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In this paper, we introduce a new class of spaces referred to as Pythagorean fuzzy nano normal spaces, including their 
variants: 𝛿, 𝛿𝒫, 𝛿𝒮, 𝛿𝛼 and 𝛿𝛽 -normal spaces. We also define their corresponding strongly Pythagorean fuzzy 
nano normal spaces. These spaces are formulated using the respective types of Pythagorean fuzzy nano open sets within 
the framework of Pythagorean fuzzy nano topological spaces. Furthermore, we explore the relationships among these 
newly defined spaces and their connections with existing spaces. Additionally, we study their basic properties and 
provide characterizations of the introduced normal spaces. 
Keywords: Pythagorean fuzzy nano 𝛿𝛽 -open, Pythagorean fuzzy nano 𝛿𝛽 -closed, Pythagorean fuzzy nano 𝛿𝛽 
normal space, strongly Pythagorean fuzzy nano 𝛿𝛽 normal space. 
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INTRODUCTION 
The concept of fuzzy sets, first introduced by Zadeh in 1965 [41], has found wide-ranging applications in 
fields such as decision theory, artificial intelligence, operations research, expert systems, computer 
science, data analytics, pattern recognition, management science, and robotics. In 1968, Chang and 
Warren [15, 35] extended this concept by introducing fuzzy topological spaces (FTS), incorporating 
fundamental topological notions such as open and closed sets, neighborhoods, interiors, closures, 
continuity, and compactness. Subsequent studies further explored the applications of fuzzy sets across 
various domains [1, 13, 27, 32]. Over time, numerous specialized fuzzy topological structures have been 
developed to address specific theoretical and practical needs. 
In 1997, Dogan Coker [9, 18, 22] introduced the concept of intuitionistic fuzzy topological spaces and 
explored their properties related to compactness and continuity. Building upon intuitionistic fuzzy 
setsâ€”which account for both membership and non-membership degreesâ€”Pythagorean fuzzy sets (PFS) 
have gained attention due to their broader applicability [32, 29]. While both set types incorporate 
membership (𝜇) and non-membership (𝜆) degrees, their constraints differ: intuitionistic fuzzy sets satisfy 
𝜇 + 𝜆 ≤ 1, whereas Pythagorean fuzzy sets satisfy 𝜇2 + 𝜆2 ≤ 1. 
To offer greater flexibility in uncertainty modeling, Yager [38] introduced non-standard fuzzy sets in 2013, 
comparing them with intuitionistic fuzzy sets and proposing the Pythagorean fuzzy set (PFS) as an effective 
model in decision-making scenarios [3, 40, 39]. PFS has since been applied in areas such as job placement 
based on academic performance [23] and mask selection during the COVID-19 pandemic using the 
Pythagorean TOPSIS technique [26]. 
Subsequently, Murat et al. [21] extended the fuzzy topological framework by developing Pythagorean fuzzy 
topological spaces (PFTS), inspired by classical fuzzy topological spaces (FTS) [19, 20, 25], and defined 
Pythagorean fuzzy continuous functions between such spaces. 
In parallel developments, Saha [28] introduced the concept of 𝛿-open sets in fuzzy topological spaces. 
This concept was further extended in 2019 by Acikgoz and Esenbel [2], who introduced neutrosophic soft 
𝛿-topologies. Further contributions were made by Aranganayagi et al., Surendra et al., and Vadivel et al. 
[7, 8, 30, 31, 33, 34], who investigated 𝛿-open sets in neutrosophic, neutrosophic soft, neutrosophic 
hypersoft, and neutrosophic nano topological spaces, particularly focusing on their mappings and 
separation axioms. 
Similarity measures have emerged as essential tools for quantifying vagueness and evaluating the closeness 
between fuzzy sets. In this context, Zhang [16] proposed similarity-based techniques for Pythagorean fuzzy 
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multi-attribute decision-making. Peng et al. [24] introduced several new distance and similarity measures 
aimed at solving problems in pattern recognition, medical diagnosis, and clustering analysis, also 
examining their transformation properties. Wei and Wei [36] further developed cosine-based similarity 
functions for decision-making applications. 
However, several existing PFS similarity and distance measures suffer from limitations such as 
division-by-zero issues, inability to distinguish between positive and negative differences, and 
non-compliance with core axioms (e.g., the third and fourth similarity axioms). These counter-intuitive 
behaviors [36, 16, 24] hinder the decision-maker’s (DMâ€™s) ability to identify optimal or convincing 
alternatives. 
The objective of this paper is to address these challenges by proposing a novel similarity measure for 
Pythagorean fuzzy sets that overcomes these counter-intuitive limitations and provides a more robust 
decision-making tool. 
Research Gap: To date, no studies have been reported in the literature on Pythagorean fuzzy nano 
topological spaces that investigate newly defined spaces such as Pythagorean fuzzy nano 𝛿𝛽-normal spaces 
and strongly Pythagorean fuzzy nano 𝛿𝛽-normal spaces. 
In this paper, we introduce Pythagorean fuzzy nano normal spaces, including their variantsâ€”𝛿, 𝛿 pre, 
𝛿 semi, 𝛿𝛼 and 𝛿𝛽-normal spacesâ€”as well as their corresponding strongly Pythagorean fuzzy nano 
𝛿-type normal spaces. We explore and analyze their fundamental properties within the framework of 
Pythagorean fuzzy nano topological spaces (𝒫ℱ𝒩𝑡𝑠’s). 
 
Preliminaries 
Definition 2.1  [41] Let 𝑋 be a nonempty set. A fuzzy set 𝐴 in 𝑋 is characterized by a membership function 
𝜇𝐴: 𝑋 → [0,1]. That is:  

 𝜇𝐴(𝑥) = {
1,    if        𝑥 ∈ 𝑋
0,    if        𝑥 ∉ 𝑋
(0,1)    if 𝑥 ispartlyin 𝑋.

 

Alternatively, a fuzzy set 𝐴 in 𝑋  is an object having the form 𝐴 = {< 𝑥, 𝜇𝐴(𝑥) > |𝑥 ∈ 𝑋} or 𝐴 =

{⟨
𝜇𝐴(𝑥)

𝑥
⟩ |𝑥 ∈ 𝑋},  where the function 𝜇𝐴(𝑥): 𝑋 → [0,1]  defines the degree of membership of the 

element, 𝑥 ∈ 𝑋. 
The more 𝑥 belongs to 𝐴, where the grades 1 and 0 denote full membership and full nonmembership, 
respectively, the closer the membership value 𝜇𝐴(𝑥) is to 1, a fuzzy set is a group of items with varying 
degrees of membership, or graded membership. 
The traditional concept of a set is expanded upon by fuzzy sets. In classical set theory, an element’s 
membership in a set is evaluated in binary terms based on a bivalent condition; it either belongs to the set 
or it doesn’t. 
Crisp sets are what fuzzy set theory refers to as classical bivalent sets. Since the indicator function of 
classical sets is a specific instance of the membership functions of fuzzy sets, fuzzy sets are generalized 
classical sets. If the latter only accept values 0 or 1. With the use of a membership function valued in the 
real unit interval, fuzzy sets theory enables the incremental evaluation of an element’s membership in a set 
[0,1]. Let’s look at two instances: 
(i) every employee of 𝑋𝑌𝑍 who is taller than 1.8𝑚; (ii) every employee of 𝑋𝑌𝑍 who is tall. 
In the first example, a classical set and a universe (all 𝑋𝑌𝑍 employees) are separated into members (those 
over 1.8𝑚) and nonmembers using a membership rule. Because some employees are obviously in the set 
and some are definitely not, but some are borderline, the second example is a fuzzy set. 
The membership function, 𝜇, makes this distinction between the ins, the outs, and the borderline more 
precise. Using our second example once more, if 𝑥 is a member of the universe and 𝐴 is the fuzzy set of 
all tall employees, 𝑋 (i.e., all employees), then 𝜇𝐴(𝑥) would be 𝜇𝐴(𝑥) = 1 if 𝑥 is unquestionably tall, 
or 𝜇𝐴(𝑥) = 0 if 𝑥 is non-tall, or 0 < 𝜇𝐴(𝑥) < 1 for borderline circumstances. 
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Definition 2.2  [9, 10, 11, 12] Let a nonempty set 𝑋 be fixed. An 𝐼𝐹𝑆 𝐴 in 𝑋 is an object having the form: 𝐴 =

{< 𝑥, 𝜇𝐴(𝑥), 𝜆𝐴(𝑥) > |𝑥 ∈ 𝑋} or 𝐴 = {⟨
𝜇𝐴(𝑥),𝜆𝐴(𝑥)

𝑥
⟩ |𝑥 ∈ 𝑋},  where the functions 𝜇𝐴(𝑥): 𝑋 → [0,1] and 

𝜆𝐴(𝑥): 𝑋 → [0,1] define the degree of membership and the degree of nonmembership, respectively, of the element 
𝑥 ∈ 𝑋  to 𝐴 , which is a subset of 𝑋,  and for every 𝑥 ∈ 𝑋:  0 ≤ 𝜇𝐴(𝑥) + 𝜆𝐴(𝑥) ≤ 1 . For each 𝐴  in 𝑋 : 
𝜋𝐴(𝑥) = 1 − 𝜇𝐴(𝑥) − 𝜆𝐴(𝑥) is the intuitionistic fuzzy set index or hesitation margin of 𝑥 in 𝑋. The hesitation 
margin 𝜋𝐴(𝑥) is the degree of nondeterminacy of 𝑥 ∈ 𝑋 to the set 𝐴 and 𝜋𝐴(𝑥) ∈ [0,1]. The hesitation margin is 
the function that expresses lack of knowledge of whether 𝑥 ∈ 𝑋 or 𝑥 ∉ 𝑋. Thus: 𝜇𝐴(𝑥) + 𝜆𝐴(𝑥) + 𝜋𝐴(𝑥) = 1.  
 

