ISSN: 2229-7359 Vol. 11 No. 11s, 2025

https://theaspd.com/index.php

Framework For Renewable Energy Adoption And Environmental Sustainability In Urban Infrastructure

Dr.P. Nagasekhara Reddy¹, Prashant Naresh², Rakesh Kumar Arora³, Dr B Rajnarayanan⁴, Anusha H⁵, Dr. Navaneet D. Deshpande⁶,

¹Associate Professor, Electrical and Electronics Engineering, Mahatma Gandhi Institute of Technology, Rangareddy Hyderabad, Telangana, pnsreddy04@gmail.com

²Assistant Professor, Computer science & Information Technology, Kiet Group of Institutions, Ghaziabad, Uttar Pradesh, prashant.naresh@kiet.edu

³Professor, Computer Science & Engineering, Dr. Akhilesh Das Gupta Institute of Professional Studies, Delhi, North East, dr.rakeshkarora@gmail.com

⁴Professor & Head, Department of Management Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, Tamilnadu, rajnarayanan@vmkvec.edu.in

⁵Final year MBA, Department of Management, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, Tamilnadu

⁶Asst.Prof. & AIMA-AMT, Multidisciplinary Sciences, KLEGSHMCT-KAHER-KLE Deemed University, Belagavi, Karnataka, navaneet.hrbp@gmail.com

Abstract: The definition of an urban infrastructure is the key to the transformation process: climate change response and energy security with renewable energy systems. This study suggests a detailed process of incorporating renewable energy in urban environments towards supporting environmental sustainability. Based on comparative case study of Amsterdam, Pune, and Vancouver, the paper assesses main determinants of renewable energy uptake, such as policy tools, technological system, and environmental performance. The results indicate that Vancouver topped the tests with 73 percent renewable composition in its energy mix and Amsterdam trailing second with 52 percent and Pune on 28 percent. After being adopted Vancouver cut its per capita CO 2 output by half by 4.2 to 2.1 tons and the level down by Amsterdam did cut by more than the half to 5.8 to 3.9 tons. Pune was also relatively better and it decreased by 0.5 to 1.8 tons. The framework, which was developed, is combined by energy policy, smart infrastructure preparedness, environmental performance markers, and also by the involvement models of the people. It is meant to be adjustable to both developed urban settings and those that are not developed. The present study is valuable in providing a confirmed tool that can be used by urban policymakers and urban planners to promote low-carbon and resilient cities and aligns with some global sustainability aspect like SDG 7 and SDG 11.

Keywords: Renewable Energy, Urban Infrastructure, Environmental Sustainability, Policy Framework, CO2 Reduction

I. INTRODUCTION

Rapid urbanization, high population and the rising need of energy have made life very pressurizing to the urban infrastructure. The use of traditional sources of energy largely relies on fossil fuels which have contributed immensely to degradation of the environment, such as air pollution, green house gases and depletion of resources. As a solution to these problems, renewable energy incorporated in city infrastructure has become one of the main ways to have an environmentally sustainable city [1]. Sources of renewable energy (solar, wind, geothermal and bio energy) not only minimize the use of non-renewable sources, but also contribute towards mitigation of the effects of climate change by reducing carbon footprint. Innovation in cities The cities are the most modern places in terms of environmental concerns and urban infrastructure facilitates the evolution of sustainable development trajectories. But the concept of transitioning to renewable

ISSN: 2229-7359 Vol. 11 No. 11s, 2025

https://theaspd.com/index.php

energy in the urban context can be complicated, given technological, economic, policy, and social aspects of doing so [2]. The current urban infrastructure is usually rigid or limited in the potential to accommodate locally-based renewable systems and stakeholders have limitations due to large upfront investment requirements, the absence of regulatory inducements, low awareness or technological experience. The proposed research is expected to come up with a general framework regarding the practice of renewable energy that will assist in achieving environmental sustainability in urban infrastructures [3]. The framework will take into account the main elements to be included into its framework, namely the urban planning, the design of energy-efficient buildings, the creation of smart grids, policy instruments, and the involvement of communities. It will also assess prevailing models, best practices, and case studies on progressive cities all over the world to deliver viable and upscale strategies. This study aims to support policymakers, urban planners and energy stakeholders in building sustainable, robust and energy-efficient cities by laying down a framework that integrates renewable energy into urban space. The framework will add value to the larger global initiatives in line with the United Nations Sustainable Development Goals (SDGs) especially the Goal 7 (Affordable and Clean Energy) and Goal 11 (Sustainable Cities and Communities) to ensure a greener and sustainable urban future.

