network. 
ResNet50 comprises 50 layers organized into 5 stages, each containing a series of residual blocks used in 
this study. The architecture addresses the challenge of training deep networks by incorporating skip 
connections, also known as identity connections. These connections facilitate more effective gradient 
flow through the network, thereby enabling the training of deeper models. 

network begins with Stage 1 (Layer 0 to Layer 6), initiating with initial convolutions, batch 
normalization, ReLU activation, and max-pooling to extract fundamental features from the input 
image. Stage 2 (conv2_x, Layer 7 to Layer 38) incorporates three residual blocks that extract mid-level 
features, utilizing pre-trained weights for enhanced generalization. Stage 3 (conv3_x, Layer 39 to Layer 
80) includes four residual blocks for intermediate feature extraction, capturing more intricate patterns. 
Stage 4 (conv4_x, Layer 81 to Layer 142), featuring six residual blocks, focuses on advanced feature 
extraction, capturing detailed characteristics relevant to PRSV. Stage 5 (conv5_x, Layer 143 to Layer 
174) encompasses three residual blocks that refine data for classification, fine-tuning high-level features. 
The final layers involve average pooling, flattening, and passing through a fully connected layer and 
softmax layer to generate the final probability distribution across classes, determining whether the 
papaya leaf is infected with PRSV. 

3.4.3 InceptionV3 
The proposed work utilizes InceptionV3 pre-trained model to leverage transfer learning advantages in 
detecting Papaya Ringspot Virus (PRSV). InceptionV3 is an advanced and efficient deep learning model 
designed for image classification and object detection [35] . By harnessing its cutting-edge architectural 
features, this study aims to achieve high accuracy in PRSV detection on papaya fruits and leaves while 
maintaining computational efficiency. 

InceptionV3, developed by Google, represents a significant advancement in convolutional neural 
network architectures, evolving from earlier models like Inception (GoogLeNet) and InceptionV2 [36]. 
It incorporates features such as Inception modules, which utilize parallel convolutions of varying sizes to 
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capture multi-scale features, and factorized convolutions to reduce computational costs without 
sacrificing accuracy. The model also integrates extensive batch normalization to stabilize and accelerate 
training, auxiliary classifiers to enhance gradient flow and convergence, efficient grid size reduction 
techniques, and asymmetric convolutions to further minimize computational load. 

The architecture of InceptionV3 includes initial layers for preprocessing, stacked Inception modules for 
different abstraction levels, reduction modules to manage complexity, auxiliary classifiers for 
regularization, and final layers for classification [37]. Known for its high accuracy, computational 
efficiency, and adaptability for transfer learning, InceptionV3 proves suitable for diverse applications 
ranging from medical imaging to autonomous driving. 

4. Experiment 
Based on the proposed methodology outlined in the previous chapter, this section presents the 
experimental setup, performance results, and comprehensive analysis of the models used for Papaya 
Ringspot Virus (PRSV) detection. The experiments were conducted using different configurations for 
each model to evaluate their effectiveness in classifying infected papaya fruit and leaf images. The 
findings are discussed in detail to highlight learning behavior, generalization performance, and 
comparative strengths across the tested models. 

4.1 Experiment Setup 
The experiment is conducted on images of papaya fruits and leaves affected by PRSV disease. Firstly, the 
dataset is divided into training 70%, validation 20% and testing 10% sets. Training and validation are 
performed concurrently. The Python library ―Keras‖ is utilized to implement the CNN model and the 
three pre-trained models on Google Colab. 

The experimental setup involves training and evaluating various convolutional neural network (CNN) 
architectures for PRSV detection. The models tested include CNN, VGG16, ResNet50, and 
InceptionV3. All models utilize the ReLU activation function, with CNN and VGG16 also 
incorporating Sigmoid for final layers. Adam optimizer with a learning rate of 0.001 is consistently used 
across all experiments. Each model undergoes initial training for 10 epochs, with some configurations 
involving the unfreezing of specific layers for fine-tuning purposes to enhance model performance. 

Figure 6 explains the models used along with the number of parameters they generated. This shows that 
VGG16 is capable of generating more parameters compared to CNN and the other pre-trained models. 

