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Abstract 
This study proposes an adaptive edge-based bandwidth optimization system to enhance network 
efficiency, accelerate data transfer, and mitigate congestion. The system leverages a hybrid reinforcement 
learning approach integrated with an Adaptive Federated Bandwidth Allocation (AFBA) mechanism to 
dynamically manage resources. The Deep Q-Network (DQN) framework optimizes bandwidth allocation 
by learning from real-time network fluctuations, while the Attention-based Graph Neural Network 
(AGNN) enhances predictive accuracy by analyzing traffic patterns across distributed nodes. The 
implementation incorporates Rust for high-performance concurrency, Apache Cassandra for scalable 
distributed storage, and Envoy proxy for efficient inter-node communication. Extensive simulations 
conducted under dynamic network loads validate the effectiveness of the proposed system. Performance 
metrics such as Bandwidth Utilization Efficiency (BUE), jitter, end-to-end delay, and packet delivery ratio 
confirm superior adaptability and responsiveness compared to existing centralized and decentralized 
models. The results emphasize the advantages of edge intelligence in achieving enhanced scalability, 
reduced congestion, and optimized resource allocation, making the proposed approach ideal for high-
demand and latency-sensitive applications. 

Keywords: Adaptive Federated Bandwidth Allocation (AFBA), Deep Q-Network (DQN), Attention-based 
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Mitigation. 

1. Intordcution 

Dynamic and efficient bandwidth allocation strategies are required due to the exponential growth of 
connected devices and our growing reliance on cloud and edge computing infrastructure for real-time 
applications. Due to the dynamic nature of contemporary networks traditional bandwidth management 
techniques that mainly rely on static allocation or centralized control are ineffective because they 
frequently result in latency bottlenecks and needless resource consumption. By combining the adaptive 
federated bandwidth allocation (AFBA) mechanism with a hybrid reinforcement learning technique this 
studys framework for adaptive edge-based bandwidth optimization gets around these limitations. The 
Deep Q-Network (DQN) architecture adjusts bandwidth allocation dynamically based on network 
conditions while the Attention-based Graph Neural Network (AGNN) improves prediction accuracy by 
analyzing traffic patterns among scattered nodes.  

The proposed system is implemented using Rust for high-performance concurrency Apache Cassandra 
for scalable distributed storage and Envoy proxy for efficient inter-node communication. By enabling on-
site data processing to protect sensitive information lowering network traffic and server load through local 
data processing and guaranteeing uninterrupted operation even in the face of connectivity problems edge 
computing satisfies important IoT requirements like privacy latency and connectivity. Some IoT 
infrastructures benefit from edge computings ability to process data close to the source which satisfies the 
need for decentralization and reduces dependency on centralized systems. Furthermore the introduction 
of 5G networks makes it easier for businesses to use edge computing. Human-like behavior by machines 
is an example of artificial intelligence (AI) which is having a big impact on peoples lives. A branch of 
artificial intelligence called machine learning has enabled machines to carry out tasks like clustering and 
classification prediction by employing algorithms that simulate human decision-making.  

This ability is further enhanced by deep learning a subset of machine learning which uses ever-more-
complex neural network architectures to solve problems more precisely and intricately. According to 
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thorough simulations conducted under dynamic network loads the system outperforms current models 
in terms of end-to-end delay reduction jitter control bandwidth utilization and packet delivery ratio. 
Effective network edge congestion management and bandwidth optimization have been studied using a 
variety of flexible and useful techniques. One study suggested using a cooperative and adaptable signaling 
system in conjunction with an intelligent traffic system to reduce traffic. The suggested approach 
improved network efficiency and decreased congestion in the face of shifting traffic conditions by 
dynamically adjusting traffic flow based on real-time data using edge-based adaptive signaling [1].  

Adaptive configuration selection and bandwidth allocation for edge-based video analytics were the 
subjects of another study. A learning-based method that dynamically modified bandwidth according to 
network traffic patterns was put into practice improving video transmission quality and cutting down on 
buffering delays [2]. Researchers have also attempted to integrate artificial intelligence (AI) and Internet 
of Things (IoT) networks in an attempt to control data flow and lessen congestion. AI-driven traffic 
management is a new technique that reduces packet loss and increases throughput by anticipating 
network congestion and dynamically altering data flow [3]. Joint bandwidth distribution and 
configuration modification have been found to be effective approaches for edge real-time video analytics. 
One method reduced transmission latency and improved video quality under varying network loads by 
combining adaptive bandwidth allocation with configuration changes [4].  