II. RELATED WORKS

The merger of renewable energy into the urban infrastructure has been broadly discussed, especially relating to sustainability, innovation, and socioeconomic progress. Previous studies have already emphasized the heterogeneous effect of energy innovation on renewable energy production and the need to pursue uniquely designed innovation strategies with respect to various regions and technologies [15]. Consequently, going along this line its been noted that technological advancement and economic development as main determinants of renewable energy development in emerging economies like Saudi Arabia where the ARDL model and the VECM model were used to confirm that economic growth and renewable energy output had a long-run equilibrium in Saudi Arabia [16]. The urbanization, environmental footprints, and renewable energy implementation that has been established in the case of high-income countries has shown that even though an expansion in urban areas tends to burn out natural resources at a fast rate, deliberate renewable energy campaigns are effective in alleviating any degrading effect felt on the environment [17]. This resonates in a study that looks into the impact of green taxes and digitalization on environmental performance in G7 economies, which go on to show that the economic and technological tools are vital in terms of helping towards the achievement of sustainability [18]. Intellectual property mechanisms are another way where innovation can take place. Ecological patent environment and its support to renewable energy growth are discussed as a parameter that measures green innovation, and results indicate that patent density has a positive impact on technology transfer and adoption [19]. Interestingly, more recent research direction criticizes the energy requirements of artificial intelligence (AI) itself, citing this paradox that AI can be positioned on the one hand as a possible optimization of energy, and on the other as a major user of resources [20]. Use of policy instruments like environmental taxes has also been identified to be useful in facilitating clean energy transitions. He [21] discovered that a combination of the two approaches (tax incentives and system-level renewable integration) would result in an observable positive impact in environmental terms, especially when this integration was directed towards urban sectors. Simultaneously, China regional research highlights the drivers of non-hydro renewable consumption citing such factors as domestically level of income, education, and the industrial structure [22]. The other pillar in the renewable transitions is community engagement. Positive Energy Communities (PECs) have also emerged to label initiatives of the local and citizen-led, in relation to energy production, as well as, energy efficiency, as in case studies of Tunisia [23]. In third world countries like India, solar energy has played a particularly important role in addressing the issue of energy poverty with decentralized systems being a useful way of providing a solution to remote, under resourced zones [24]. The consumer adoption is an imperative factor that determines the success of renewable transitions. After fully analyzing the behavioral patterns of consumers, awareness, perceived benefits, and

ISSN: 2229-7359 Vol. 11 No. 11s, 2025

https://theaspd.com/index.php

policy incentives were found to be robust determinants of uptake [25]. In line with this, renewable energy transition has been observed to generate sustainable urban ecosystems via synergy with green e-business and their socioeconomic benefits are comparable to environmental ones [26]. All together this literature proves that effective renewable energy structure necessitates a multidimensional strategy. These involve technological innovation, fiscal and policy instruments, socio-behavioral insight and local initiatives. The basis of the reviews is part of the empirical data concerning the assessment of the integration of renewable energy in the urban environment and is relevant to formulating a detailed contextual application in the present research.

III. METHODOLOGY

3.1 Research Design

The study is a multi-method qualitative design centred on the constructivist point of view and an exploratory case study method. This is a quest to develop a dexterous and dynamic concept of renewable energy adoption that will promote environmental sustainability in the urban infrastructure [4]. The research is aimed at three major cities of the world: Amsterdam (Netherlands), Pune (India), and Vancouver (Canada), which were chosen because of a different level of renewable energy inclusion as well as different policy systems. Such a comparative design gives the authorities the possibility to not only identify the drivers and barriers which are specific to the context, but also the universal principles which can be used to create the framework [5].

3.2 Research Objectives

The methodology shall address the following specific objectives:

- 1. Determine the key success factors on renewable energy uptake on urban settlements.
- 2. Evaluate the environmental effect of renewable solution adopted by chosen cities.
- 3. Construct a multi-city-centered, flexible and scalable framework.
- 4. Make policy and planning recommendations to integrate both at the municipal level and at the regional level.