Example 2.1  Let 𝑋 = {𝑥, 𝑦, 𝑧} be a fixed universe of discourse and 𝐴 = {⟨
0.6,0.1

𝑥
⟩ , ⟨

0.8,0.1

𝑦
⟩ , ⟨

0.5,0.3

𝑧
⟩}, be the 

intuitionistic fuzzy set in 𝑋 . The hesitation margins of the elements 𝑥, 𝑦, 𝑧  to 𝐴  are as follows: 𝜋𝐴(𝑥) =
0.3, 𝜋𝐴(𝑦) = 0.1 and 𝜋𝐴(𝑧) = 0.2.  
 
Definition 2.3  [37, 38, 40] Let a non empty set 𝑋 be a universal set. Then, a Pythagorean fuzzy set 𝐴, which is 
a set of ordered pairs over 𝑋 , is defined by the following: 𝐴 = {< 𝑥, 𝜇𝐴(𝑥), 𝜆𝐴(𝑥)|𝑥 ∈ 𝑋}  or 𝐴 =

{⟨
𝜇𝐴(𝑥),𝜆𝐴(𝑥)

𝑥
⟩ |𝑥 ∈ 𝑋},  where the functions 𝜇𝐴(𝑥): 𝑋 → [0,1]  and 𝜆𝐴(𝑥): 𝑋 → [0,1]  define the degree of 

membership and the degree of nonmembership, respectively, of the element 𝑥 ∈ 𝑋 to 𝐴, which is a subset of 𝑋, and for 
every 𝑥 ∈ 𝑋, 0 ≤ (𝜇𝐴(𝑥))2 + (𝜆𝐴(𝑥))2 ≤ 1. Supposing (𝜇𝐴(𝑥))2 + (𝜆𝐴(𝑥))2 ≤ 1, then there is a degree of 
indeterminacy of 𝑥 ∈ 𝑋  to 𝐴  defined by 𝜋𝐴(𝑥) = √1 − [(𝜇𝐴(𝑥))2 + (𝜆𝐴(𝑥))2]  and 𝜋𝐴(𝑥) ∈ [0,1] . In 
what follows, (𝜇𝐴(𝑥))2 + (𝜆𝐴(𝑥))2 + (𝜋𝐴(𝑥))2 = 1 . Otherwise, 𝜋𝐴(𝑥) = 0  whenever (𝜇𝐴(𝑥))2 +
(𝜆𝐴(𝑥))2 = 1. We denote the set of all 𝑝𝑓𝑠’s over 𝑋 by 𝑝𝑓𝑠(𝑋).  
 
Definition 2.4  [40] Let 𝐴 and 𝐵 be 𝑝𝑓𝑠’s of the forms 𝐴 = {< 𝑎, 𝜇𝐴(𝑎), 𝜆𝐴(𝑎) > |𝑎 ∈ 𝑋} and 𝐵 = {<
𝑎, 𝜇𝐵(𝑎), 𝜆𝐵(𝑎) > |𝑎 ∈ 𝑋}. Then [(i)]  
    1.  𝐴 ⊆ 𝐵 if and only if 𝜇𝐴(𝑎) ≤ 𝜇𝐵(𝑎) and 𝜆𝐴(𝑎) ≥ 𝜆𝐵(𝑎) for all 𝑎 ∈ 𝑋.  
    2.  𝐴 = 𝐵 if and only if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴.  
    3.  𝐴̅𝑐 = {< 𝑎, 𝜆𝐴(𝑎), 𝜇𝐴(𝑎) > |𝑎 ∈ 𝑋}.  
    4.  𝐴 ∩ 𝐵 = {< 𝑎, 𝜇𝐴(𝑎) ∧ 𝜇𝐵(𝑎), 𝜆𝐴(𝑎) ∨ 𝜆𝐵(𝑎) > |𝑎 ∈ 𝑋}.  
    5.  𝐴 ∪ 𝐵 = {< 𝑎, 𝜇𝐴(𝑎) ∨ 𝜇𝐵(𝑎), 𝜆𝐴(𝑎) ∧ 𝜆𝐵(𝑎) > |𝑎 ∈ 𝑋}.  
    6.  0𝑃 = {< 𝑎, 0,1 > |𝑎 ∈ 𝑋} and 1𝑃 = {< 𝑎, 1,0 > |𝑎 ∈ 𝑋}.  
    7.  1̅𝑃 = 0𝑃 and 0̅𝑃 = 1𝑃. 
 
Definition 2.5  [4] Let 𝑈 be a non-empty set and 𝑅 be an equivalence relation on 𝑈. Let 𝐴 be a Pythagorean 
fuzzy set in 𝑈  with the membership function 𝜇𝐴(𝑥)  and non membership function 𝜆𝐴(𝑥) , ∀  𝑥 ∈ 𝑈 . The 
Pythagorean fuzzy nano lower approximation, Pythagorean fuzzy nano upper approximation and Pythagorean fuzzy 
nano boundary approximation of 𝐴  in (𝑈, 𝑅) denoted by 𝒫ℱ𝔑(𝐴), 𝒫ℱ𝔑(𝐴) and 𝐵𝒫ℱ𝔑(𝐴)  and they are 
respectively defined as follows: [(i)]  

    1.  𝒫ℱ𝔑(𝐴) = {〈𝑥, 𝜇𝑅(𝐴)(𝑥), 𝜆𝑅(𝐴)(𝑥)〉/𝑦 ∈ [𝑥]𝑅 , 𝑥 ∈ 𝑈}  

    2.  𝒫ℱ𝔑(𝐴) = {〈𝑥, 𝜇𝑅(𝐴)(𝑥), 𝜆𝑅(𝐴)(𝑥)〉/𝑦 ∈ [𝑥]𝑅 , 𝑥 ∈ 𝑈}  

    3.  𝐵𝒫ℱ𝔑(𝐴) = 𝒫ℱ𝔑(𝐴) − 𝒫ℱ𝔑(𝐴)  
  
 where 𝜇𝑅(𝐴)(𝑥) =∧𝑦∈[𝑥]𝑅

𝜇𝐴(𝑦) 
𝜆𝑅(𝐴)(𝑥) =∧𝑦∈[𝑥]𝑅

𝜆𝐴(𝑦), 
𝜇𝑅(𝐴)(𝑥) =∨𝑦∈[𝑥]𝑅

𝜇𝐴(𝑦), 
𝜆𝑅(𝐴)(𝑥) =∨𝑦∈[𝑥]𝑅

𝜆𝐴(𝑦). 
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Definition 2.6  [4] Let 𝑈 be an universe of discourse, 𝑅 be an equivalence relation on 𝑈 and 𝐴 be a Pythagorean 
fuzzy set in 𝑈 and if the collection 𝜏𝒫(𝐴) = {0𝒫 , 1𝒫 , 𝒫ℱ𝔑(𝐴), 𝒫ℱ𝔑(𝐴), 𝐵𝒫ℱ𝔑(𝐴)} forms a topology then it is 
said to be a Pythagorean fuzzy nano topology. We call (𝑈, 𝜏𝒫(𝐴)) (or simply 𝑈) as the Pythagorean fuzzy nano 
topological space. The elements of 𝜏𝒫(𝐴) are called Pythagorean fuzzy nano open (briefly, 𝒫ℱ𝔑𝑜) sets.  
 
Remark 2.1  [4] [𝜏𝒫(𝐴)]𝑐 is called the dual fuzzy nano topology of 𝜏𝒫(𝐴). In short, 𝒫ℱ𝔑𝑐 sets are Pythagorean 
fuzzy nano closed elements of [𝜏𝒫(𝐴)]𝑐. Therefore, we see that if and only if 1𝑃 − 𝐺 is Pythagorean fuzzy nano open 
in 𝜏𝒫(𝐴), then a Pythagorean fuzzy set 𝐺 of 𝑈 is pythagorean fuzzy nano closed in 𝜏𝒫(𝐴).  
 