 
Figure 6: Model and Number of Parameters Generated 
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The CNN, with 11 million parameters, is trained for 10 epochs without any fine-tuning. VGG16 and 
ResNet50 are initially trained for 10 epochs, after which the last four layers are unfrozen for further 
training, aiming to refine the models' learning by allowing them to adjust weights in the final layers. 
ResNet50 is also evaluated with an extended training period of 25 epochs without fine-tuning to 
observe the impact of prolonged training on model accuracy. Similarly, InceptionV3 is tested in 
multiple configurations: a 10-epoch training with and without fine-tuning, and a 25-epoch training to 
assess the effects of extended training and fine-tuning on its performance. 

Model performance is measured by accuracy at the first epoch and final accuracy after the complete 
training period. Initial accuracy indicates the models' early learning capabilities, while final accuracy 
reflects their generalization ability after full training. The comparison also considers the number of 
parameters in each model, which varies significantly and influences computational efficiency and 
performance. 

4.2 Experimental Results 

4.2.1 Result of Custom CNN 
The Adam optimizer was used to train the custom Convolutional Neural Network (CNN) model for 10 
epochs at a learning rate of 0.001.  For binary classification, the design made use of a Sigmoid function 
in the output layer and the ReLU activation function in the hidden layers.  The model was trained and 
built from the ground up without the use of any transfer learning or fine-tuning.  The CNN model has 
the fewest trainable parameters of all the models tested here, with only under 11 million total. 

At epoch 1, the model achieved a training accuracy of 81.91%, which steadily increased to 99.22% by 
epoch 10. The corresponding validation accuracy started at 75.2% and improved to 89.78% over the 
same training period. This gradual improvement indicates that the model successfully learned relevant 
features, although its generalization to unseen data remained limited when compared to the transfer 
learning models. 

Figure 7 shows that both the training loss and the validation loss fell steadily from 0.88 to 0.11 and 
0.97 to 0.28, respectively.  Overfitting, which occurs often in models trained from beginning without 
regularization or pre-learned information, may be at play here, as shown by the discernible performance 
disparity between training and validation measures. 

Despite these limitations, the custom CNN model demonstrated effective learning behavior and served 
as a valuable baseline. Its performance validates the potential of a lightweight, scratch-trained model for 
PRSV detection, while also highlighting the advantages of leveraging transfer learning for improved 
generalization. 

 
Figure 7: Curve of Training and Validation for Accuracy and Loss (CNN Custom) 
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4.2.2 Result of VGG16 
The VGG16 model was trained for 10 epochs using the Adam optimizer with a learning rate of 0.001. 
The architecture incorporated the ReLU activation function in its intermediate layers and a Sigmoid 
activation in the output layer to support binary classification. As part of the training process, the final 
four layers of the network were unfrozen for fine-tuning, allowing the model to better adapt pre-trained 
ImageNet features to the specific task of PRSV detection in papaya fruit and leaf images. 

At the start of training, VGG16 achieved a training accuracy of 93.71%, which increased rapidly to 
100% by epoch 10. The validation accuracy also showed consistent improvement, starting at 91.5% and 
reaching 100% in the final epoch. This close alignment between training and validation accuracy 
indicates excellent generalization performance, with minimal risk of overfitting. 

Training loss fell from 0.41 to 0.01, while validation loss fell from 0.45 to 0.01; both curves decreased 
smoothly, as shown in Figure 8.  The training and validation curves closely coincide across the epochs, 
which shows that the model converges well and learns robust features from the data. 

VGG16 is the largest model evaluated in this study, comprising approximately 53 million trainable 
parameters. Despite its computational demands, the model demonstrated strong performance and 
stability. The combination of deep architecture, pre-trained weights, and targeted fine-tuning 
contributed to its outstanding accuracy and convergence, confirming its suitability for high-precision 
PRSV detection tasks. 

 

Figure 8: Curve of Training and Validation for Accuracy and Loss (VGG16) 

4.2.3 Result of ResNet50 
The ResNet50 model was evaluated under three different configurations to assess its performance in 
PRSV detection: 

(i)  Training for 10 epochs without fine-tuning, 

(ii)  Training for 10 epochs with fine-tuning of the last four layers, and 

(iii)  Extended training for 25 epochs without fine-tuning. 

In all configurations, the model used the ReLU activation function and the Adam optimizer with a 
learning rate of 0.001. The ResNet50 architecture comprises approximately 25 million parameters. 

