ISSN: 2229-7359 Vol. 11 No. 12s, 2025

https://theaspd.com/index.php

Phytochemical Profiling Of Curcumin, Quercetin, And Catechin In Plant Extracts Using A Novel Hplc-Dad Technique

Athar Aalam¹, Vaibhav Rastogi¹, Mayur Porwal²

¹Department of Pharmaceutics, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad-244001 (U.P), India, atharapharmacy07@gmail.com

²Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Moradabad-244001 (U.P), India.

Abstract:

Background: Curcumin, a compound of Curcuma longa, quercetin from Allium cepa, and catechin from Acacia catechu were measured simultaneously. Curcumin, quercetin, and catechin were obtained through the development and validation of a reverse-phase high-performance liquid chromatography (RP-HPLC) technique.

Objective: To develop a sensitive, precise, and ICH-compliant HPLC method for simultaneously determining curcumin, quercetin, and catechin in plant extracts.

Methods: HPLC system (Agilent 1100) that consists of a Diode Array Detector (DAD) and the chromatographic separation was carried out using Inertsil C18 column (250 x 4.6 mm, 5 The mobile phase consisted of methanol and phosphate buffer in the ratio of 80:20 v/v and the flow rate was 1.0 mL/min. The detection wavelength was 280 nm for curcumin and 254 nm for quercetin, catechin, and 274 nm. The method was linearity-validated, precision-validated, accuracy-validated, limit of detection (LOD), and limit of quantification (LOQ) according to ICH Q2(R2) requirements.

Result: Curcumin, quercetin, and catechin showed retention times of 17.1, 3.1, and 6.1 minutes, respectively. The analysis procedure was very precise (%RSD < 2%), excellent linearity (R 2 > 0.980), and recovery rates of 100-102%. LODs of curcumin, quercetin, and catechin were 0.004, 0.020, and 0.003ug/mL, respectively.

Conclusion: The developed RP-HPLC is simple, robust, and reliable for the simultaneous determination of curcumin, quercetin, and catechin in herbal preparations. It can be used in quality control, standardization, and phytopharmaceutical studies.

Keywords: HPLC, curcumin, quercetin, catechin, method validation, and quantification.

INTRODUCTION:

In recent decades, herbal medicines have gained popularity worldwide due to their effectiveness in treating various ailments. Plants with medicinal value can be used as a reference drug in pharmacological studies, as a source of medicinal chemicals, or simply as a raw material in drug research and development. Analytical scientists major challenge in performing quality monitoring of plant medications due to their complexity and unclear methodology. Lack of the right quality control and standardization procedures in synthetic pharmaceuticals has rendered the distribution of medicinal plants worldwide hard to achieve (1). Determination of the active ingredients of medicinal plants that impart the therapeutic effect has been a problem because of the synergistic action of many ingredients, and the problem of consistency of quality between different batches. Qualitative and quantitative estimations of herbal medicines have increased largely over the past couple of decades (2). In order to standardize plant extracts, the European Medicines Agency (EMEA) and the United States Food and Drug Administration (USFDA) have stressed the necessity to assess botanical consistency. The World Health Organization (WHO) has endorsed a fingerprint method of qualitative and quantitative assessment of herbal medicines and stability. The tests are necessary in the determination of the consistency of the herbal preparation (3). It is now possible to purify and quantify each component in a mixture individually due to recent advancements in complex chromatographic separation modes, such as high-performance reverse-phase liquid chromatography (RP-HPLC) and liquid chromatography coupled with mass spectrometry (LC-MS) (4). The main active ingredient in Curcuma longa is curcumin. 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is