Definition 2.7  [4, 5] Let (𝑈, 𝜏𝒫(𝐴)) be a 𝒫ℱ𝔑𝑡𝑠 with respect to 𝐴 where 𝐴 is a 𝑝𝑓𝑠 of 𝑈. Let 𝑆 be a 
𝑝𝑓𝑠 of 𝑈. Then the Pythagorean fuzzy nano [(i)]  
    1.  interior of 𝑆  (briefly, 𝒫ℱ𝔑𝑖𝑛𝑡(𝑆) ) is defined by 𝒫ℱ𝔑𝑖𝑛𝑡(𝑆) =∪ {𝐼: 𝐼 ⊆
𝑆 & 𝐼isa𝒫ℱ𝔑𝑜set in𝑈}.  
    2.  closure of 𝑆  (briefly, 𝒫ℱ𝔑𝑐𝑙(𝑆) ) is defined by 𝒫ℱ𝔑𝑐𝑙(𝑆) =∩ {𝐴: 𝑆 ⊆
𝐴 & 𝐴isa𝒫ℱ𝔑𝑐set in𝑈}.  
    3.  regular open (briefly, 𝒫ℱ𝔑𝑟𝑜) set if 𝑆 = 𝒫ℱ𝔑𝑖𝑛𝑡(𝒫ℱ𝔑𝑐𝑙(𝑆)).  
    4.  regular closed (briefly, 𝒫ℱ𝔑𝑟𝑐) set if 𝑆 = 𝒫ℱ𝔑𝑐𝑙(𝒫ℱ𝔑𝑖𝑛𝑡(𝑆)).  
  
Definition 2.8  [6] Let (𝑈1, 𝜏𝑃(𝐴1)) and (𝑈2, 𝜏𝑃(𝐴2)) be two 𝒫ℱ𝔑𝑡𝑠’s. Then a function ℎ𝑃: 𝑈1 → 𝑈2 is 
said to be a Pythagorean fuzzy nano continuous (briefly, 𝒫ℱ𝔑𝐶𝑡𝑠) function if ℎ𝑃

−1(𝐺) is 𝒫ℱ𝔑𝑜 set in 𝑈1 for all 
𝒫ℱ𝔑𝑜 set 𝐺 in 𝑈2.  
 
Definition 2.9  [14]  Let (𝑈, 𝜏𝒫(𝐴))be an 𝒫ℱ𝔑𝑡𝑠 and 𝐴 = {< 𝑎, 𝜇𝐴(𝑎), 𝜆𝐴(𝑎) > |𝑎 ∈ 𝑋} be an 𝑝𝑓𝑠 
in 𝑋. Then the 𝛿-interior and the 𝛿-closure of 𝐴 are denoted by 𝒫ℱ𝔑𝛿𝑖𝑛𝑡(𝐴) and 𝒫ℱ𝔑𝛿𝑐𝑙(𝐴) and are defined 
as follows. 𝒫ℱ𝔑𝛿𝑖𝑛𝑡(𝐴) =∪ {𝐺|𝐺  is an 𝒫ℱ𝔑𝑟𝑜𝑠  and 𝐺 ⊆ 𝐴}  and 𝒫ℱ𝔑𝛿𝑐𝑙(𝐴) =∩ {𝐾|𝐾  is an 
𝒫ℱ𝔑𝑟𝑐𝑠 and 𝐴 ⊆ 𝐾} 
 
Definition 2.10  [14]  Let (𝑈, 𝜏𝒫(𝐴))be an 𝒫ℱ𝔑𝑡𝑠 and 𝐴 = {< 𝑎, 𝜇𝐴(𝑎), 𝜆𝐴(𝑎) > |𝑎 ∈ 𝑋} be an 𝑝𝑓𝑠 
in 𝑋. A set 𝐴 is said to be 𝒫ℱ𝔑 [(i)]  
    1.  𝛿-open set (briefly, 𝒫ℱ𝔑𝛿𝑜𝑠) if 𝐴 = 𝒫ℱ𝔑𝛿𝑖𝑛𝑡(𝐴),  
    2.  𝛿-pre open set (briefly, 𝒫ℱ𝔑𝛿𝒫𝑜𝑠) if 𝐴 ⊆ 𝒫ℱ𝔑𝑖𝑛𝑡(𝒫ℱ𝔑𝛿𝑐𝑙(𝐴)).  
    3.  𝛿-semi open set (briefly, 𝒫ℱ𝔑𝛿𝒮𝑜𝑠) if 𝐴 ⊆ 𝒫ℱ𝔑𝑐𝑙(𝒫ℱ𝔑𝛿𝑖𝑛𝑡(𝐴)).  
    4.  𝛿 - 𝛼  open set or 𝑎 -open set (briefly, 𝒫ℱ𝔑𝛿𝛼𝑜𝑠  or 𝒫ℱ𝔑𝑎𝑜𝑠 ) if 𝐴 ⊆
𝒫ℱ𝔑𝑖𝑛𝑡(𝒫ℱ𝔑𝑐𝑙(𝒫ℱ𝔑𝛿𝑖𝑛𝑡(𝐴))).  
    5.  𝛿 - 𝛽  open set or 𝑒∗ -open set (briefly, 𝒫ℱ𝔑𝛿𝛽𝑜𝑠  or 𝒫ℱ𝔑𝑒∗𝑜𝑠 ) if 𝐴 ⊆
𝒫ℱ𝔑𝑐𝑙(𝒫ℱ𝔑𝑖𝑛𝑡(𝒫ℱ𝔑𝛿𝑐𝑙(𝐴))).  
    6.  𝛿  (resp. 𝛿 -pre, 𝛿 -semi, 𝛿 - 𝛼  and 𝛿 - 𝛽 ) dense if 𝒫ℱ𝔑𝛿𝑐𝑙(𝐴)  (resp. 
𝒫ℱ𝔑𝛿𝑝𝑐𝑙(𝐴), 𝒫ℱ𝔑𝛿𝒮𝑐𝑙(𝐴), 𝒫ℱ𝔑𝛿𝛼𝑐𝑙(𝐴) and 𝒫ℱ𝔑𝛿𝛽𝑐𝑙(𝐴)) = 1𝑃. 
The complement of an 𝒫ℱ𝔑𝛿𝑜𝑠 (resp. 𝒫ℱ𝔑𝛿𝒫𝑜𝑠, 𝒫ℱ𝔑𝛿𝒮𝑜𝑠, 𝒫ℱ𝔑𝛿𝛼𝑜𝑠 and 𝒫ℱ𝔑𝛿𝛽𝑜𝑠) is called 
an 𝒫ℱ𝔑𝛿  (resp. 𝒫ℱ𝔑𝛿𝒫, 𝒫ℱ𝔑𝛿𝒮, 𝒫ℱ𝔑𝛿𝛼  and 𝒫ℱ𝔑𝛿𝛽)  closed set (briefly, 𝒫ℱ𝔑𝛿𝑐𝑠  (resp. 
𝒫ℱ𝔑𝛿𝒫𝑐𝑠, 𝒫ℱ𝔑𝛿𝒮𝑐𝑠, 𝒫ℱ𝔑𝛿𝛼𝑐𝑠 and 𝒫ℱ𝔑𝛿𝛽𝑐𝑠 in 𝑋. 
The family of all 𝒫ℱ𝔑𝛿𝑜𝑠  (resp. 
𝒫ℱ𝔑𝛿𝑐𝑠, 𝒫ℱ𝔑𝛿𝒫𝑜𝑠, 𝒫ℱ𝔑𝛿𝒫𝑐𝑠, 𝒫ℱ𝔑𝛿𝒮𝑜𝑠, 𝒫ℱ𝔑𝛿𝒮𝑐𝑠, 𝒫ℱ𝔑𝛿𝛼𝑜𝑠, 𝒫ℱ𝔑𝛿𝛼𝑐𝑠,  𝒫ℱ𝔑𝛿𝛽𝑜𝑠  and 
𝒫ℱ𝔑𝛿𝛽𝑐𝑠) of 𝑋  is denoted by 𝒫ℱ𝔑𝛿𝑂𝑆(𝑋),  (resp. 𝒫ℱ𝔑𝛿𝐶𝑆(𝑋), 𝒫ℱ𝔑𝛿𝒫𝑂𝑆(𝑋), 𝒫ℱ𝔑𝛿𝒫𝐶𝑆(𝑋), 
𝒫ℱ𝔑𝛿𝒮𝑂𝑆(𝑋), 𝒫ℱ𝔑𝛿𝒮𝐶𝑆(𝑋), 𝒫ℱ𝔑𝛿𝛼𝑂𝑆(𝑋), 𝒫ℱ𝔑𝛿𝛼𝐶𝑆(𝑋), 𝒫ℱ𝔑𝛿𝛽𝑂𝑆(𝑋) and 𝒫ℱ𝔑𝛿𝛽𝐶𝑆(𝑋)). 
 