In order to develop novel congestion control strategies for named data networks (NDNs) deep 
reinforcement learning has also been used. A model-based method that optimized resource allocation and 
data flow through real-time learning produced better packet delivery and lower latency [5]. Virtual edge 
load balancing is another effective way to manage congestion. Congestion-aware load balancing 
dynamically changed traffic flow in response to real-time congestion feedback in order to increase network 
utilization and decrease transmission delays [6]. Additionally the way routing protocols designed for 
wireless sensor networks (WSNs) manage congestion and minimize traffic has been studied. One study 
used dynamic routing path adjustments based on network topology and traffic load to propose an efficient 
routing protocol that reduced congestion and increased delivery ratio [7]. Enhancing user quality of 
experience (QoE) is the aim of adaptive traffic management for residential broadband. A dynamic traffic 
management framework that modified data flow in response to network conditions allowed end users to 
enjoy faster download speeds and less buffering [8]. Edge-based routers have also been suggested for 
adaptive load balancing and congestion control in Internet of Things networks. By dynamically adjusting 
load balancing and data flow to network traffic patterns an adaptive edge router improved data 
transmission efficiency [9].  

Adaptive video streaming has demonstrated encouraging outcomes with learning-based joint QoE 
optimization in terms of reducing latency and enhancing video quality. The user experience was improved 
under a range of network conditions by an edge-based smart technique that modified video streaming 
parameters in response to real-time feedback [10]. Adaptive routing notifications have been proposed as 
a way for high-performance interconnection networks to control congestion. Packet loss and network 
performance were enhanced by a clever notification-based system that modified routing routes in response 
to real-time congestion feedback [11]. Additionally as a potential remedy for network congestion 
frameworks for edge-based flow control have been researched. Transmission efficiency was enhanced and 
packet drop rates were reduced by an edge flow control mechanism that adjusted data transmission rates 
to network load and congestion levels [12].  

Its use of congestion feedback for precise load balancing has shown promise in asymmetric topologies. 
Due to an adaptive load balancing model that modified traffic flow in response to congestion feedback 
throughput and latency increased [13]. Blockchain technology presents a cutting-edge solution for data 
congestion and trust problems in automotive networks. By improving data trust and dynamically adjusting 
traffic flow a blockchain-based approach can alleviate congestion in vehicle ad hoc networks (VANETs) 
[14]. By using a guided pheromone update model that dynamically modified routing paths data delivery 
rates were raised and congestion was decreased [15].  
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2. MATERIALS AND METHODS 

2.1. Material Selection 

The proposed system incorporates multiple software and hardware components to achieve high-
performance bandwidth optimization and congestion control. Each material is carefully selected to 
enhance computational efficiency, data handling capacity, and real-time responsiveness. 

2.1.1. Rust 

Rust was chosen as the core programming language due to its memory safety, low-level control over system 
resources, and concurrency support (Table 1). Rust’s ownership model and thread-safe architecture enable 
high-performance data processing, essential for real-time bandwidth optimization. 

Table 1: Properties of Rust 

Property Description 

Memory Safety 
Eliminates data races and 

memory leaks 

Concurrency 
Thread-safe, enabling 

parallel processing 

Performance 
Close to C/C++ levels, 
ensuring low latency 

Error 
Handling 

Pattern-matching-based 
error handling 

 

2.1.2. Apache Cassandra 

Apache Cassandra was selected as the distributed database for its high scalability and fault tolerance. It 
enables rapid data retrieval and storage, supporting real-time decision-making by the reinforcement 
learning model. Table 2 and Figure 1 demonstrate the image nad properties of Apache Cassandra. 

Table 2: Properties of Apache Cassandra 

 

Property Description 

Data Model Wide column store 

Scalability 
Linear scalability 
across nodes 

Fault Tolerance 
Replication across 
multiple nodes 

Latency 
Low read and write 
latency 
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Figure 1: Apache cassandra 

2.1.3. Envoy Proxy 

Envoy proxy facilitates inter-node communication and data flow regulation (Table 3 and Figure 2). It 
offers layer 7 observability and adaptive load balancing, improving real-time data transmission and 
minimizing network congestion. 

Table 3: Properties of Envoy Proxy 

Property Description 

Protocol Support HTTP/1.1, HTTP/2, gRPC 

Load Balancing Dynamic and adaptive 

Observability Built-in metrics and tracing 

Latency Reduction 
Optimized routing and connection 

pooling 
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Figure 2: Envoy proxy 

2.2. Experimental Procedure 

The experimental setup involved deploying the edge-based bandwidth optimization framework in a 
simulated network environment consisting of 50 edge nodes connected through a hierarchical network 
topology. The hierarchical topology was selected to mirror real-world communication networks, where 
data transmission occurs through multiple layers of interconnected nodes, including edge, aggregation, 
and core layers. This topology reflects the complexity of modern networks, where data traffic flows 
through various levels, creating challenges in managing congestion and optimizing resource allocation 
(Figure 3).  