ISSN: 2229-7359 Vol. 11 No. 12s, 2025

https://theaspd.com/index.php

the structural formula for curcumin. It is a naturally occurring polyphenol that is extracted from Curcuma longa rhizomes. The powder has a bright yellow-orange color. Antioxidant, anti-inflammatory, anticarcinogenic, hypocholesterolemic, wound-healing, antispasmodic, anticoagulant, anticancer, and hepatoprotective properties are among the many pharmacological actions of curcumin. Many natural treatments for skin infections and inflammation contain curcumin. Amenorrhoea, joint dislocation, diarrhoea, diabetes, liver disease, bronchitis, ringworm infection, toothache, anaemia, and visual weakness are among the conditions it is used to treat therapeutically (5). The main active ingredient in Allium cepa is quercetin. It is a naturally occurring polyphenol that is extracted from the Allium cepa bulb. 3,3',4',5,7-pentahydroxyflavone is the structural formula for quercetin. The flavonoid quercetin (QUE) 3,3',4',5,7-pentahydroxyflavone is made up of three benzene rings and five hydroxyl groups. It is abundant in vegetables, fruits, flowers, wine, walnuts, tea, and bark roots. It is water-insoluble and a yellow, crystalline substance with an unpleasant taste. It has been demonstrated through several studies to have anti-inflammatory, anti-tumor, antioxidant, neuroprotective, antiallergic, and antibacterial properties. Because of these possible pharmacological effects, QUE was widely accepted and used in the pharmaceutical industry (6).(+) Catechin and its enantiomer represent the two steric forms of 3,3',4',5,7pentahydroxyflavan catechin. The term "catechu" referring to the extract from Acacia catechu, is the source of its name. Recent years have seen numerous studies explore the pharmacological properties of extracts derived from the bark, heartwood, leaves, seeds, and pods of Acacia catechu. This extract exhibits a range of pharmacological characteristics, including immunomodulatory, anti-hyperglycemic, antinociceptive, antihyperlipidemic, and anti-ulcer effects. The flavonoids present in the bark of Acacia catechu have been employed for various medicinal purposes, particularly in Asia, and demonstrate antiviral, antibacterial, anti-inflammatory, cardiovascular, and anti-cancer properties (7).

One of the most popular chromatography techniques is high-performance liquid chromatography (HPLC), which is simple, versatile, and requires low solution preparation. Besides, in contrast to gas chromatography (GC), HPLC is able to deal with thermolabile, non-volatile compounds in different matrices. HPLC can detect multiple analytes in a single sample and has the potential to support both qualitative and quantitative analyses, and can also be easily adjusted to alternative chromatographic conditions (8). The most commonly used type of UV/visible detectors in HPLC analysis is the diode array detectors (DAD). This feature enhances sensitivity because it makes it possible to identify the wavelength that provides the best fit (9). A variety of organizations have provided guidelines on the validation procedure that should be adopted (9). Several organizations have come up with guidelines describing the process of validation that must be adhered to. They are the International Conference on Harmonization (ICH), the Food and Drug Administration (FDA), and the WHO (10).

ISSN: 2229-7359 Vol. 11 No. 12s, 2025

https://theaspd.com/index.php

MATERIALS & METHODS:

2.1 Method development of HPLC:

2.1.1 Instruments:

The liquid chromatographic system was utilized using Open Lab CDS software. The machine was an Agilent (1100 series). The detector was a Diode Array detector, and the column was an Inertsil-C18 ODS (250 x 4.6 mm, 5 μ).

2.1.2 Chemicals:

Curcumin, Quercetin, and Catechin Samples were purchased from Yucca Enterprises. Trifluoroacetic acid (TFA), methanol, acetonitrile (ACN), HPLC-grade water, and potassium dihydrogen phosphate $(K_2H_2PO_4)$ from MERCK labs in Mumbai.