Definition 2.11  [14] Let (𝑈, 𝜏𝒫(𝐴))be an 𝒫ℱ𝔑𝑡𝑠 and 𝐴 = {< 𝑎, 𝜇𝐴(𝑎), 𝜆𝐴(𝑎) > |𝑎 ∈ 𝑋} be an 𝑝𝑓𝑠 
in 𝑋 . Then the 𝒫ℱ𝔑𝛿 -pre (resp. 𝒫ℱ𝔑𝛿 -semi, 𝒫ℱ𝔑𝛿𝛼  and 𝒫ℱ𝔑𝛿𝛽) -interior and the 𝒫ℱ𝔑𝛿 -pre (resp. 
𝒫ℱ𝔑𝛿 -semi, 𝒫ℱ𝔑𝛿𝛼  and 𝒫ℱ𝔑𝛿𝛽) -closure of 𝐴  are denoted by 𝒫ℱ𝔑𝛿𝒫𝑖𝑛𝑡(𝐴) (resp. 𝒫ℱ𝔑𝛿𝒮𝑖𝑛𝑡(𝐴) , 
𝒫ℱ𝔑𝛿𝛼𝑖𝑛𝑡(𝐴)  and 𝒫ℱ𝔑𝛿𝛽𝑖𝑛𝑡(𝐴))  and the 𝒫ℱ𝔑𝛿𝒫𝑐𝑙(𝐴)  (resp. 𝒫ℱ𝔑𝛿𝒮𝑐𝑙(𝐴), 𝒫ℱ𝔑𝛿𝛼𝑐𝑙(𝐴)  and 
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𝒫ℱ𝔑𝛿𝛽𝑐𝑙(𝐴) and are defined as follows: 
𝒫ℱ𝔑𝛿𝒫𝑖𝑛𝑡(𝐴)  (resp. 𝒫ℱ𝔑𝛿𝒮𝑖𝑛𝑡(𝐴), 𝒫ℱ𝔑𝛿𝛼𝑖𝑛𝑡(𝐴)  and 𝒫ℱ𝔑𝛿𝛽𝑖𝑛𝑡(𝐴) ) =∪ {𝐺|𝐺  in a 
𝒫ℱ𝔑𝛿𝒫𝑜𝑠  (resp. 𝒫ℱ𝔑𝛿𝒮𝑜𝑠,   𝒫ℱ𝔑𝛿  𝛼𝑜𝑠  and 𝒫ℱ𝔑𝛿𝛽𝑜𝑠 )and 𝐺 ⊆ 𝐴}  and 𝒫ℱ𝔑𝛿𝒫𝑐𝑙(𝐴)  (resp. 
𝒫ℱ𝔑𝛿𝒮𝑐𝑙(𝐴), 𝒫ℱ𝔑𝛿𝛼𝑐𝑙(𝐴)  and 𝒫ℱ𝔑𝛿𝛽𝑐𝑙(𝐴) ) =∩ {𝐾|𝐾  is an 𝒫ℱ𝔑𝛿𝒫𝑐𝑠  (resp. 
𝒫ℱ𝔑𝛿𝒮𝑐𝑠, 𝒫ℱ𝔑𝛿𝛼𝑐𝑠,  𝒫ℱ𝔑𝛿𝛽𝑐𝑠) and 𝐴 ⊆ 𝐾}.  
 
Definition 2.12  [14] Let (𝑈1, 𝜏𝒫(𝐴1))  and (𝑈2, 𝜏𝒫(𝐴2))  be any two 𝒫ℱ𝔑𝑡𝑠 ’s. A mapping 
ℎ𝑃: (𝑈1, 𝜏𝒫(𝐴1)) → (𝑈2, 𝜏𝒫(𝐴2)) is said to be a Pythagorean fuzzy 
[(i)]  
    1.  continuous (briefly, 𝒫ℱ𝔑𝐶𝑡𝑠), if the inverse image of every 𝒫ℱ𝔑𝑜𝑠  in (𝑈2, 𝜏𝒫(𝐴2)) is a 
𝒫ℱ𝔑𝑜𝑠 in (𝑈1, 𝜏𝒫(𝐴1)). 
 
    2.  𝛿-continuous (briefly, 𝒫ℱ𝔑𝛿𝐶𝑡𝑠), if the inverse image of every 𝒫ℱ𝔑𝑜𝑠 in (𝑈2, 𝜏𝒫(𝐴2)) is a 
𝒫ℱ𝔑𝛿𝑜𝑠 in (𝑈1, 𝜏𝒫(𝐴1)). 
 
    3.  𝛿𝑃-continuous (briefly, 𝒫ℱ𝔑𝛿𝑃𝐶𝑡𝑠), if the inverse image of every 𝒫ℱ𝔑𝑜𝑠 in (𝑈2, 𝜏𝒫(𝐴2)) is a 
𝒫ℱ𝔑𝛿𝑃𝑜𝑠 in (𝑈1, 𝜏𝒫(𝐴1)). 
 
    4.  𝛿𝑆-continuous (briefly, 𝒫ℱ𝔑𝛿𝑆𝐶𝑡𝑠), if the inverse image of every 𝒫ℱ𝔑𝑜𝑠 in (𝑈2, 𝜏𝒫(𝐴2)) is a 
𝒫ℱ𝔑𝛿𝑆𝑜𝑠 in (𝑈1, 𝜏𝒫(𝐴1)). 
 
    5.  𝛿𝛼-continuous (briefly, 𝒫ℱ𝔑𝛿𝛼𝐶𝑡𝑠), if the inverse image of every 𝒫ℱ𝔑𝑜𝑠 in (𝑈2, 𝜏𝒫(𝐴2)) is a 
𝒫ℱ𝔑𝛿𝛼𝑜𝑠 in (𝑈1, 𝜏𝒫(𝐴1)). 
 
    6.  𝛿𝛽-continuous (briefly, 𝒫ℱ𝔑𝛿𝛽𝐶𝑡𝑠), if the inverse image of every 𝒫ℱ𝔑𝑜𝑠 in (𝑈2, 𝜏𝒫(𝐴2)) is a 
𝒫ℱ𝔑𝛿𝛽𝑜𝑠 in (𝑈1, 𝜏𝒫(𝐴1)). 
 
 Definition 2.13  [17] Let (𝑈1, 𝜏𝒫(𝐴1)) & (𝑈2, 𝜏𝒫(𝐴2)) be a 𝒫ℱ𝔑𝑡𝑠’s. A mapping ℎ𝑃: (𝑈1, 𝜏𝒫(𝐴1)) →
(𝑈2, 𝜏𝒫(𝐴2)) is said to be a Pythagorean fuzzy nano (resp. 𝛿, 𝛿𝒮 and 𝛿𝒫 )-open map (briefly, 𝒫ℱ𝔑𝑂 (resp. 
𝒫ℱ𝔑𝛿𝑂, 𝒫ℱ𝔑𝛿𝒮𝑂 and 𝒫ℱ𝔑𝛿𝒫𝑂 )) if the image of every 𝒫ℱ𝔑𝑜𝑠 in (𝑈1, 𝜏𝒫(𝐴1)) is a 𝒫ℱ𝔑𝑜𝑠 (resp. 
𝒫ℱ𝔑𝛿𝑜𝑠, 𝒫ℱ𝔑𝛿𝒮𝑜𝑠 and 𝒫ℱ𝔑𝛿𝒫𝑜𝑠 ) in (𝑈2, 𝜏𝒫(𝐴2)).  
 
Definition 2.14  [17] Let (𝑈1, 𝜏𝒫(𝐴1))  &  (𝑈2, 𝜏𝒫(𝐴2))  be any two 𝒫ℱ𝔑𝑡𝑠 ’s. A mapping 
ℎ𝑃: (𝑈1, 𝜏𝒫(𝐴1)) → (𝑈2, 𝜏𝒫(𝐴2)) is said to be Pythagorean fuzzy nano (resp. 𝛿 , 𝛿𝒮  and 𝛿𝒫  ) closed map 
(briefly, 𝒫ℱ𝔑𝐶 (resp. 𝒫ℱ𝔑𝛿𝐶, 𝒫ℱ𝔑𝛿𝒮𝐶 and 𝒫ℱ𝔑𝛿𝒫𝐶 )) if the image of every 𝒫ℱ𝔑𝑐𝑠 in (𝑈1, 𝜏𝒫(𝐴1)) 
is a 𝒫ℱ𝔑𝑐𝑠 (resp. 𝒫ℱ𝔑𝛿𝑐𝑠, 𝒫ℱ𝔑𝛿𝒮𝑐𝑠 and 𝒫ℱ𝔑𝛿𝒫𝑐𝑠 ) in (𝑈2, 𝜏𝒫(𝐴2)).  
 
Pythagorean fuzzy nano (resp. 𝜹, 𝜹 pre, 𝜹 semi, 𝜹𝜶 and 𝜹𝜷) normal spaces 
 
In this section, we introduce Pythagorean fuzzy nano normal spaces and their variants - 𝛿, 𝛿𝒫, 𝛿𝒮, 𝛿𝛼 
and 𝛿𝛽 - and examine their properties. 
 
Definition 3.1  Let (𝑈, 𝜏𝒫(𝐴)) be a 𝒫ℱ𝔑𝑡𝑠 is said to be Pythagorean fuzzy (resp. 𝛿, 𝛿𝒫, 𝛿𝒮, 𝛿𝛼 and 𝛿𝛽) 
normal (briefly, 𝒫ℱ𝔑𝑁𝑜𝑟  (resp. 𝒫ℱ𝔑𝛿𝑁𝑜𝑟 , 𝒫ℱ𝔑𝛿𝒫𝑁𝑜𝑟 , 𝒫ℱ𝔑𝛿𝒮𝑁𝑜𝑟 , 𝒫ℱ𝔑𝛿𝛼𝑁𝑜𝑟  and 
𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟 )) if for any two disjoint 𝒫ℱ𝔑𝑐  (resp. 𝒫ℱ𝔑𝛿𝑐 , 𝒫ℱ𝔑𝛿𝒫𝑐 , 𝒫ℱ𝔑𝛿𝒮𝑐 , 𝒫ℱ𝔑𝛿𝛼𝑐  and 
𝒫ℱ𝔑𝛿𝛽𝑐) sets 𝐴 and 𝐵, there exist disjoint 𝒫ℱ𝔑𝑜 (resp. 𝒫ℱ𝔑𝛿𝑜, 𝒫ℱ𝔑𝛿𝒫𝑜, 𝒫ℱ𝔑𝛿𝒮𝑜, 𝒫ℱ𝔑𝛿𝛼𝑜 and 
𝒫ℱ𝔑𝛿𝛽𝑜) sets 𝐿 and 𝑀 such that 𝐴 ⊆ 𝐿 and 𝐵 ⊆ 𝑀.  
 