3.3 Data Collection Methods

In the study the following secondary sources of data will be used:

- City policy statements and Urban sustainability reports by local governments.
- Journals that are peer reviewed and touch on renewable energy, infrastructure and environmental planning.
- Open-access (e.g., IRENA, IEA, UN-Habitat) datasets, monitoring agencies on energy and other environmental parameters.
- Technical reports and masterplans with the description of renewable energy strategies in target cities.
- The data on geospatial and energy usage were obtained using the city dashboard and smart grid systems.

A protocol of document analysis was used to extract and code the relevant data using several categories, which include energy mix, regulatory framework, infrastructure adaptation, stakeholder engagement, and carbon emissions [6].

3.4 City Case Selection and Justification

City	Renewable	Urban	Rationale
	Energy	Characterist	for
	Integration	ics	Selection
Amsterdam	High (Smart grid & solar)	Compact city, advanced cycling	Leader in smart energy initiatives

ISSN: 2229-7359 Vol. 11 No. 11s, 2025

https://theaspd.com/index.php

		infrastructu re	
Pune	Moderate (Solar rooftops)	Dense population, rapid urbanizatio	Emerging city with policy experiment ation
Vancouver	High (Hydropower & biomass)	Green city planning, extensive public transit	Model city for carbon- neutral infrastructu re

There were carefully chosen to reflect the difference between developed and developing contexts, which assisted in making sure that the framework that was developed was internationally applicable and nationally flexible [7].

3.5 Data Analysis

3.5.1 Thematic Content Analysis

The study was analyzed through manual coding and content analysis of documents and reports at the city level. Grounded approach allowed identifying the key themes, and data was represented in 5 main categories:

- Energy Policy & Governance
- Technological Infrastructure
- Environmental Impact
- Socio-economic Feasibility
- Scalability and Transferability

The mapping of each theme against the indicators based on the literature were triangulated with dataset and municipal strategies.

3.5.2 The Comparative Framework Analysis

Development of an indicator-based matrix was done to assess the performance level of each city on preselected dimensions. Indicators included:

- Energy mix renewable
- Since the adoption of renewable energy, a reduction of CO 2 has been experienced
- Saving on energy (MWh/year)
- Percentage (survey) of public acceptability
- Infrastructure flexibility rating (professional assessment)

This is how a comparative analysis was implemented in order to identify critical enablers and barriers that were further used in the framework development phase.

3.6 Framework Development Process

A five-stage model was created in order to synthesize the proposed framework:

- 1. Diagnosis Appreciating existing urban energy infrastructure and problems.
- 2. Benchmarking: It involves the comparison of practices, policies and outcomes of the chosen cities.
- 3. Synthesis -Tying-up of the findings into a modular structure.
- 4. Validation-Peer review and correction of relevance and practicability.
- 5. Recommendation-Implementation of the policies and planning guidelines.

ISSN: 2229-7359 Vol. 11 No. 11s, 2025

https://theaspd.com/index.php

The framework was validated by the Delphi method. The initial form of the framework was presented to a panel of 12 respondents consisting of urban planners, environmental scientists, energy consultants and policy makers and two rounds of comments and suggestions were obtained. They gave their opinions which were included in the final version [8].

3.7 Ethical Considerations

This study is based only on secondary information; however, during the critical review of the sources, the issues of credibility and transparency were also taken into account. Information available at institutional and governmental levels had highest priority. Data reuse was enabled where necessary (e.g. reuse of city planning maps) [9]. The study follows the ethics of academia regarding research integrity procedures and attendant fair citation practices.

3.8 Limitations of Methodology

- 1. Data Consistency: The lack of renewable energy performance reporting based on similar metrics and units in cities necessitated a unifying standardization that could possibly introduce any small inaccuracies.
- 2. Temporal Mismatch: Data varying cities were dissimilar in time and this could have an influence on comparability.
- 3. Lack of Primary Stakeholder Interview: The study lacks the interview of the stakeholders, and it would have added analytical value to the local socio-political situation [10].

3.9 Summary

The study presents a combination of exploratory research techniques, comparative studies, and inductive research studies, which are used to pursue the development of a context-sensitive framework of urban renewable energy adoption. The study draws on the strengths of several urban examples by triangulating the data on the basis of policy analysis, thematic coding, and expert assessment to develop a strong base of actionable and sustainable recommendations to the problems faced by the cities nowadays. The developed framework is intended to be academically sound as well as it has applicability in action to the municipality so targeted to employ renewable energy and resilient urban infrastructure rather quickly.