2.2 Method Development:

2.2.1 Preparation of standard solution:

10 mg of the standards for curcumin, quercetin, and catechin were precisely weighed and poured into 10 ml of dry, clean volumetric flasks. Approximately 7 mL of acetonitrile was added, and the air was sonicated from the flasks. After cooling, diluent was added to bring the solution's volume up to par. The solution was then passed through a 0.45 μ m syringe filter. We used the outcome as a standard solution (11–13). 2.2.2 Preparation of Sample Solution: About 7 mL of diluent was added to 10 mL clean, dry volumetric flasks containing the equivalent weight of extracts from Curcuma longa, Allium cepa, and Acacia catechu. The extracts were then sonicated to dissolve them completely. The same solvent was used to bring the volume up to par (14-16). The method development starts with initial chromatographic conditions using a liquid chromatographic system. WATERS: Inertsil-C18 ODS (250 x 4.6 mm, 5 μ) column, Diode Array Detector (DAD), 996 PDA detectors, software: Empower 2, Alliance 2695 separation module. To improve the process, several mobile phase compositions were used. Initially, different methanol: acetonitrile concentrations had been used to improve analyte separation. Using a column inertsil-ODS C18 (250 x 4.6 mm, 5µ), a methanol and buffer ratio of 80:20 V/V, a flow rate of l ml/min, and a detector wavelength of 280 nm, 254 nm, and 274 nm for the curcumin, quercetin, and catechin, the procedure was ultimately optimized. It was discovered that the retention periods for quercetin, catechin, and curcumin were 3.0 minutes each. These chromatographic conditions allowed for the goodresolution elution of both analytes. Additionally, the theoretical plates and retention times were adequate. Figure 1-6 represents the chromatogram. The developed methods of linearity, accuracy, precision, LOD, and LOQ were verified following the ICH criteria (17).

2.3 Method Validation:

2.3.1 System suitability:

Curcumin, quercetin, and catechin working standards were used to prepare a standard solution, which was then injected five times in triplicate into the HPLC system following the test procedure. Using standard chromatograms, the system's suitability parameters, such as theoretical plates and resolution, were assessed (6). Table 2 represents the results.

2.3.2 Precision and repeatability:

The test procedure was followed to produce the standard solutions, then injected five times into replicates to ensure precision and repeatability. Table 3 represents the calculated peak area, average, and relative standard deviation percentage. Six injections of the same concentrations of curcumin, quercetin, and catechin were made at the recommended dosage circumstances to obtain intermediate precision (intra-and inter-day) and repeatability of the samples to be analyzed. The analyte sample was produced and examined on three separate days (n=5) to ensure repeatability. Tables 4 & 5 represent the results.

2.3.3 Accuracy:

The accuracy of the suggested technique was assessed using curcumin, quercetin, and catechin recovery tests at three distinct concentrations (10, 20, and 30%). The target concentration was spiked in triplicate at each level, and the amount of each compound recovered was calculated (6). Table 6 shows the percentage recovery at each stage, which was calculated.

ISSN: 2229-7359 Vol. 11 No. 12s, 2025

https://theaspd.com/index.php

2.3.4 Linearity:

Curcumin, quercetin, and catechin working standards were used to develop a series of solutions with concentrations ranging from 10 ppm to 70 ppm of the desired concentration. After the injection of each sample solution into the HPLC equipment in replications, peak areas were determined. Peak areas versus concentrations were shown on a graph, and R^2 values were calculated (1). The findings are shown in Table 7 and in Figures 7, 8, and 9.

2.3.5 Limit of Detection and Limit of Quantification:

Based on the linearity results, the limit of detection (LOD) and quantification (LOQ) for curcumin, quercetin, and catechin have been determined using the following equations (6). Table 8 represent the results.

$$LOD = \frac{3.3\sigma}{S}$$

 σ = standard deviation of the response

S = slope of the analyte's calibration curve

$$LOQ = \frac{10\sigma}{S}$$

 σ = standard deviation of the response

S = slope of the calibration curve of the analyte

RESULT:

3.1 HPLC method development

Absorption maxima (UV-1800, Shimadzu, Japan) in the 200–600 nm range were scanned against ACN as a blank for each drug standard (curcumin, Figure 1, quercetin Figure 3, and catechin, Figure 5), and their extracts from *Curcuma longa* Figure 2, *Allium cepa* Figure 4, *and Acacia catechu*, Figure 6 that were produced in ACN. The peak characteristics of the optimized chromatogram for curcumin, quercetin, and catechin were presented in Table 1.