Theorem 3.1   In a 𝒫ℱ𝔑𝑡𝑠 (𝑈, 𝜏𝒫(𝐴)), the following are equivalent: [(i)]  
    1.  𝑈 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.  
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    2.  For every 𝒫ℱ𝔑𝛿𝛽𝑐  set 𝐴  in 𝑈  and every 𝒫ℱ𝔑𝛿𝛽𝑜  set 𝐿  containing 𝐴 , there exists a 
𝒫ℱ𝔑𝛿𝛽𝑜 set 𝑀 containing 𝐴 such that 𝒫ℱ𝔑𝑐𝑙(𝑀) ⊆ 𝐿.  
    3.  For each pair of disjoint 𝒫ℱ𝔑𝛿𝛽𝑐  sets 𝐴  and 𝐵  in 𝑋 , there exists a 𝒫ℱ𝔑𝛿𝛽𝑜  set 𝐿 
containing 𝐴 such that 𝒫ℱ𝔑𝑐𝑙(𝐿) ∩ 𝐵 = 0𝑃.  
    4.  For each pair of disjoint 𝒫ℱ𝔑𝛿𝛽𝑐 sets 𝐴 and 𝐵 in 𝑋, there exist 𝒫ℱ𝔑𝛿𝛽𝑜 sets 𝐿 and 𝑀 
containing 𝐴 and 𝐵 respectively such that 𝒫ℱ𝔑𝑐𝑙(𝐿) ∩ 𝒫ℱ𝔑𝑐𝑙(𝑀) = 0𝑃.  
  
 Proof. (i) ⇒  (ii): Let 𝐿  be a 𝒫ℱ𝔑𝛿𝛽𝑜  set containing the 𝒫ℱ𝔑𝛿𝛽𝑐  set 𝐴 . Then 𝐵 = 𝐿𝑐  is a 
𝒫ℱ𝔑𝛿𝛽𝑐 set disjoint from 𝐴. Since 𝑈 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟, there exist disjoint 𝒫ℱ𝔑𝛿𝛽𝑜 sets 𝑀 and 𝑊 
containing 𝐴 and 𝐵 respectively. Then 𝒫ℱ𝔑𝑐𝑙(𝑀) is disjoint from 𝐵. Since if 𝑦𝛽 ∈ 𝐵, the set 𝑊 is a 
𝒫ℱ𝔑𝛿𝛽𝑜 set containing 𝑦𝛽  disjoint from 𝑀. Hence 𝒫ℱ𝔑𝑐𝑙(𝑀) ⊆ 𝐿. 
(ii) ⇒ (iii): Let 𝐴 and 𝐵 be disjoint 𝒫ℱ𝔑𝛿𝛽𝑐 sets in 𝑋. Then 𝐵𝑐 is a 𝒫ℱ𝔑𝛿𝛽𝑜 set containing 𝐴. By 
(ii), there exists a 𝒫ℱ𝔑𝛿𝛽𝑜 set 𝐿 containing 𝐴 such that 𝒫ℱ𝔑𝑐𝑙(𝐿) ⊆ 𝐵𝑐 . Hence 𝒫ℱ𝔑𝑐𝑙(𝐿) ∩ 𝐵 =
0𝑃. This proves (iii). 
(iii) ⇒ (iv): Let 𝐴 and 𝐵 be disjoint 𝒫ℱ𝔑𝛿𝛽𝑐 sets in 𝑋. Then, by (iii), there exists a 𝒫ℱ𝔑𝛿𝛽𝑜 set 𝐿 
containing 𝐴 such that 𝒫ℱ𝔑𝑐𝑙(𝐿) ∩ 𝐵 = 0𝑃 . Since 𝒫ℱ𝔑𝑐𝑙(𝐿) is 𝒫ℱ𝔑𝛿𝛽𝑐 set, 𝐵 and 𝒫ℱ𝔑𝑐𝑙(𝐿) 
are disjoint 𝒫ℱ𝔑𝛿𝛽𝑐 sets in 𝑋. Again by (iii), there exists a 𝒫ℱ𝔑𝛿𝛽𝑜 set 𝑀 containing 𝐵 such that 
𝒫ℱ𝔑𝑐𝑙(𝐿) ∩ 𝒫ℱ𝔑𝑐𝑙(𝑀) = 0𝑃. This proves (iv). 
(iv) ⇒ (i): Let 𝐴 and 𝐵 be the disjoint 𝒫ℱ𝔑𝛿𝛽𝑐 sets in 𝑋. By (iv), there exist 𝒫ℱ𝔑𝛿𝛽𝑜 sets 𝐿 and 𝑀 
containing 𝐴  and 𝐵  respectively such that 𝒫ℱ𝔑𝑐𝑙(𝐿) ∩ 𝒫ℱ𝔑𝑐𝑙(𝑀) = 0𝑃 . Since 𝐿 ∩ 𝑀 ⊆
𝒫ℱ𝔑𝑐𝑙(𝐿) ∩ 𝒫ℱ𝔑𝑐𝑙(𝑀), 𝐿 and 𝑀 are disjoint 𝒫ℱ𝔑𝛿𝛽𝑜 sets containing 𝐴 and 𝐵 respectively. Thus 
𝑋 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.             width 0.22 true cm height 0.22 true cm depth 0pt 
 
Theorem 3.2   Let (𝑈, 𝜏𝒫(𝐴)) be a 𝒫ℱ𝔑𝑡𝑠 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟 if and only if for every 𝒫ℱ𝔑𝛿𝛽𝑐 set 𝐹 and 
𝒫ℱ𝔑𝛿𝛽𝑜 set 𝐺 containing 𝐹, there exists a 𝒫ℱ𝔑𝛿𝛽𝑜 set 𝑀 such that 𝐹 ⊆ 𝑀 ⊆ 𝒫ℱ𝔑𝑐𝑙(𝑀) ⊆ 𝐺.  
 Proof. Let (𝑈, 𝜏𝒫(𝐴))  be 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟 . Let 𝐹  be a 𝒫ℱ𝔑𝛿𝛽𝑐  set and let 𝐺  be a 𝒫ℱ𝔑𝛿𝛽𝑜  set 
containing 𝐹. Then 𝐹 and 𝐺𝑐 are disjoint 𝒫ℱ𝔑𝛿𝛽𝑐 sets. Since 𝑋 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟, there exist disjoint 
𝒫ℱ𝔑𝛿𝛽𝑜 sets 𝑀1 and 𝑀2 such that 𝐹 ⊆ 𝑀1 and 𝐺𝑐 ⊆ 𝑀2. Thus 𝐹 ⊆ 𝑀1 ⊆ 𝑀2

𝑐 ⊆ 𝐺. Since 𝑀2
𝑐  is 

𝒫ℱ𝔑𝛿𝛽𝑐 set, so 𝒫ℱ𝔑𝑐𝑙(𝑀) ⊆ 𝒫ℱ𝔑𝑐𝑙(𝑀2
𝑐) = 𝑀2

𝑐 ⊆ 𝐺. Take 𝑀 = 𝑀1.This implies that 𝐹 ⊆ 𝑀 ⊆
𝒫ℱ𝔑𝑐𝑙(𝑀) ⊆ 𝐺. 
Conversely, suppose the condition holds. Let 𝐻1 and 𝐻2 be two disjoint 𝒫ℱ𝔑𝛿𝛽𝑐 sets in 𝑈. Then 𝐻2

𝑐 
is a 𝒫ℱ𝔑𝛿𝛽𝑜 set containing 𝐻1. By assumption, there exists a 𝒫ℱ𝔑𝛿𝛽𝑜 set 𝑀 such that 𝐻1 ⊆ 𝑀 ⊆
𝒫ℱ𝔑𝑐𝑙(𝑀) ⊆ 𝐻2

𝑐  Since 𝑀  is 𝒫ℱ𝔑𝛿𝛽𝑜  and 𝒫ℱ𝔑𝑐𝑙(𝑀)  is 𝒫ℱ𝔑𝛿𝛽𝑐 . Then (𝒫ℱ𝔑𝑐𝑙(𝑀))𝑐  is 
𝒫ℱ𝔑𝛿𝛽𝑜 . Now 𝒫ℱ𝔑𝑐𝑙(𝑀) ⊆ 𝐻2

𝑐  implies that 𝐻2 ⊆ (𝒫ℱ𝔑𝑐𝑙(𝑀))𝑐  Also 𝑀 ∩ (𝒫ℱ𝔑𝑐𝑙(𝑀))𝑐 ⊆
𝒫ℱ𝔑𝑐𝑙(𝑀) ∩ (𝒫ℱ𝔑𝑐𝑙(𝑀))𝑐 = 0𝑃 . That is 𝑀  and (𝒫ℱ𝔑𝑐𝑙(𝑀))𝑐  are disjoint 𝒫ℱ𝔑𝛿𝛽𝑜  sets 
containing 𝐻1 and 𝐻2  respectively. This shows that (𝑈, 𝜏𝒫(𝐴)) is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.             width 
0.22 true cm height 0.22 true cm depth 0pt 
 
Theorem 3.3   For a 𝒫ℱ𝔑𝑡𝑠 (𝑈, 𝜏𝒫(𝐴)), then the following are equivalent: [(i)]  
    1.  𝑈 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.  
    2.  For any two 𝒫ℱ𝔑𝛿𝛽𝑜 sets 𝐿 and 𝑀 whose union is 1𝑃, there exist 𝒫ℱ𝔑𝛿𝛽𝑐 subsets 𝐴0 of 𝐿 
and 𝐵0 of 𝑀 whose union is also 1𝑃.  
  