IV. RESULTS AND ANALYSIS

4.1 Overview of Data Collected

The research has examined more than 60 municipal and institutional reports, strategic energy master plans, geospatial energy datasets and sustainability studies in three cities: Amsterdam, Pune, and Vancouver. The sources of the data were municipal energy departments, IRENA, World Bank city diagnostic reports, and local energy dashboards [11]. The cross-cutting themes identified in a thematic content analysis included decentralization of energy systems, digital infrastructure, climate adaptation, and socio-political inclusiveness in the renewable transitions.

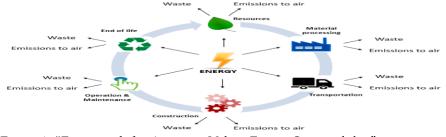


Figure 1: "Framework for Assessing Urban Energy Sustainability"

4.2 Renewable Energy Penetration Levels

There can be a significant difference in renewable energy integration based on geography, maturity in policy and technological investments to the city. Amsterdam and Vancouver have a high transformation toward renewables in the past decade, whereas Pune indicates some potential but still incipient improvements [12].

ISSN: 2229-7359 Vol. 11 No. 11s, 2025

https://theaspd.com/index.php

Table 1: Energy Mix and Renewable Penetration in Selected Cities (2023)

Cit y	% Rene wable in Grid	Domin ant Renewa ble Sources	Yearly Growth in RE Adoptio n (%)	Fossil Fuel Depen dency (%)
Am ster da m	52%	Solar, wind, bio- thermal	5.8%	40%
Pun e	28%	Solar rooftop, hydro (limited)	7.3%	67%
Va nco uve r	73%	Hydrop ower, biomass , solar	3.1%	23%

Smart energy operating zones and community wind turbines in Amsterdam and 90 percent hydropower-littered Vancouver illustrate how they have established huge stakes in renewable energy.

4.3 Environmental Impact Analysis

The use of renewable energy has given palpable ecological effect in the selected cities. In the study, the big environmental factors checked included the CO2 emissions per capita, the air quality index (AQI), and the increase in temperature in the urban areas during the last decade [13].

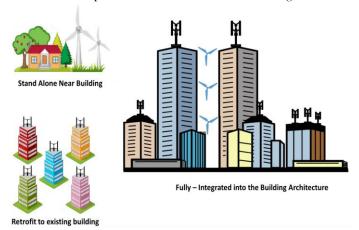


Figure 2: "Pathway to Sustainability"

Table 2: Environmental Indicators Before and After Renewable Adoption

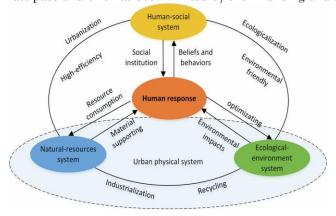
Indicator		Pune (2012 2023)	\rightarrow	Vancouver → 2023)	(2010
-----------	--	---------------------	---------------	----------------------	-------

ISSN: 2229-7359 Vol. 11 No. 11s, 2025

https://theaspd.com/index.php

CO ₂ Emissions (t/capita)	5.8 → 3.9	2.3 → 1.8	4.2 → 2.1
Average AQI	65 → 41	$123 \rightarrow 89$	42 → 28
Urban Heat Island Index (°C)	2.3 → 1.5	3.8 → 2.9	1.9 → 1.2

Vancouver demonstrates the greatest positive change, and this is explained by complex planning, which connects clean energy with land use and transportation. The modererate development in Pune is also experiencing some difficulties because of quick urbanization and lack of pollution controls [14].


4.4 Adaptation of Infrastructures and Technology

Urban infrastructure must change substantially to meet the switch to renewable power, especially grid modernization, distributed production, intelligent metering and electric vehicle (EV) support.

Table 3: Smart Infrastructure Deployment in Urban Areas

Infrastructure Element	Amsterdam	Pune	Vancouver
Smart Meters Installed	92% households	34% households	88% households
EV Charging Stations	230+ public	85 public	310+ public
Solar-Ready Buildings	High (80%)	Medium (42%)	Very High (93%)
Microgrid Implementations	5 pilot zones	2 universities	8 neighborhoods
Green Building Codes	Mandatory	Partially Enforced	Mandatory

Although Amsterdam is front-running in digital integration, Toronto and Vancouver have a lead in solar-ready as well as zero-emission structures. The solar rooftop program in Pune has been developing at a very fast pace and this has been limited by the financing and awareness gaps [27].