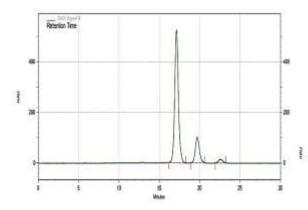
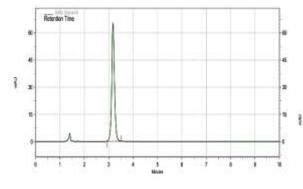



Figure 1 Curcumin standard

Figure 2 Curcuma longa sample

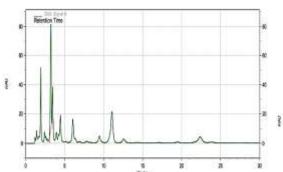


Figure 3 Quercetin standard

Figure 4 Allium cepa sample

ISSN: 2229-7359 Vol. 11 No. 12s, 2025

https://theaspd.com/index.php

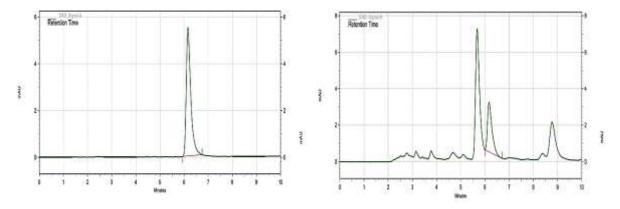


Figure 5 Catechin standard

Figure 6 Acacia Catechu sample

Table 1 Peak characteristics of the optimized chromatogram for curcumin, quercetin, and catechin

				ESTD
				Concentration
Sr. No	Drug	Retention time	Area	(%)
1	Curcumin	17.14	12810659	3.67
	(sample)			
	Curcumin	17.12	348667	
	(standard)			
2	Quercetin	3.14	462957	32.48
	(sample)			
	Quercetin	3.17	142536	
	(standard)			
3	Catechin (sample)	6.17	2986895	2.52
	Catechin	6.16	1183615	
	(standard)			

3.2 System suitability:

By replicating injections and parameters such as theoretical plates, system suitability studies were carried out. The observed values satisfy the criteria for approval.

Table 2 Data of System Suitability for Curcumin, Quercetin, and Catechin

	Curcumin			Quercetin			Catechin		
			USP			USP	Retentio	Peak	USP
			Plate			Plate	n time	Area	Plate
Injectio	Retentio	Peak	coun	Retentio	Peak	coun			coun
n	n time	Area	t	n time	Area	t			t
		34866			14253		6.14	118361	5170
1	17.1	5	1368	3.15	3	4200		1	
		34866			14253		6.12	118360	4662
2	17.09	0	1188	3.16	4	3611		7	
		34866			14253		6.11	118360	4888
3	17.11	2	1440	3.13	1	4552		2	
		34866			14253		6.13	118361	5162
4	17.12	3	1304	3.16	4	3611		0	
		34866			14253		6.14	118361	5170
5	17.09	0	1242	3.14	5	3349		1	

ISSN: 2229-7359 Vol. 11 No. 12s, 2025

https://theaspd.com/index.php

3.3 Precision and repeatability:

Repeatability was performed in six replicate injections, and the % RSD of the peak areas was calculated. The results were observed in Table 3.

To determine repeatability and intra-interday cycles, precision studies were conducted. Tables 4 & 5 showed the percentage RSD values for intra-inter-day precision.

Table 3 Data of Repeatability for Curcumin, Quercetin, and Catechin

	Curcumin		Quercetin		Catechin	
Injection	Peak Areas of	% Assay	Peak Areas of	% Assay	Peak Areas of	% Assay
	Curcumin		Quercetin		Curcumin	
1	348667	102.061	142534	102.855	1183614	100.941
2	348665	104.102	142533	100.689	1183612	102.203
3	348666	102.061	142531	99.608	1183613	100.942
4	348663	101.041	142533	100.689	1183615	99.680
5	348662	99.729	142533	101.772	1183612	103.465
6	348664	101.041	142531	98.742	1183611	102.203
Mean	348664.5	101.672	142532.5	100.726	1183612.833	101.572
SD	1870.828693		1224.744871		1471.960144	
%RSD	0.536569881		0.85927411		0.124361624	