 Proof. (i) ⇒ (ii): Let 𝐿 and 𝑀 be two 𝒫ℱ𝔑𝛿𝛽𝑜 sets in a 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟 space 𝑈 such that 1𝑃 = 𝐿 ∪
𝑀 . Then 𝐿𝑐 , 𝑀𝑐  are disjoint 𝒫ℱ𝔑𝛿𝛽𝑐  sets. Since 𝑋  is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟 , then there exist disjoint 
𝒫ℱ𝔑𝛿𝛽𝑜 sets 𝐺1  and 𝐺2  such that 𝐿𝑐 ⊆ 𝐺1  and 𝑀𝑐 ⊆ 𝐺2 . Let 𝐴0 = 𝐺1

𝑐  and 𝐵0 = 𝐺2
𝑐 . Then 𝐴0 

and 𝐵0 are 𝒫ℱ𝔑𝛿𝛽𝑐 subsets of 𝐿 and 𝑀 respectively such that 𝐴0 ∪ 𝐵0 = 1𝑃. This proves (ii). 
(ii) ⇒ (i): Let 𝐴0 and 𝐵0 be disjoint 𝒫ℱ𝔑𝛿𝛽𝑐 sets in 𝑈. Then 𝐴0

𝑐  and 𝐵0
𝑐 are 𝒫ℱ𝔑𝛿𝛽𝑜 sets whose 

union is 1𝑃. By (ii), there exists 𝒫ℱ𝔑𝛿𝛽𝑐 sets 𝐹1 and 𝐹2 such that 𝐹1 ⊆ 𝐴0
𝑐 , 𝐹2 ⊆ 𝐵0

𝑐 and 𝐹1 ∪ 𝐹2 =
1𝑃. Then 𝐹1

𝑐  and 𝐹2
𝑐  are disjoint 𝒫ℱ𝔑𝛿𝛽𝑜 sets containing 𝐴0 and 𝐵0 respectively. Therefore 𝑈 is 



International Journal of Environmental Sciences 
ISSN: 2229-7359 
Vol. 11 No. 10s, 2025 
https://theaspd.com/index.php 

 

360 
 

𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.             width 0.22 true cm height 0.22 true cm depth 0pt 
 
Theorem 3.4   Let ℎ𝑃: (𝑈1, 𝜏𝒫(𝐴1)) → (𝑈2, 𝜏𝒫(𝐴2)) be a function. [(i)]  
    1.  If ℎ𝑃 is injective, 𝒫ℱ𝔑𝛿𝛽𝐼𝑟𝑟, 𝒫ℱ𝔑𝛿𝛽𝑂 and 𝑈1 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟 then 𝑈2 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.  
    2.  If ℎ𝑃 is 𝒫ℱ𝔑𝛿𝛽𝐼𝑟𝑟, 𝒫ℱ𝔑𝛿𝛽𝐶 and 𝑈2 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟 then 𝑈1 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.  
  
 Proof. (i) Suppose 𝑈1 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟. Let 𝐴 and 𝐵 be disjoint 𝒫ℱ𝔑𝛿𝛽𝑐 sets in 𝑈2 . Since ℎ𝑃  is 
𝒫ℱ𝔑𝛿𝛽𝐼𝑟𝑟, ℎ𝑃

−1(𝐴) and ℎ𝑃
−1(𝐵) are 𝒫ℱ𝔑𝛿𝛽𝑐 in 𝑈1. Since 𝑈1 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟, there exist disjoint 

𝒫ℱ𝔑𝛿𝛽𝑜  sets 𝐿  and 𝑀  in X such that ℎ𝑃
−1(𝐴) ⊆ 𝐿  and ℎ𝑃

−1(𝐵) ⊆ 𝑀 . Now ℎ𝑃
−1(𝐴) ⊆ 𝐿 ⇒ 𝐴 ⊆

ℎ𝑃(𝐿)  and ℎ𝑃
−1(𝐵) ⊆ 𝑀 ⇒ 𝐵 ⊆ ℎ𝑃(𝑀) . Since ℎ𝑃  is a 𝒫ℱ𝔑𝛿𝛽𝑂  map, ℎ𝑃(𝐿)  and ℎ𝑃(𝑀)  are 

𝒫ℱ𝔑𝛿𝛽𝑜  sets in 𝑈2 . Also 𝐿 ∩ 𝑀 = 0𝑃 ⇒ ℎ𝑃(𝐿 ∩ 𝑀) = 0𝑃  and ℎ𝑃  is injective, then ℎ𝑃(𝐿) ∩
ℎ𝑃(𝑀) = 0𝑃 . Thus ℎ𝑃(𝐿)  and ℎ𝑃(𝑀)  are disjoint 𝒫ℱ𝔑𝛿𝛽𝑜  sets in 𝑈2  containing 𝐴  and 𝐵 
respectively. Thus, 𝑈2 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟. 
(ii) Suppose 𝑈2  is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟 . Let 𝐴  and 𝐵  be disjoint 𝒫ℱ𝔑𝛿𝛽𝑐  sets in 𝑈1 . Since ℎ𝑃  is 
𝒫ℱ𝔑𝛿𝛽𝐼𝑟𝑟 and 𝒫ℱ𝔑𝛿𝛽𝐶 , ℎ𝑃(𝐴) and ℎ𝑃(𝐵) are 𝒫ℱ𝔑𝛿𝛽𝑐 sets in 𝑈2 . Since 𝑈2  is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟, 
there exist disjoint 𝒫ℱ𝔑𝛿𝛽𝑜 sets 𝐿  and 𝑀  in 𝑈2  such that ℎ𝑃(𝐴) ⊆ 𝐿  and ℎ𝑃(𝐵) ⊆ 𝑀 . That is 
𝐴 ⊆ ℎ𝑃

−1(𝐿) and 𝐵 ⊆ ℎ𝑃
−1(𝑀). Since ℎ𝑃 is 𝒫ℱ𝔑𝛿𝛽𝐼𝑟𝑟, ℎ𝑃

−1(𝐿) and ℎ𝑃
−1(𝑀) are disjoint 𝒫ℱ𝔑𝛿𝛽𝑜 

sets such that 𝐴 ⊆ ℎ𝑃
−1(𝐿) and 𝐵 ⊆ ℎ𝑃

−1(𝑀). Thus 𝑈1 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.             width 0.22 true 
cm height 0.22 true cm depth 0pt 
 
Theorem 3.5   If given a pair of disjoint 𝒫ℱ𝔑𝛿𝛽𝑐 sets 𝐴0, 𝐵0 of (𝑈, 𝜏𝒫(𝐴)), there is 𝒫ℱ𝔑𝛿𝛽𝐶𝑡𝑠 function 
ℎ𝑃 such that ℎ𝑃(𝐴0) = 0𝑃 and ℎ𝑃(𝐵0) = 1𝑃, then (𝑈, 𝜏𝒫(𝐴)) is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.  
 Proof. Let (𝑈, 𝜏𝒫(𝐴)) be a 𝒫ℱ𝔑𝑡𝑠. Suppose for any pair of disjoint 𝒫ℱ𝔑𝛿𝛽𝑐 sets 𝐴0, 𝐵0 in 𝑈, there 
exists a 𝒫ℱ𝔑𝛿𝛽𝐶𝑡𝑠 map ℎ𝑃  such that ℎ𝑃(𝐴0) = 0𝑃  and ℎ𝑃(𝐵0) = 1𝑃 . Let 𝐸  and 𝐹  be disjoint 
𝒫ℱ𝔑𝛿𝛽𝑐 sets in 𝑈. Let 𝐺 and 𝐻 be disjoint 𝒫ℱ𝔑𝛿𝛽𝑜 sets. Since ℎ𝑃 is 𝒫ℱ𝔑𝛿𝛽𝐶𝑡𝑠, ℎ𝑃

−1(𝐺) and 
ℎ𝑃

−1(𝐻) are 𝒫ℱ𝔑𝛿𝛽𝑜 in 𝑋. By our assumption, ℎ𝑃(𝐸) = 0𝑃  and ℎ𝑃(𝐹) = 1𝑃 . Now ℎ𝑃(𝐸) = 0𝑃 
implies ℎ𝑃