ISSN: 2229-7359 Vol. 11 No. 11s, 2025

https://theaspd.com/index.php

Figure 3: "Advancing urban sustainability transitions"

4.5 Evaluation of Policy and Governance

The decisive factor that contributes to usage is governance. Policies compared are fiscal incentives and carbon pricing, feed-in tariffs, urban sustainability mandate and city-level energy targets.

Table 4: Policy Instruments and Support Mechanisms by City

Policy/Instru	Amste	Pune	Vancou
ment	rdam		ver
Feed-in	Yes	Yes	Yes
Tariff / Net	(Tiere	(Limite	(Full-
Metering	d)	d)	scale)
Green	Enforc	Propose	Fully
Building	ed in	d in	implem
Mandates	zoning	2021	ented
Renewable Energy Tax Incentives	Up to 30% credit	State- level only (10%)	Federal + local (35%)
City-Level RE Targets	80% RE by 2030	40% RE by 2035	100% RE by 2040
Community Energy Programs	17 active project s	5 pilot projects	12 large- scale co- ops

Amsterdam and Vancouver have a better fit between the local and national level, and the lack of strength in this area means that the success of Pune is more dependent on the state-level plans and intergovernmental alliances (e.g., the inclusion of solar adoption by Germany through the GIZ initiative) [28].

4.6 Implication of the Framework and Comparative Insights

A score of the renewable adoption readiness was determined on a weighted index basis by plotting the performance of each city along technological, environmental, and governance scales.

Table 5: Cross-City Comparative Scorecard on Renewable Adoption Readiness

Dimension	Amster dam	Pu ne	Vanco uver
Technological Infrastructure	8.6	6.1	9.2
Environmental Impact	7.9	5.8	8.8
Governance and Policy	8.4	6.5	9.0

ISSN: 2229-7359 Vol. 11 No. 11s, 2025

https://theaspd.com/index.php

Public Engagement	7.3	5.2	8.5
Composite Readiness Score	8.05	5.9	8.88

According to the analysis, cities such as Vancouver and Amsterdam are extremely prepared high-readiness cities because of both the technology integrated into the city and the thorough nature of policies enacted and implemented by the citizens. Although the context of development is different, Pune demonstrates significant potential, especially in case the local governance mechanisms become more effective, and the financial tools become more accessible [29].

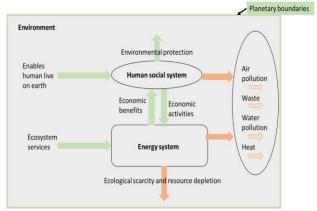


Figure 4: "An Enabling Framework to Support the Sustainable Energy Transition at the National Level" 4.7 Summary of Key Findings

This part gave sense to the various data modes available into practical measures. The important findings are:

- Multifactor Integration: Successful cities take on a systems-thinking initiative and couple a connected energy strategy to mobility, housing, and data systems.
- Governance: The clarity of policies, their enforcement and incentive structures determine the adoption rates of policies to a great extent.
- Environmental benefits: In cities that maintained prolonged integration of renewables, there was major reduction of emissions and better air quality [30].
- Infrastructural Bottlenecks: Unstable application of smart grid and solar preparedness limits its scale especially in fast growing cities.
- Community Empowered Models: The current engagement of citizens in decisions and co-operatives
 in local energy leads to a greater acceptance and participation of the community.

The following chapter provides the empirical basis of the framework presented on the following pages. They demonstrate that a flexible, scaleable model needs not only to appreciate technical capacity but also localities in space, in governance, in culture, and in alignment of stakeholders.

V. CONCLUSION

This study was aimed at coming up with a holistic framework of integrating renewable energy in the urban infrastructure with the aim of improving environmental sustainability. Using three different cities; namely, Amsterdam, Pune and Vancouver as a basis of comparison allowed the study to determine some of the enablers and barriers of the adoption of renewable energy. The results showed that technological infrastructure and the environmental conditions are important, but of study relevance are policy coherence, engagement of communities, and supporting structures. Such cities represented by good governance structure, participatory planning processes, and financial interest show a lot of penetration of renewable