Table 4 Precision studies (intra-day) of Curcumin, Quercetin, and Catechin

	Curci		(1,100	<u> </u>	,, 0,,,,	Quer		,	<u> </u>		Catec	hin			
Inje ctio n	Pea k Are	% Ass ay	Me an	SD	%R SD	Pea k Are	% Ass ay	Me an	SD	%R SD	Pea k Are	% Ass ay	Me an	SD	% RS D
	as of Cur cum in					as of Que rceti n					as of Cur cum in				
1	348 663	10 2.0 61	348 668 .2	462 2.4 09	1.3 257 33	142 531	10 2.8 55	14 25 36	316 2.2 78	2.2 185 82	118 362 8	10 0.9 41	118 362 6	43 81. 78	0. 37 02
2	348 662	10 4.1 02				142 538	10 0.6 89				118 362 0	10 2.2 03			
3	348 669	10 2.0 61				142 537	99. 60 8				118 362 2	10 0.9 42			
4	348 670	10 1.0 41				142 540	10 0.6 89				118 362 6	99. 68 0			
5	348 672	99. 72 9				142 534	10 1.7 72				118 362 8	10 3.4 65			
6	348 673	10 1.0 41				142 536	98. 74 2				118 363 2	10 2.2 03			

ISSN: 2229-7359 Vol. 11 No. 12s, 2025

https://theaspd.com/index.php

Table 5 Precision studies (inter-day) Curcumin, Quercetin, and Catechin

		umir	tudies (i 1		, (311, 611)		rcetin		00000000		Cate	chin			
Inj ect io n	Pea k Ar eas of Cu rcu mi n	% As sa y	Mea n	SD	%R SD	Pe ak Ar eas of Qu erc eti n	% As sa y	Mea n	SD	%R SD	Pea k Ar eas of Cu rcu mi n	% As sa y	Mea n	SD	%R SD
1	34 86 62	10 2. 06 7	348 669. 333 3	492 6.12 085 4	1.41 283 456 4	14 25 33	10 2. 85 8	142 538. 833 3	318 8.52 107 8	2.2 369 490 5	11 83 63 0	10 0. 94 1	118 362 8.33 3	445 7.20 390 7	0.37 657 124 1
2	34 86 65	10 4. 11 2				14 25 40	10 0. 68 5				11 83 62 3	10 2. 20 3			
3	34 86 70	10 2. 06 9				14 25 39	99 .6 08				11 83 62 5	10 0. 94 2			
4	34 86 71	10 1. 04 8				14 25 42	10 0. 68 9				11 83 62 6	99 .6 80			
5	34 86 73	99 .7 39				14 25 38	10 1. 77 2				11 83 63 1	10 3. 46 5			
6	34 86 75	10 1. 04 1				14 25 41	98 .7 42				11 83 63 5	10 2. 20 3			

3.4 Accuracy:

Recovery studies were used to assess the method's accuracy. Following the target assay, three target concentrations 10%, 20%, and 30% were developed and injected into the HPLC system in triplicate. The average recovery rates for each spike level ranged from 100% to 102%, satisfying the acceptance criterion. The accuracy of the procedure is demonstrated by the recovery values. Table 6 shows the results.

Table 6 Data of Accuracy for Curcumin, Quercetin, and Catechin

		Curcumin			Querce	Quercetin			Catechin		
	Amo	Amo			Amo			Amo			
	unt	unt			unt			unt			
Concentr	adde	foun			foun			foun			
ation (%)	d	d	%		d	%	Mean	d	%	Mean	
of spiked	(ppm	(ppm	Recov	Mean	(ppm	Recov	recov	(ppm	Recov	recov	
level))	ery	recovery)	ery	ery)	ery	ery	
10%											
Injection											
1	10	10.15	101.5	101.7	10.13	101.3	101.4	10.09	100.9	101.0	