−1(ℎ𝑃(𝐸)) ⊆ ℎ𝑃
−1(0𝑃) ⇒ 𝐸 ⊆ ℎ𝑃

−1(ℎ𝑃(𝐸)) ⊆ ℎ𝑃
−1(0𝑃) ⇒ 𝐸 ⊆ ℎ𝑃

−1(0𝑃) . Similarly 𝐹 ⊆
ℎ𝑃

−1(1𝑃) . This implies that 𝐸 ⊆ ℎ𝑃
−1(0𝑃) ⊆ ℎ𝑃

−1(𝐺) . Then 𝐹 ⊆ ℎ𝑃
−1(1𝑃) ⊆ ℎ𝑃

−1(𝐻) . Further, 
ℎ𝑃

−1(𝐺) ∩ ℎ𝑃
−1(𝐻) = ℎ𝑃

−1(𝐺 ∩ 𝐻) = ℎ𝑃
−1(0𝑃) = 0𝑃 . So, we have a pair of disjoint 𝒫ℱ𝔑𝛿𝛽𝑜  sets, 

ℎ𝑃
−1(𝐺), ℎ𝑃

−1(𝐻) ⊆ 1𝑃  such that 𝐸 ⊆ ℎ𝑃
−1(𝐺)  and 𝐹 ⊆ ℎ𝑃

−1(𝐻) . This proves that (𝑋, Γ𝑃)  is 
𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.             width 0.22 true cm height 0.22 true cm depth 0pt 
 
Theorem 3.6   Let ℎ𝑃: (𝑈1, 𝜏𝒫(𝐴1)) → (𝑈2, 𝜏𝒫(𝐴2)) be a function. If ℎ𝑃  is a 𝒫ℱ𝔑𝐶𝑡𝑠 , 𝒫ℱ𝔑𝛿𝛽𝑂 
bijection of a 𝒫ℱ𝔑𝑁𝑜𝑟 space 𝑈1 into a space 𝑈2 and if every 𝒫ℱ𝔑𝛿𝛽𝑐 set in 𝑈2 is 𝒫ℱ𝔑𝑐 set, then 𝑈2 is 
𝒫ℱ𝔑𝛿𝛽𝑅𝑒𝑔.  
 Proof. Let 𝐴 and 𝐵 be 𝒫ℱ𝔑𝛿𝛽𝑐 sets in 𝑈2. Then by assumption, 𝐵 is 𝒫ℱ𝔑𝑐 set in 𝑈2. Since ℎ𝑃 
is a 𝒫ℱ𝔑𝐶𝑡𝑠 bijection, ℎ𝑃

−1(𝐴) and ℎ𝑃
−1(𝐵) is a 𝒫ℱ𝔑𝑐 set in 𝑈1. Since 𝑈1 is 𝒫ℱ𝔑𝑁𝑜𝑟, there exist 

disjoint 𝒫ℱ𝔑𝑜  sets 𝐿1  and 𝐿2  in 𝑈  such that ℎ𝑃
−1(𝐴) ⊆ 𝐿1  and ℎ𝑃

−1(𝐵) ⊆ 𝐿2 . Since ℎ𝑃  is 
𝒫ℱ𝔑𝛿𝛽𝑂, ℎ𝑃(𝐿1) and ℎ𝑃(𝐿2) are disjoint 𝒫ℱ𝔑𝛿𝛽𝑜 sets in 𝑈2  containing 𝐴 and 𝐵  respectively. 
Hence 𝑈2 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.             width 0.22 true cm height 0.22 true cm depth 0pt 
 
Remark 3.1  Theorems 3.1, 3.2, 3.3, 3.4, 3.5 &  3.6 are also holds for 𝒫ℱ𝔑𝑜 , 𝒫ℱ𝔑𝛿𝑜 , 𝒫ℱ𝔑𝛿𝒫𝑜 , 
𝒫ℱ𝔑𝛿𝒮𝑜, 𝒫ℱ𝔑𝛿𝛼𝑜 and 𝒫ℱ𝔑𝛿𝛽𝑜 sets.  
 
Strongly Pythagorean fuzzy nano (resp. 𝜹, 𝜹 pre, 𝜹 semi, 𝜹𝜶 and 𝜹𝜷) normal spaces 
In this section, we introduce strongly Pythagorean fuzzy nano 𝛿 normal spaces and their variants 𝛿, 𝛿𝒫, 
𝛿𝒮, 𝛿𝛼 and 𝛿𝛽-and explore their properties. 
 
Definition 4.1  A 𝒫ℱ𝔑𝑡𝑠 (𝑈, 𝜏𝒫(𝐴)) is said to be strongly Pythagorean fuzzy 𝛿 (resp. 𝛿𝒫, 𝛿𝒮, 𝛿𝛼 and 𝛿𝛽) 
normal (briefly, 𝑆𝑡𝒫ℱ𝔑𝛿𝑁𝑜𝑟  (resp. 𝑆𝑡𝒫ℱ𝔑𝛿𝒫𝑁𝑜𝑟,  𝑆𝑡𝒫ℱ𝔑𝛿𝒮𝑁𝑜𝑟,  𝑆𝑡𝒫ℱ𝔑𝛿𝛼𝑁𝑜𝑟  and 
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𝑆𝑡𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟 )) if for every pair of disjoint 𝒫ℱ𝔑𝑐  sets 𝐴  and 𝐵  in 𝑈 , there are disjoint 𝒫ℱ𝔑𝑜  (resp. 
𝒫ℱ𝔑𝛿𝑜,  𝒫ℱ𝔑𝛿𝒫𝑜,  𝒫ℱ𝔑𝛿𝒮𝑜,  𝒫ℱ𝔑𝛿𝛼𝑜  and 𝒫ℱ𝔑𝛿𝛽𝑜 ) sets 𝐿  and 𝑀  in 𝑈  containing 𝐴  and 𝐵 
respectively.  
 
Theorem 4.1   Let (𝑈, 𝜏𝒫(𝐴)) be a 𝒫ℱ𝔑𝑡𝑠. Every 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟 space is 𝑆𝑡𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.  
 Proof. Suppose 𝑈 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟. Let 𝐴0 and 𝐵0 be disjoint 𝒫ℱ𝔑𝑐 sets in 𝑈. Then 𝐴0 and 𝐵0 
are 𝒫ℱ𝔑𝛿𝛽𝑐𝑠’s in 𝑈. Since 𝑈 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟, there exist disjoint 𝒫ℱ𝔑𝑜 sets 𝐿 and 𝑀 containing 
𝐴0 and 𝐵0 respectively. Since, every 𝒫ℱ𝔑𝑜 is 𝒫ℱ𝔑𝛿𝛽𝑜, 𝐿 and 𝑀 are 𝒫ℱ𝔑𝛿𝛽𝑜 in 𝑈. This implies 
that 𝑈 is 𝑆𝑡𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.             width 0.22 true cm height 0.22 true cm depth 0pt 
 
Theorem 4.2   In a 𝒫ℱ𝔑𝑡𝑠 (𝑈, 𝜏𝒫(𝐴)), the following are equivalent: [(i)]  
    1.  𝑈 is 𝑆𝑡𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.  
    2.  For every 𝒫ℱ𝔑𝑐 set ℎ𝑃 in 𝑈 and every 𝒫ℱ𝔑𝑜 set 𝐿 containing ℎ𝑃, there exists a 𝒫ℱ𝔑𝛿𝛽𝑜 
set 𝑀 containing ℎ𝑃 such that 𝒫ℱ𝔑𝛿𝛽𝑐𝑙(𝑀) ⊆ 𝐿.  
    3.  For each pair of disjoint 𝒫ℱ𝔑𝑐 sets 𝐴 and 𝐵 in 𝑈, there exists a 𝒫ℱ𝔑𝛿𝛽𝑜 set 𝐿 containing 
𝐴 such that 𝒫ℱ𝔑𝛿𝛽𝑐𝑙(𝐿) ∩ 𝐵 = 0𝑃.  
  
 Proof. (i) ⇒ (ii): Let 𝐿 be a 𝒫ℱ𝔑𝑜 set containing the 𝒫ℱ𝔑𝑐 set ℎ𝑃. Then 𝐻 = 𝐿𝑐 is a 𝒫ℱ𝔑𝑐 set 
disjoint from ℎ𝑃. Since 𝑈 is 𝑆𝑡𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟, there exist disjoint 𝒫ℱ𝔑𝛿𝛽𝑜 sets 𝑀 and 𝑊 containing 
ℎ𝑃  and 𝐻  respectively. Then 𝒫ℱ𝔑𝛿𝛽𝑐𝑙(𝑀) is disjoint from 𝐻 , since if 𝑦𝛽 ∈ 𝐻 , the set 𝑊  is a 
𝒫ℱ𝔑𝛿𝛽𝑜 set containing 𝑦𝛽  disjoint from 𝑀. Hence 𝒫ℱ𝔑𝛿𝛽𝑐𝑙(𝑀) ⊆ 𝐿. 
(ii) ⇒ (iii): Let 𝐴 and 𝐵 be disjoint 𝒫ℱ𝔑𝑐 sets in 𝑈. Then 𝐵𝑐 is a 𝒫ℱ𝔑𝑜 set containing 𝐴. By (ii), 
there exists a 𝒫ℱ𝔑𝛿𝛽𝑜  set 𝐿  containing 𝐴 such that 𝒫ℱ𝔑𝛿𝛽𝑐𝑙(𝐿) ⊆ 𝐵𝑐 . Hence 𝒫ℱ𝔑𝛿𝛽𝑐𝑙(𝐿) ∩
𝐵 = 0𝑃. This proves (iii). 
(iii) ⇒ (i): Let 𝐴 and 𝐵 be the disjoint 𝒫ℱ𝔑𝛿𝛽𝑐 sets in 𝑈. By (iii), there exists a 𝒫ℱ𝔑𝛿𝛽𝑜 set 𝐿 
containing 𝐴  such that 𝒫ℱ𝔑𝛿𝛽𝑐𝑙(𝐿) ∩ 𝐵 = 0𝑃 . Take 𝑀 = 𝒫ℱ𝔑𝛿𝛽𝑐𝑙(𝐿)𝑐 . Then 𝐿  and 𝑀  are 
disjoint 𝒫ℱ𝔑𝛿𝛽𝑜 sets containing 𝐴 and 𝐵 respectively. Thus 𝑈 is 𝑆𝑡𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.             width 
0.22 true cm height 0.22 true cm depth 0pt 
 