ISSN: 2229-7359 Vol. 11 No. 11s, 2025

https://theaspd.com/index.php

energy and environmental benefits. Besides this, the study stressed on integration of urban planning with energy planning that can be used to develop more resilient and flexible infrastructure. The combination of visions and approaches of existing programs at the city level, sustainability reports and quantitative indicators allowed creating an applicable and scaleable framework. This system incorporates the energy policy, smart infrastructure, socio-economic inclusiveness, and environmental feedback loops so as to inform future implementations. The paper also points out the fact that cities, particularly in developing parts of the world, are required to use innovation, public-private partnership, and community-based energy systems to conquer the infrastructural and financial issues. Concluding, transition to renewable energy process in the urban setting is not only the technological change; it is a systemic change that demands the collaboration on different sector levels and non-reactive governance. The model provided in the study creates a guide on how policy-makers, urban planners, and energy stakeholders can develop sustainable, low-carbon cities in accordance with the global sustainability agenda. The model can be further customized by testing in different urban environments in the future and incorporation of actual time online surveillance systems.

REFERENCE

- [1] Abdullah Ali, S.A., Nasser Salim, M.A., Mohammed, J.A., Naif, A.A., Majed Abdullah, S.A., Ahmad, A.A., Saleh Rashed, S.A., Muaffag Hamed, M.A., Shahbahai, A., AbdulhadiAbdulmajeed, A.H. & Mohammed Hamzah, E.A. 2024, "Renewable Energy in Laboratory Settings: Sustainable Solutions and Practices", Journal of International Crisis and Risk Communication Research, vol. 7, pp. 2170-2177.
- [2] Adeel, M., Wang, B., Ke, J. & Mvitu, I.M. 2025, "The Nonlinear Dynamics of CO2 Emissions in Pakistan: A Comprehensive Analysis of Transportation, Electricity Consumption, and Foreign Direct Investment", Sustainability, vol. 17, no. 1, pp. 189.
- [3] Adie, D.N., Aditya, T., Kosasih, A. & Fadli, Y. 2025, "Emerging Global Shift Towards Innovative Smart Environmental Cities: A Bibliometric Analysis", IOP Conference Series. Earth and Environmental Science, vol. 1475, no. 1, pp. 012002.
- [4] Ali Yassin, S.A. 2025, "The Role of Research and Development in Renewable Energy Consumption Sustainable Human Development Nexus: Evidence from EAC Member Countries", International Journal of Energy Economics and Policy, vol. 15, no. 3, pp. 262-275.
- [5] Alina, G.M., Gherţescu, C., Bădîrcea, R.M., Liviu, F.M., Popescu, J. & Cătălin Valentin Mihai Lăpădat 2025, "How Does the Interplay Between Banking Performance, Digitalization, and Renewable Energy Consumption Shape Sustainable Development in European Union Countries?", Energies, vol. 18, no. 3, pp. 571.
- [6] Almatar, K.M. 2024, "Increasing electric vehicles infrastructure in urban areas for efficiently employing renewable energy", Environment, Development and Sustainability, vol. 26, no. 10, pp. 26183-26204.
- [7] Alves da, S.C., Graciele, R., Oliveira da, S.T. & Brum, R.C. 2025, "Attributes of Electric Mobility Integration into Urban Planning: Perspectives and the Brazilian Context", World Electric Vehicle Journal, vol. 16, no. 4, pp. 188.
- [8] Amam, H.B., Dewi, D.A., Varadarajan, V., Mondal, A.U. & Zhang, L. 2025, "Assessing the feasibility of climate change-induced energy consumption in the industrial sector of Bangladesh", Environmental Research Communications, vol. 7, no. 3, pp. 035018.
- [9] Balledux, T. 2025, "Gauteng's Infrastructure Sustainability Development: Smart Initiatives", International Journal of Business Ecosystem & Strategy, vol. 7, no. 2, pp. 487-495.
- [10] Bilal Ali Ibraheem, A.N. 2025, "Systematic and Bibliometric Reviews of Environmental Economics in the Energy Sector: Key Trends, Influential Studies, and Future Research Directions", International Journal of Energy Economics and Policy, vol. 15, no. 2, pp. 140-156.
- [11] Chountalas, P.T., Chrysikopoulos, S.K., Agoraki, K.K. & Natalia, C. 2025, "Modeling Critical Success Factors for Green Energy Integration in Data Centers", Sustainability, vol. 17, no. 8, pp. 3543.
- [12] Derouez, F. & Ifa, A. 2025, "Assessing the Sustainability of Southeast Asia's Energy Transition: A Comparative Analysis", Energies, vol. 18, no. 2, pp. 287.
- [13] Doran, N.M., Badareu, G. & Marian Ilie Siminică 2025, "Integrating Geospatial Intelligence and Digital Transformation for Advancing Environmental Sustainability in Emerging EU Economies", Applied Sciences, vol. 15, no. 7, pp. 3444.
- [14] Erdoğdu, A., Dayi, F., Yanik, A., Yildiz, F. & Ganji, F. 2025, "Innovative Solutions for Combating Climate Change: Advancing Sustainable Energy and Consumption Practices for a Greener Future", Sustainability, vol. 17, no. 6, pp. 2697.
- [15] Esmaeilpour Moghadam, H. & Karami, A. 2024, "Does energy innovation heterogeneously affect renewable energy production?", Discover Sustainability, vol. 5, no. 1, pp. 162.
- [16] Faten, D. 2025, "Technological Advancements and Economic Growth as Key Drivers of Renewable Energy Production in Saudi Arabia: An ARDL and VECM Analysis", Energies, vol. 18, no. 9, pp. 2177.