ISSN: 2229-7359 Vol. 11 No. 12s, 2025

https://theaspd.com/index.php

	1	1	1	1	1	ı	ı	ı	ı	1
10%										
Injection										
2	10	10.17	101.7		10.12	101.2		10.08	100.8	
10%										
Injection										
3	10	10.19	101.9		10.18	101.8		10.12	101.2	
20%										
Injection										
1	20	20.17	100.9		20.04	100.2		20.07	100.4	
20%										
Injection										
2	20	20.18	100.9		20.09	100.5		20.13	100.7	
20%										
Injection				100.816					100.7	
3	20	20.14	100.7	6667	20.14	100.7	100.5	20.15	5	100.6
30%										
Injection										
1	30	30.14	100.5		30.06	100.2		30.17	100.6	
30%										
Injection										
2	30	30.16	100.5		30.12	100.4		30.11	100.4	
30%										
Injection										
3	30	30.15	100.5	100.5	30.1	100.3	100.3	30.16	100.5	100.5

3.5 Linearity:

Drugs at different concentrations were injected into the HPLC system to test the linearity of the procedure. Peak area was plotted vs concentration on a graph, and the correlation coefficient was calculated. The R^2 values for the drugs were within the acceptable ranges, at 0.980, 0.993, and 0.995. Table 7 and Figures 7, 8, and 9 displayed the results, and the R^2 values validated the linearity of the technique.

Table 7 Linearity data of Curcumin, Quercetin, and Catechin

Table / Linearit	Curcun		,	Querce			Catechi	n	
	Avera	Statistical		Avera	Statistical		Avera	Statistical	
Concentrati	ge	Analysis		ge	Analysis		ge	Analysis	
on (ppm)	Area			Area			Area		
			6667.			7238.			
0	0	Slope	5	0	Slope	9	0	Slope	6977
	12866	у-	4421	11866	у-	2671		у-	1588
10	5	Intercept	9	5	Intercept	9	98665	Intercept	6
		Correlati			Correlati			Correlati	
		on			on			on	
	19866	Coefficie		17866	Coefficie		15866	Coefficie	0.99
20	0	nt	0.980	0	nt	0.993	0	nt	5
	25866			24866			21866		
30	2			2			2		
	32866			31866			29866		
40	3			3			3		
	37866			39866			37866		
50	5			5			5		
	42866			44866			43866		
60	4			4			4		

ISSN: 2229-7359 Vol. 11 No. 12s, 2025

https://theaspd.com/index.php

	49866	52866	48866	
70	6	6	6	

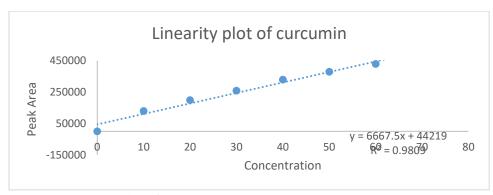


Figure 7 Linearity plot of curcumin

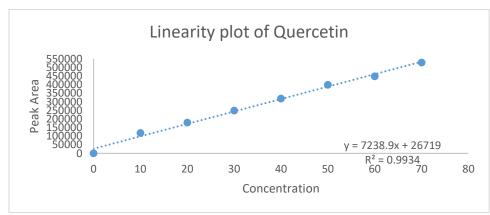


Figure 8 Linearity plot of Quercetin

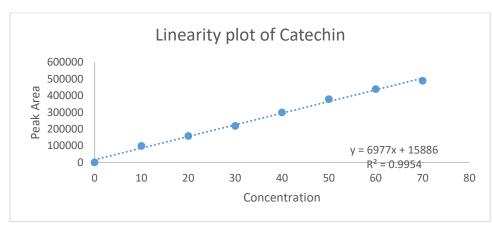


Figure 9 Linearity plot of Catechin

3.6 Limit of Detection and Quantification (LOD and LOQ)

The results showed that the LOQ values for curcumin, quercetin, and catechin were 0.014, 0.066, and 0.012, respectively, while the LOD values were 0.004, 0.020, and 0.003, respectively. Table 8 shows the results of LOD and LOQ.