 

Figure 3:  An Adaptive Congestion Control Optimization 

 

 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.sciencedirect.com%2Forg%2Fscience%2Farticle%2Fpii%2FS1546221824007884&psig=AOvVaw2QB24ILZ-EFyBaD51TjVG8&ust=1742462852476000&source=images&cd=vfe&opi=89978449&ved=0CBcQjhxqFwoTCNjevozqlYwDFQAAAAAdAAAAABAJ
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To test the flexibility and resilience of the suggested system the network was exposed to a variety of traffic 
scenarios such as high-load burst and congestion-prone circumstances. Stressing the systems ability to 
function at peak load high-load scenarios replicated situations in which network traffic hit or surpassed 
80% of the available bandwidth. To mimic unexpected spikes in data transmission such as user surges 
during peak hours or Distributed Denial-of-Service (DDoS) attacks burst traffic was put into place. In 
order to test the systems capacity to identify and reduce congestion through dynamic bandwidth 
reallocation scenarios that were prone to congestion were constructed by selectively overloading particular 
network nodes and links. High-performance programming languages and platforms were used in the 
implementation of the suggested framework to guarantee scalability low latency and real-time flexibility.  

2.3. Methods 

In order to predict network congestion and traffic patterns and enable proactive load balancing the 
AGNN employs graph-based node embeddings. The AFBA mechanism combines the outputs of the 
DQN and AGNN to adjust bandwidth allocation every 100 milliseconds ensuring balanced load low 
packet loss and enhanced network stability. Current centralized and decentralized models are 
outperformed by the proposed framework in terms of packet delivery ratio and bandwidth utilization 
latency reduction. Particularly well-suited for this integrated approach are applications with high demand 
and sensitivity to latency such as industrial IoT and online gaming video streaming.  

2.3.1Deep Q-Network (DQN) 

In order to optimize network efficiency the reward function was designed to give positive rewards for 
balanced load distribution successful packet delivery and low transmission latency. Penalties were 
imposed for irregular resource use higher latency and packet drops. Previous state-action-reward 
experiences were randomly sampled during training and stored in memory by the DQN models 
experience replay mechanism. By preventing correlation between successive training episodes this method 
increased generalization learning stability and effectiveness (Eq 1).  

St={Lt,Pt,Ut,Ct}                        (1) 

 

where: 
Lt = latency at time t 
Pt = packet drop rate at time t 
Ut = bandwidth utilization at time t 
Ct = congestion level at time t 

2.3.2 Attention-Based Graph Neural Network (AGNN) 

By examining real-time traffic patterns among network nodes the Attention-Based Graph Neural Network 
(AGNN) was created to improve the frameworks predictive power. Using a graph-based architecture in 
which each node stood in for an edge device and the edges for network links the AGNN was trained on 
node traffic data. Real-time traffic load packet loss node connectivity and link capacity were among the 
input data. Through the analysis of real-time traffic patterns across network nodes the Attention-Based 
Graph Neural Network (AGNN) increases the accuracy of predictions.  

This defines in (Eq 2) the input graph G=(VE)G = (V E)G=(VE).  

V={v1,v2,…,vn}                   (2) 

where V represents the set of network nodes,  

 

In order to create node embeddings that captured each nodes structural and traffic-related properties the 
AGNN used graph convolutional layers. The networks topology and traffic state were represented in low 
dimensions by the convolutional layers after processing the adjacency matrix and node feature matrix. 
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Based on each nodes traffic load connectivity and congestion levels an attention mechanism was used to 
determine how important each one was. Higher attention weights were given to nodes that had a greater 
impact on network performance or higher traffic volumes enabling the model to concentrate on 
important nodes.  

2.3.3 Adaptive Federated Bandwidth Allocation (AFBA) 

The DQN and AGNN models outputs were combined by the Adaptive Federated Bandwidth Allocation 
(AFBA) mechanism which acted as the decision-making layer and allowed for real-time bandwidth 
allocation modifications. At 100 ms intervals bandwidth was adjusted in response to AGNN predictions 
and real-time network feedback. In order to predict traffic surges and congestion points the AFBA 
mechanism combined the predictions of the AGNN with the output of the DQN which identified 
underutilized and congested links. The systems dual-input architecture enabled it to make well-informed 
choices regarding traffic flow control and bandwidth redistribution. The DQN and AGNN outputs are 
combined by the Adaptive Federated Bandwidth Allocation (AFBA) mechanism to dynamically modify 
bandwidth allocation. AGNN prediction Pt and DQN output QtQ_tQt are combined by the decision 
function as follows (Eq 3).  