Theorem 4.3   For a 𝒫ℱ𝔑𝑡𝑠 (𝑈, 𝜏𝒫(𝐴)), then the following are equivalent: [(i)]  
    1.  𝑈 is 𝑆𝑡𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.  
    2.  For any two 𝒫ℱ𝔑𝑜 sets 𝐿 and 𝑀 whose union is 1𝑃 , there exist 𝒫ℱ𝔑𝛿𝛽𝑐 subsets 𝐴 of 𝐿 
and 𝐵 of 𝑀 whose union is also 1𝑃.  
  
 Proof. (i) ⇒ (ii): Let 𝐿 and 𝑀 be two 𝒫ℱ𝔑𝑜 sets in a 𝑆𝑡𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟 space 𝑈 such that 1𝑃 = 𝐿 ∪
𝑀 . Then 𝐿𝑐 , 𝑀𝑐  are disjoint 𝒫ℱ𝔑𝑐  sets. Since 𝑈  is 𝑆𝑡𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟 , then there exist disjoint 
𝒫ℱ𝔑𝛿𝛽𝑜 sets 𝐺1 and 𝐺2 such that 𝐿𝑐 ⊆ 𝐺1 and 𝑀𝑐 ⊆ 𝐺2. Let 𝐴 = 𝐺1

𝑐 and 𝐵 = 𝐺2
𝑐 . Then 𝐴 and 

𝐵 are 𝒫ℱ𝔑𝛿𝛽𝑐 subsets of 𝐿 and 𝑀 respectively such that 𝐴 ∪ 𝐵 = 1𝑃. This proves (ii). 
(ii) ⇒ (i): Let 𝐴 and 𝐵 be disjoint 𝒫ℱ𝔑𝑐 sets in 𝑈. Then 𝐴𝑐 and 𝐵𝑐 are 𝒫ℱ𝔑𝑜 sets whose union is 
1𝑃. By (ii), there exists 𝒫ℱ𝔑𝛿𝛽𝑐 sets 𝐹1 and 𝐹2 such that 𝐹1 ⊆ 𝐴𝑐 , 𝐹2 ⊆ 𝐵𝑐 and 𝐹1 ∪ 𝐹2 = 1𝑃. Then 
𝐹1

𝑐  and 𝐹2
𝑐  are disjoint 𝒫ℱ𝔑𝛿𝛽𝑜  sets containing 𝐴  and 𝐵  respectively. Therefore 𝑈  is 

𝑆𝑡𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.             width 0.22 true cm height 0.22 true cm depth 0pt 
 
Theorem 4.4   Let ℎ𝑃: (𝑈1, 𝜏𝒫(𝐴1)) → (𝑈2, 𝜏𝒫(𝐴2)) be a function. [(i)]  
    1.  If ℎ𝑃 is injective, 𝒫ℱ𝔑𝐶𝑡𝑠, 𝒫ℱ𝔑𝛿𝛽𝑂 and 𝑈1 is 𝑆𝑡𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟 then 𝑈2 is 𝑆𝑡𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.  
    2.  If ℎ𝑃 is 𝒫ℱ𝔑𝛿𝛽𝐼𝑟𝑟, 𝒫ℱ𝔑𝛿𝛽𝑂 and 𝑈2 is 𝑆𝑡𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟 then 𝑈1 is 𝑆𝑡𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.  
  
 Proof. (i) Suppose 𝑈1  is 𝑆𝑡𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟. Let 𝐴 and 𝐵 be disjoint 𝒫ℱ𝔑𝑐 sets in 𝑈2 . Since ℎ𝑃  is 
𝒫ℱ𝔑𝐶𝑡𝑠, ℎ𝑃

−1(𝐴) and ℎ𝑃
−1(𝐵) are 𝒫ℱ𝔑𝑐  in 𝑈1 . Since 𝑈1  is 𝑆𝑡𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟 , there exist disjoint 

𝒫ℱ𝔑𝛿𝛽𝑜 sets 𝐿  and 𝑀 in 𝑈1  such that ℎ𝑃
−1(𝐴) ⊆ 𝐿 and ℎ𝑃

−1(𝐵) ⊆ 𝑀 . Now ℎ𝑃
−1(𝐴) ⊆ 𝐿 ⇒ 𝐴 ⊆
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ℎ𝑃(𝐿)  and ℎ𝑃
−1(𝐵) ⊆ 𝑀 ⇒ 𝐵 ⊆ ℎ𝑃(𝑀) . Since ℎ𝑃  is a 𝒫ℱ𝔑𝛿𝛽𝑂  map, ℎ𝑃(𝐿)  and ℎ𝑃(𝑀)  are 

𝒫ℱ𝔑𝛿𝛽𝑜  set in 𝑈2 . Also 𝐿 ∩ 𝑀 = 0𝑃 ⇒ ℎ𝑃(𝐿 ∩ 𝑀) = 0𝑃  and ℎ𝑃  is injective, then ℎ𝑃(𝐿) ∩
ℎ𝑃(𝑀) = 0𝑃 . Thus ℎ𝑃(𝐿)  and ℎ𝑃(𝑀)  are disjoint 𝒫ℱ𝔑𝛿𝛽𝑜  sets in 𝑈2  containing 𝐴  and 𝐵 
respectively. Thus, 𝑈2 is 𝑆𝑡𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟. 
(ii) Suppose 𝑈2 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟. Let 𝐴 and 𝐵 be disjoint 𝒫ℱ𝔑𝑐 sets in 𝑈1. Since ℎ𝑃 is 𝒫ℱ𝔑𝛿𝛽𝐼𝑟𝑟 
and 𝒫ℱ𝔑𝛿𝛽𝐶 , ℎ𝑃(𝐴) and ℎ𝑃(𝐵) are 𝒫ℱ𝔑𝛿𝛽𝑐  sets in 𝑈2 . Since 𝑈2  is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟 , there exist 
disjoint 𝒫ℱ𝔑𝛿𝛽𝑜 sets 𝐿 and 𝑀 in 𝛿𝛽2 such that ℎ𝑃(𝐴) ⊆ 𝐿 and ℎ𝑃(𝐵) ⊆ 𝑀. That is 𝐴 ⊆ ℎ𝑃

−1(𝐿) 
and 𝐵 ⊆ ℎ𝑃

−1(𝑀). Since ℎ𝑃  is 𝒫ℱ𝔑𝛿𝛽𝐼𝑟𝑟, ℎ𝑃
−1(𝐿) and ℎ𝑃

−1(𝑀) are disjoint 𝒫ℱ𝔑𝛿𝛽𝑜  such that 
𝐴 ⊆ ℎ𝑃

−1(𝐿) and 𝐵 ⊆ ℎ𝑃
−1(𝑀). Thus 𝑈1 is 𝒫ℱ𝔑𝛿𝛽𝑁𝑜𝑟.             width 0.22 true cm height 0.22 

true cm depth 0pt 
 
Remark 4.1  Theorems 4.1, 4.2, 4.3 & 4.4 are also holds for 𝒫ℱ𝔑𝑜, 𝒫ℱ𝔑𝛿𝑜, 𝒫ℱ𝔑𝛿𝒫𝑜, 𝒫ℱ𝔑𝛿𝒮𝑜 and 
𝒫ℱ𝔑𝛿𝛼𝑜 sets.  
 
CONCLUSION 
In this paper, we investigated Pythagorean fuzzy nano (resp. 𝛿, 𝛿 pre, 𝛿 semi, 𝛿𝛼 and 𝛿𝛽)-normal 
spaces and strongly Pythagorean fuzzy nano (resp. 𝛿, 𝛿 pre, 𝛿 semi, 𝛿𝛼 and 𝛿𝛽)-normal spaces using 
Pythagorean fuzzy nano (resp. 𝛿, 𝛿 pre, 𝛿 semi, 𝛿𝛼 and 𝛿𝛽)-open and Pythagorean fuzzy nano (resp. 
𝛿, 𝛿 pre, 𝛿 semi, 𝛿𝛼 and 𝛿𝛽)-closed sets. We analyzed the relationships among these newly defined 
spaces as well as their connections with previously established classes. Furthermore, we examined their 
fundamental properties and provided characterizations within the framework of Pythagorean fuzzy nano 
topological structures. 
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