Table 8 Limit of Detection and Quantification (LOD and LOQ)

	Curcumin	Quercetin	Catechin
LOD	0.00432374	0.020041395	0.003680172
LOQ	0.014412466	0.066804651	0.012267239

ISSN: 2229-7359 Vol. 11 No. 12s, 2025

https://theaspd.com/index.php

DISCUSSION

This study effectively illustrates the establishment and ICH-compliant validation of a reverse-phase HPLC technique for the concurrent quantification of curcumin, quercetin, and catechin from extracts of *Curcuma longa*, *Allium cepa*, and *Acacia catechu*. These phytoconstituents possess various pharmacological properties, such as antioxidant, anti-inflammatory, and anticancer activity, rendering their precise quantification essential for the quality control and standardization of herbal formulations (18).

The detection wavelengths were selected based on the maximum UV absorption of the individual compound: 280 nm for curcumin, 254 nm for quercetin, and 274 nm for catechin, thus enabling selective and sensitive detections (19). The method had an outstanding linearity within the concentration ranges tested, with correlation coefficients (R²) greater than 0.980 for all the analytes, which is comparable or better than the previously reported techniques. Accuracy proves the method's repeatability with %RSD values of intra-day and inter-day less than 2. Accuracy was high, and the recovery ranged between 100-102 percent, which adheres to the acceptance criteria of ICH recommendations. Also, the low limits of detection (LOD) and quantification (LOQ) show that the method has superb sensitivity and can detect very low concentrations of analytes in the complex plant matrices (9). It is a reliable, one-run and simultaneous determination of all three target analytes and works out as a better use of time and resources than other reported analytical methods involving individual compounds or binary mixtures. More often in the past, complex gradient systems or long retention times were used, but in this case, a simple isocratic elution with respectable performance properties has been applied. The procedure is usable in routine analysis of raw materials and finished herbal products and in stability studies, pharmacokinetic studies, and regulatory submissions, where analytical validation is of utmost importance (19).

CONCLUSION

For this study, a validated RP-HPLC method was designed that could accurately measure curcumin, quercetin, and catechin levels in extracts of *Curcuma longa*, *Allium cepa*, and *Acacia catechu*. Because the method showed good linearity, precision, accuracy, and sensitivity, it is ideal for regular control and proper adjustment of herbal raw materials and their preparations. The simple and fast analysis process allows the method to be used widely in both schools and companies. As the method analyses data and relationships well, it could be used in other fields. It can be extended to the scientific studies on the kinetic behavior and access to these phytoconstituents in animals and humans are conducted, monitoring the stability and changes in herbal formulations kept under different forms of storage, evaluating the quality of polyherbal and nutraceutical products that are made from various active compounds found in plants.

REFERENCES

- 1. Ramaswamy S, Gowthamarajan K, Priyanka Dwarampudi L, Bhaskaran M, Kadiyala M. Analytical method development, validation and forced degradation studies for rutin, quercetin, curcumin and piperine by RP-UFLC method. Drug Dev Ind Pharm. 2021 Mar 1;47:1–13.
- 2. Rasheed A, reddy.B. S, Roja C. A REVIEW ON STANDARDISATION OF HERBAL FORMULATION. In 2012. Available from: https://api.semanticscholar.org/CorpusID:74297565
- Goppel M, Franz G. Stability control of senna leaves and senna extracts. Planta Med. 2004 May;70(5):432-6.
- 4. Patel RK, Patel VR, Patel MG. Development and validation of a RP-HPLC method for the simultaneous determination of Embelin, Rottlerin and Ellagic acid in Vidangadi churna. J Pharm Anal. 2012 Oct;2(5):366–71.
- 5. Kushwaha P, Shukla B, Dwivedi J, Saxena S. Validated high-performance thin-layer chromatographic analysis of curcumin in the methanolic fraction of Curcuma longa L. rhizomes. Futur J Pharm Sci [Internet]. 2021;7(1):178. Available from: https://doi.org/10.1186/s43094-021-00330-3
- 6. Khursheed R, Wadhwa S, Kumar B, Gulati M, Gupta S, Chaitanya M, et al. Development and validation of RP-HPLC based bioanalytical method for simultaneous estimation of curcumin and quercetin in rat's plasma. South African J Bot [Internet]. 2022;149:870–7. Available from: https://www.sciencedirect.com/science/article/pii/S0254629921005275
- 7. Kumari M, Radha, Kumar M, Zhang B, Amarowicz R, Puri S, et al. Acacia catechu (L.f.) Willd.: A Review on Bioactive Compounds and Their Health Promoting Functionalities. Plants [Internet]. 2022;11(22). Available from: https://www.mdpi.com/2223-7747/11/22/3091
- 8. Chew Y-L, Khor M-A, Lim Y-Y. Choices of chromatographic methods as stability indicating assays for pharmaceutical products: A review. Heliyon. 2021 Mar;7(3):e06553.
- 9. Carvalho D, Jesus Â, Pinho C, Oliveira RF, Moreira F, Oliveira AI. Validation of an HPLC-DAD Method for