Bt=θQt+ϕPt                         (3) 

where: 
Bt = bandwidth adjustment at time t 

θ,ϕ= weight coefficients 

During high-load scenarios, the system allocated extra bandwidth to congested nodes based on AGNN 
predictions (Eq 4): 

              (4) 

where: 
k = scaling factor 

3. RESULTS AND DISCUSSION 

3.1. Bandwidth Utilization Efficiency (BUE) 

As indicated in Table 4 and Figure 4 the suggested systems bandwidth utilization efficiency (BUE) was 
continuously higher than that of the centralized and decentralized models across all network load 
scenarios. In comparison to the centralized models BUE of 76. 5 percent and the decentralized models 
BUE of 82. 4 percent the proposed system achieved a BUE of 89. 2 percent at a network load of 25 
percent. Due to the AGNNs predictive accuracy the suggested system was able to foresee traffic spikes and 
dynamically modify bandwidth allocation guaranteeing effective use of network resources.  

Table 4 : Bandwidth Utilization Efficiency (BUE) Under Different Network Load Conditions 

Network Load 
(%) 

BUE (Proposed) 
BUE 

(Centralized) 
BUE 

(Decentralized) 

25 89.2 76.5 82.4 

50 87.6 72.1 81.2 

75 85.4 68.3 79.6 

100 83.9 65.2 77.4 
 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 1s, 2025 
https://www.theaspd.com/ijes.php 

821 
 

As the network load increased to 50%, the BUE of the proposed system slightly decreased to 87.6%, 
while the centralized and decentralized models showed a more significant drop to 72.1% and 81.2%, 
respectively. The higher BUE under moderate load conditions reflected the ability of the proposed system 
to balance traffic distribution and prevent bottlenecks through real-time learning and adaptive allocation. 
The BUE of the suggested system dropped even more to 85. 4 percent under high traffic conditions (75 
percent load) but it was still much higher than the BUE of the decentralized model (79. 6 percent) and 
the centralized model (68. 3 percent). The suggested system maintained a BUE of 83. 9 percent at full 
capacity (100 percent load) whereas the centralized and decentralized models fell to 65. 2 percent and 77. 
4 percent respectively. Through predictive and adaptive bandwidth allocation the combined DQN and 
AGNN approach effectively maintained balanced load distribution and minimized congestion as 
evidenced by the consistent advantage of the proposed system under varying traffic loads.  

 

 

Figure 4: Bandwidth Utilization Efficiency (BUE) 

 

The proposed system achieved higher bandwidth utilization efficiency across all load scenarios compared 
to existing models. The AGNN’s predictive accuracy enabled preemptive congestion control, resulting in 
balanced load distribution. 

3.3. End-to-End Delay 

 

The effectiveness of data transfer throughout the network under various load scenarios was demonstrated 
by the end-to-end delay values displayed in Table 5. The suggested systems end-to-end delay at 25% 
network load was 45 ms which was much less than the centralized models 58 ms and the decentralized 
models 52 ms. . This reduced delay was a result of the effective path selection and traffic balancing made 
possible by the AGNNs predictive traffic analysis and the DQNs real-time learning. Although the 
suggested systems delay rose to 48 ms when the network load reached 50% it was still less than that of 
the centralized and decentralized models which showed delays of 61 ms and 55 ms respectively. The 
suggested system demonstrated an end-to-end delay of 53 ms at 75% load whereas the centralized and 
decentralized models showed delays of 65 ms and 58 ms respectively. The proposed system outperformed 
the centralized and decentralized models which showed delays of 69 ms and 62 ms respectively by 
maintaining an end-to-end delay of 57 ms at full capacity (100 percent load). The suggested systems ability 
to dynamically modify bandwidth allocation and balance traffic loads based on real-time network feedback 
and AGNN predictions was demonstrated by the lower delay values.  