The first setup included training the model for 10 epochs without thawing any layers.  Its validation 
accuracy was 84.0 percent, while its initial training accuracy was 87.13%.  Both measures were 100% at 
the tenth epoch.  The validation loss fell from 0.49 to 0.01 and the training loss from 0.43 to 0.01.  
Even though this configuration made use of pre-trained weights, the slower adaptation to the PRSV 
dataset is shown by the substantially lower beginning validation accuracy and larger initial loss. 

In the second configuration, the last four layers of ResNet50 were unfrozen for fine-tuning. This 
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resulted in an improved initial training accuracy of 92.12% and validation accuracy of 86.2%, both of 
which steadily increased to 100% by epoch 10. Training and validation losses also dropped rapidly, 
from 0.39 to 0.01 and 0.45 to 0.01, respectively. This highlights the impact of fine-tuning in enabling 
the model to adjust its higher-level features for better task-specific learning and generalization. 

The third configuration involved extended training for 25 epochs without fine-tuning. The model 
began with an initial training accuracy of 92.36% and validation accuracy of 84.0%, and both reached 
100% by the end. The training loss declined from 0.42 to 0.01, and the validation loss from 0.48 to 
0.01 over 25 epochs. While the model eventually achieved excellent performance, it required more 
training time compared to the fine-tuned configuration. 

As illustrated in Figure 9, all configurations of ResNet50 converged effectively. However, the 10-epoch 
fine-tuned setup offered the best balance between speed, accuracy, and loss reduction, making it the 
most practical and efficient configuration for PRSV detection in papaya leaves and fruits. 

 
Figure 9: Curve of Training and Validation for Accuracy and Loss (ResNet50) 

4.2.4 Result of InceptionV3 
The InceptionV3 model was evaluated using three configurations to investigate its performance in 
detecting PRSV from papaya fruit and leaf images: 

(i)  Training for 10 epochs without fine-tuning, 

(ii)  Training for 10 epochs with fine-tuning applied to the last four layers, and 

(iii)  Extended training for 25 epochs without fine-tuning. 

All configurations utilized the ReLU activation function and were optimized using the Adam algorithm 
with a learning rate of 0.001. InceptionV3 is the most lightweight among the tested pre-trained models, 
with approximately 23 million trainable parameters. 
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The first setup included training the model for 10 epochs without making any adjustments to its 
parameters.  Starting with a validation accuracy of 90% and a training accuracy of 92.52%, it eventually 
reached 100% in both measures by the last epoch.  There was a decrease from 0.31 to 0.01 in training 
loss and from 0.38 to 0.01 in validation loss.  This setup proved that the model could generalize well 
even without tweaking. 

In the alternate setup, the last four layers were adjusted to perfection.  As a result, by the tenth epoch, 
the validation accuracy had increased to 94.5 percent and the initial training accuracy to 96.02%.  
Training losses decreased from 0.22 to 0.005, while validation losses decreased from 0.28 to 0.005.  The 
efficiency of targeted layer updates was further reinforced by the fact that this fine-tuned configuration 
converged faster and showed somewhat greater generalization than the non-fine-tuned version as shown 
Figure 10. 

The model underwent 25 epochs of training in the third configuration without any fine-tuning.  Its 
validation accuracy was 93.1 percent and its training accuracy was 95.3 percent; by epoch 25, both had 
improved to 100 percent.  The validation loss dropped from 0.34 to 0.01 and the training loss from 
0.29 to 0.01 throughout the prolonged training period.  The training time was longer and more 
computationally intensive, but the outcomes were identical to the fine-tuned model. 

As illustrated in Figure 10, all three InceptionV3 configurations performed exceptionally well, achieving 
perfect accuracy with minimal loss by the end of training. Among them, the 10-epoch fine-tuned 
configuration offered the best trade-off between training time, early performance, and generalization, 
making it the most optimal setup for efficient and accurate PRSV detection. 