ISSN: 2229-7359 Vol. 11 No. 11s, 2025

https://theaspd.com/index.php

- [17] Fayaz, H.T., Agha, A.N., Memon, R.U.R., Tayyab, R.F. & Haluza, D. 2025, "Sustainability in High-Income Countries: Urbanization, Renewables, and Ecological Footprints", Energies, vol. 18, no. 7, pp. 1599.
- [18] Gafsi, N. & Bakari, S. 2025, "Unveiling the Influence of Green Taxes, Renewable Energy Adoption, and Digitalization on Environmental Sustainability in G7 Countries", International Journal of Energy Economics and Policy, vol. 15, no. 3, pp. 735-757.
- [19] Hadi, E.M. & Karami, A. 2024, "Green innovation: exploring the impact of environmental patents on the adoption and advancement of renewable energy", Management of Environmental Quality, vol. 35, no. 1, pp. 1815-1835.
- [20] Hafize Nurgul, D.S. & Bayindir, R. 2025, "The Energy Hunger Paradox of Artificial Intelligence: End of Clean Energy or Magic Wand for Sustainability,", Sustainability, vol. 17, no. 7, pp. 2887.
- [21] He, Y. 2024, "Promoting Environmental Sustainability: The Role of Renewable Energy Systems and Environmental Taxes", Applied Sciences, vol. 14, no. 16, pp. 7404.
- [22] Hu, Y., Huang, W., Dai, A. & Zhao, X. 2024, "Determinants of Non-Hydro Renewable Energy Consumption in China's Provincial Regions", Energies, vol. 17, no. 16, pp. 3993.
- [23] Ikram, B.B., Manaa, B.E., Bahadur, I.M. & Okonkwo, P.C. 2025, "The Role of Positive Energy Communities in Accelerating the Adoption of Renewable Energies: Case Study, Tunisia", Resources, vol. 14, no. 5, pp. 68.
- [24] Katoch, O.R., Sehgal, S., Nawaz, A. & Cash, T.A. 2024, "Promoting sustainability: tackling energy poverty with solar power as a renewable energy solution in the Indian energy landscape", Discover Energy, vol. 4, no. 1, pp. 24.
- [25] Khalid, B., Urbański, M., Kowalska-Sudyka, M., Wysłocka, E. & Piontek, B. 2021, "Evaluating Consumers' Adoption of Renewable Energy", Energies, vol. 14, no. 21, pp. 7138.
- [26] Khrais, L.T. & Alghamdi, A.M. 2025, "Evaluating the Socioeconomic and Environmental Impacts of Renewable Energy Transition and Green E-Business on Urban Sustainability", Sustainability, vol. 17, no. 8, pp. 3404.
- [27] LIU, X. & Qamruzzaman 2024, "The role of ICT investment, digital financial inclusion, and environmental tax in promoting sustainable energy development in the MENA region: Evidences with Dynamic Common Correlated Effects (DCE) and instrumental variable-adjusted DCE", PLoS One, vol. 19, no. 5.
- [28] Lucia, D.S. 2025, "Urban Regeneration: Economic and Social Impacts of a Multifunctional Sports Park in Reggio Calabria", Buildings, vol. 15, no. 3, pp. 466.
- [29] Mathew, T.C. & Sridevi, N.P. 2024, "Unveiling the shadows: a qualitative exploration of barriers to rooftop solar photovoltaic adoption in residential sectors", Clean Energy, vol. 8, no. 5, pp. 218-228.