Table 5: End-to-End Delay Under Different Network Load Conditions 

Network 
Load (%)

BUE 
(Proposed)

BUE 
(Centralized)

BUE 
(Decentralize

d)
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Network Load (%) 
Delay (ms) – 

Proposed 
Delay (ms) – 
Centralized 

Delay (ms) – 
Decentralized 

25 45 58 52 

50 48 61 55 

75 53 65 58 

100 57 69 62 
 

3.4. Packet Delivery Ratio 

Table 6 demosntrates packet delivery ratio (PDR) values showed how dependable and effective the 
suggested system was at guaranteeing successful packet transmission under various load scenarios. In 
comparison to the centralized models PDR of 92. 3 percent and the decentralized models PDR of 95. 4 
percent the proposed system achieved a PDR of 98. 1 percent at a network load of 25%. Predictive traffic 
analysis and adaptive bandwidth allocation allowed the suggested system to minimize packet loss and 
maintain steady transmission rates as evidenced by the higher PDR. The proposed systems PDR dropped 
marginally to 96. 5 percent when the network load reached 50% whereas the centralized and decentralized 
models showed lower PDR values of 89. 7 percent and 94. 1 percent respectively. With a PDR of 94. 7 
percent under 75 percent load the suggested system maintained a considerable lead over the centralized 
and decentralized models which displayed PDR values of 86. 8 percent and 92. 5 percent respectively. 
The suggested system maintained a PDR of 93. 2 percent at full capacity (100 percent load) surpassing 
both the decentralized models 91. 3 percent and the centralized models 84. 5 percent. It was shown that 
the combined DQN and AGNN approach was effective in increasing transmission reliability and 
decreasing packet loss because the suggested system was able to maintain high PDR values under high 
load conditions.  

 

Table 6: Packet Delivery Ratio (PDR) Under Different Network Load Conditions 

Network Load (%) 
PDR (%) – 
Proposed 

PDR (%) – 
Centralized 

PDR (%) – 
Decentralized 

25 98.1 92.3 95.4 

50 96.5 89.7 94.1 

75 94.7 86.8 92.5 

100 93.2 84.5 91.3 
 

3.5. Computational Overhead 

The processing efficiency of the suggested system in relation to the centralized and decentralized models 
was indicated by the computational overhead values shown in Table 7 and Figure 5. The computational 
overhead of the suggested system was 12. 4 ms at a 25 percent network load which was less than the 
overhead of the centralized model (18. 5 ms) and the decentralized model (15. 2 ms. ). This lower 
computational overhead demonstrated how well the DQN and AGNN models processed real-time 
feedback and made adaptive bandwidth allocation decisions. The suggested systems computational 
overhead increased marginally to 13. 2 ms when the network load reached 50% but it was still less than 
that of the centralized and decentralized models which showed overhead values of 20. 3 ms and 16. 8 ms 
respectively.  
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Table 7: Computational Overhead Under Different Network Load Conditions 

Load (%) 
Proposed 

(ms) 
Centralized 

(ms) 
Decentralized 

(ms) 

25 12.4 18.5 15.2 

50 13.2 20.3 16.8 

75 14.8 22.1 18.4 

100 16.5 24.7 20.3 
 

The proposed systems computational overhead rose to 14. 8 ms at 75 percent load whereas the centralized 
and decentralized models displayed higher overhead values of 22. 1 ms and 18. 4 ms respectively. 
Compared to the centralized and decentralized models which recorded overhead values of 24. 7 ms and 
20. 3 ms respectively the suggested system maintained a computational overhead of 16. 5 ms at full 
capacity (100 percent load). The suggested systems effectiveness in handling real-time data and modifying 
bandwidth allocation with little processing latency was shown by the reduced computational overhead. 
Together with the AGNNs predictive traffic analysis and the DQNs experience replay and target network 
updates the suggested system was able to sustain low processing latency even when there was a high load.  

 

Figure 5: Results of Computational Overhead Under Different Network Load Conditions 

4. CONCLUSION 

All evaluated metrics including bandwidth utilization efficiency (BUE) jitter end-to-end delay packet 
delivery ratio (PDR) and computational overhead showed superior performance when the suggested 
adaptive edge-based bandwidth optimization framework was used.  Its maximum BUE was 89. 2 percent 
at 25% load and 83. 9 percent at full load. With jitter reduction values as low as 2. 1 ms under light load 
and 3. 1 ms under heavy load the system demonstrated its ability to reduce transmission variability and 
enhance data flow smoothness. Additionally the end-to-end delay was greatly decreased the suggested 
system continuously outperformed the competing models maintaining a delay of 45 ms at 25% load and 
57 ms at full load. The systems robustness and dependability under fluctuating traffic loads were 
demonstrated by the high packet delivery ratio (PDR) which reached 98. 1 percent at low load and 93. 2 
percent at full capacity. Confirming the effectiveness of the adaptive federated bandwidth allocation 
(AFBA) mechanism the suggested system recorded an overhead of 12. 4 ms at 25% load and 16. 5 ms at 
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full load. The results demonstrate how edge-based intelligent bandwidth management can improve 
network performance and ease congestion in applications that are latency-sensitive and high demand.  
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