 

Figure 10: Curve of Training and Validation for Accuracy and Loss (InceptionV3) 

4.3 Experimental Discussion 
When comparing the CNN to the pre-trained models, the custom CNN, with 11 million parameters, 
starts with an initial accuracy of 81.91% and reaches 99.22% after 10 epochs. While this performance is 
commendable, it falls short of the perfect accuracy achieved by the pre-trained models. This discrepancy 
highlights the advantage of pre-trained models, which have been trained on extensive datasets, enabling 
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them to generalize better to new tasks. The CNN, though effective, lacks the comprehensive feature 
knowledge that pre-trained models like InceptionV3, VGG16, and ResNet50 possess through transfer 
learning. 

The pre-trained models appear to have good performance and efficiency, especially the inceptionV3 
accuracy reaches 100% with parameters less than VGG16, that proof enhancing in design. VGG16 
model also achieves good performance, though it has many parameters that mean more mathematical 
complexity. ResNet50 appears to continue good performance that reaches accuracy to perfect without 
parameter tuning and long training, all of which explains the strong performance of transfer learning 
models. Generally, the results indicate that transfer learning models are accurate, effective, and suitable 
for detecting PRSV in papaya fruits and leaves. Table 2 explains the overall results of the models in this 
study. 

Additionally, the comparison of loss for training and validation support via models shows these results. 
The custom CNN registers a high loss in validation and notices a gap in training loss. Other hand, the 
pre-trained models appear same values for each training and validation, with faster enhancing, which 
indicates that pre-trained models generalize better and are less overfitting. The results also ensure that 
the pre-trained models are trust approach to create effective and accurate models for PRSV detection. 

Table 2: Model Performance Summary 
Model Parameters 

(M) 
Init. 

Train 
Acc (%) 

Final 
Train 

Acc (%) 

Init. 
Val 
Acc 
(%) 

Final 
Val Acc 

(%) 

Init. 
Train 
Loss 

Final 
Train 
Loss 

Init. 
Val 
Loss 

Final 
Val 
Loss 

CNN 11 81.91 99.22 75.2 89.78 0.88 0.11 0.97 0.28 
VGG16 (10 Epochs, 
Fine-Tuned) 

53 93.71 100.0 91.5 100.0 0.41 0.01 0.45 0.01 

ResNet50 (10 Epochs, 
No FT) 

25 87.13 100.0 83.0 100.0 0.43 0.01 0.49 0.01 

ResNet50 (10 Epochs, 
Fine-Tuned) 

25 92.12 100.0 86.2 100.0 0.39 0.01 0.45 0.01 

ResNet50 (25 Epochs, 
No FT) 

25 92.36 100.0 84.0 100.0 0.42 0.01 0.48 0.01 

InceptionV3 (10 
Epochs, No FT) 

23 92.52 100.0 90.0 100.0 0.31 0.01 0.38 0.01 

InceptionV3 (10 
Epochs, Fine-Tuned) 

23 96.02 100.0 94.5 100.0 0.22 0.005 0.28 0.005 

InceptionV3 (25 
Epochs, No FT) 

23 95.93 100.0 93.0 100.0 0.29 0.01 0.34 0.01 

5. CONCLUSION AND FUTURE WORKS 
To conclude, the detection of PRSV on papaya fruits and leaves using CNN and pre-trained models 
(VGG16, ResNet50, InceptionV3) can achieve successful predictions demonstrating high final accuracy 
across the experiments. However, the pre-trained models consistently outperformed the CNN model in 
detecting PRSV on papaya fruits and leaves, with all pre-trained models achieving a final accuracy of 
100%. Additionally, the initial accuracy of the pre-trained models was superior to that of the CNN 
model. 

The successful detection of PRSV using the pre-trained models can significantly benefit the agricultural 
industry in Malaysia by enabling early detection of real-life scenarios of PRSV disease in papaya plants, 
thereby potentially reducing losses in papaya production. The proposed models could facilitate more 
frequent and effective early detection efforts. 

For future work, expanding the dataset with additional images could enhance the models' ability to 
recognize various types of images that might go undetected during testing. Ensuring that the models can 
accurately interpret all potential papaya images containing PRSV disease will be crucial for enhancing 
reliability and trustworthiness. Additionally, integrating these models into mobile or web-based 
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applications could provide real-time diagnostic tools for farmers and agricultural officers. Field-testing 
and user validation will be important future steps to ensure the models' usability and reliability under 
practical conditions. These efforts will pave the way toward intelligent, data-driven disease management 
solutions in agriculture. 
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