ISSN: 2229-7359 Vol. 11 No. 12s, 2025

https://theaspd.com/index.php

Quercetin Quantification in Nanoparticles. Pharmaceuticals [Internet]. 2023;16(12). Available from: https://www.mdpi.com/1424-8247/16/12/1736

- 10. Committee for Medicinal Products for Human Use. ICH Harmonised Guideline: Validation of analytical procedures Q2(R2). ICH Eur Med Agency. 2022;Step 2b(0):1-39.
- 11. Dandekar PP, Patravale VB. Development and Validation of a Stability-Indicating LC Method for Curcumin. Chromatographia [Internet]. 2009;69(9):871–7. Available from: https://doi.org/10.1365/s10337-009-0995-1
- 12. Dureshahwar K, Mubashir M, Une HD. Quantification of Quercetin Obtained from Allium cepa Lam. Leaves and its Effects on Streptozotocin-induced Diabetic Neuropathy. Pharmacognosy Res. 2017;9(3):287–93.
- 13. Indireddy T, Kuber R. Application of Response Surface Methodology for the Development of an Innovative Stability Indicating UHPLC Method for the Simultaneous Determination of Rutin and Catechin in Corn Silk Extract Tablets. J Anal Chem [Internet]. 2023;78(5):605–21. Available from: https://doi.org/10.1134/S1061934823050088
- 14. Syed HK, Liew K Bin, Loh GOK, Peh KK. Stability indicating HPLC-UV method for detection of curcumin in Curcuma longa extract and emulsion formulation. Food Chem [Internet]. 2015;170:321-6. Available from: https://www.sciencedirect.com/science/article/pii/S0308814614012813
- 15. Ullah H, Minno A Di, Santarcangelo C, Tantipongpiradet A, Dacrema M, Matteo R di, et al. In Vitro Bioaccessibility and Anti-Inflammatory Activity of a Chemically Characterized Allium cepa L. Extract Rich in Quercetin Derivatives Optimized by the Design of Experiments. Molecules. 2022 Dec;27(24).
- 16. Patel JD, Kumar V, Bhatt SA. the resin part of Acacia catechu Antimicrobial screening and phytochemical analysis of the resin part of Acacia catechu. 2009;0209.
- 17. Chaudhari VS, Borkar RM, Murty US, Banerjee S. Analytical method development and validation of reverse-phase high-performance liquid chromatography (RP-HPLC) method for simultaneous quantifications of quercetin and piperine in dual-drug loaded nanostructured lipid carriers. J Pharm Biomed Anal [Internet]. 2020;186:113325. Available from: https://www.sciencedirect.com/science/article/pii/S0731708520300121
- 18. Gupta A, Haseeb M, Porwal M. Evaluation of Phytochemical Composition , Antioxidant Activity , and Bioactive Constituents of Acacia arabica bark Extract : A Comprehensive Analysis. 2025;
- 19. Khursheed R, Singh SK, Kapoor B, Gulati M, Wadhwa S, Gupta S, et al. Development and validation of RP-HPLC method for simultaneous determination of curcumin and quercetin in extracts, marketed formulations, and self-nanoemulsifying drug delivery system. Re GEN Open. 2021;1(1):43–52.