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Abstract

This study proposes an adaptive edge-based bandwidth optimization system to enhance network
efficiency, accelerate data transfer, and mitigate congestion. The system leverages a hybrid reinforcement
learning approach integrated with an Adaptive Federated Bandwidth Allocation (AFBA) mechanism to
dynamically manage resources. The Deep Q-Network (DQN) framework optimizes bandwidth allocation
by learning from real-time network fluctuations, while the Attention-based Graph Neural Network
(AGNN) enhances predictive accuracy by analyzing traffic patterns across distributed nodes. The
implementation incorporates Rust for high-performance concurrency, Apache Cassandra for scalable
distributed storage, and Envoy proxy for efficient inter-node communication. Extensive simulations
conducted under dynamic network loads validate the effectiveness of the proposed system. Performance
metrics such as Bandwidth Utilization Efficiency (BUE), jitter, end-to-end delay, and packet delivery ratio
confirm superior adaptability and responsiveness compared to existing centralized and decentralized
models. The results emphasize the advantages of edge intelligence in achieving enhanced scalability,
reduced congestion, and optimized resource allocation, making the proposed approach ideal for high-
demand and latency-sensitive applications.
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1. Intordcution

Dynamic and efficient bandwidth allocation strategies are required due to the exponential growth of
connected devices and our growing reliance on cloud and edge computing infrastructure for real-time
applications. Due to the dynamic nature of contemporary networks traditional bandwidth management
techniques that mainly rely on static allocation or centralized control are ineffective because they
frequently result in latency bottlenecks and needless resource consumption. By combining the adaptive
federated bandwidth allocation (AFBA) mechanism with a hybrid reinforcement learning technique this
studys framework for adaptive edge-based bandwidth optimization gets around these limitations. The
Deep Q-Network (DQN) architecture adjusts bandwidth allocation dynamically based on network
conditions while the Attention-based Graph Neural Network (AGNN) improves prediction accuracy by
analyzing traffic patterns among scattered nodes.

The proposed system is implemented using Rust for high-performance concurrency Apache Cassandra
for scalable distributed storage and Envoy proxy for efficient inter-node communication. By enabling on-
site data processing to protect sensitive information lowering network traffic and server load through local
data processing and guaranteeing uninterrupted operation even in the face of connectivity problems edge
computing satisfies important IoT requirements like privacy latency and connectivity. Some IoT
infrastructures benefit from edge computings ability to process data close to the source which satisfies the
need for decentralization and reduces dependency on centralized systems. Furthermore the introduction
of 5G networks makes it easier for businesses to use edge computing. Human-like behavior by machines
is an example of artificial intelligence (AI) which is having a big impact on peoples lives. A branch of
artificial intelligence called machine learning has enabled machines to carry out tasks like clustering and
classification prediction by employing algorithms that simulate human decision-making.

This ability is further enhanced by deep learning a subset of machine learning which uses ever-more-
complex neural network architectures to solve problems more precisely and intricately. According to
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thorough simulations conducted under dynamic network loads the system outperforms current models
in terms of end-to-end delay reduction jitter control bandwidth utilization and packet delivery ratio.
Effective network edge congestion management and bandwidth optimization have been studied using a
variety of flexible and useful techniques. One study suggested using a cooperative and adaptable signaling
system in conjunction with an intelligent traffic system to reduce traffic. The suggested approach
improved network efficiency and decreased congestion in the face of shifting traffic conditions by
dynamically adjusting traffic flow based on real-time data using edge-based adaptive signaling [1].

Adaptive configuration selection and bandwidth allocation for edge-based video analytics were the
subjects of another study. A learning-based method that dynamically modified bandwidth according to
network traffic patterns was put into practice improving video transmission quality and cutting down on
buffering delays [2]. Researchers have also attempted to integrate artificial intelligence (Al) and Internet
of Things (IoT) networks in an attempt to control data flow and lessen congestion. Al-driven traffic
management is a new technique that reduces packet loss and increases throughput by anticipating
network congestion and dynamically altering data flow [3]. Joint bandwidth distribution and
configuration modification have been found to be effective approaches for edge real-time video analytics.
One method reduced transmission latency and improved video quality under varying network loads by
combining adaptive bandwidth allocation with configuration changes [4].

In order to develop novel congestion control strategies for named data networks (NDNs) deep
reinforcement learning has also been used. A model-based method that optimized resource allocation and
data flow through real-time learning produced better packet delivery and lower latency [5]. Virtual edge
load balancing is another effective way to manage congestion. Congestion-aware load balancing
dynamically changed traffic flow in response to real-time congestion feedback in order to increase network
utilization and decrease transmission delays [6]. Additionally the way routing protocols designed for
wireless sensor networks (WSNs) manage congestion and minimize traffic has been studied. One study
used dynamic routing path adjustments based on network topology and traffic load to propose an efficient
routing protocol that reduced congestion and increased delivery ratio [7]. Enhancing user quality of
experience (QoE) is the aim of adaptive traffic management for residential broadband. A dynamic traffic
management framework that modified data flow in response to network conditions allowed end users to
enjoy faster download speeds and less buffering [8]. Edge-based routers have also been suggested for
adaptive load balancing and congestion control in Internet of Things networks. By dynamically adjusting
load balancing and data flow to network traffic patterns an adaptive edge router improved data
transmission efficiency [9].

Adaptive video streaming has demonstrated encouraging outcomes with learning-based joint QoE
optimization in terms of reducing latency and enhancing video quality. The user experience was improved
under a range of network conditions by an edge-based smart technique that modified video streaming
parameters in response to real-time feedback [10]. Adaptive routing notifications have been proposed as
a way for high-performance interconnection networks to control congestion. Packet loss and network
performance were enhanced by a clever notification-based system that modified routing routes in response
to realtime congestion feedback [11]. Additionally as a potential remedy for network congestion
frameworks for edge-based flow control have been researched. Transmission efficiency was enhanced and
packet drop rates were reduced by an edge flow control mechanism that adjusted data transmission rates
to network load and congestion levels [12].

Its use of congestion feedback for precise load balancing has shown promise in asymmetric topologies.
Due to an adaptive load balancing model that modified traffic flow in response to congestion feedback
throughput and latency increased [13]. Blockchain technology presents a cutting-edge solution for data
congestion and trust problems in automotive networks. By improving data trust and dynamically adjusting
traffic flow a blockchain-based approach can alleviate congestion in vehicle ad hoc networks (VANETs)
[14]. By using a guided pheromone update model that dynamically modified routing paths data delivery
rates were raised and congestion was decreased [15].
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2. MATERIALS AND METHODS

2.1. Material Selection

The proposed system incorporates multiple software and hardware components to achieve high-
performance bandwidth optimization and congestion control. Each material is carefully selected to
enhance computational efficiency, data handling capacity, and real-time responsiveness.

2.1.1. Rust

Rust was chosen as the core programming language due to its memory safety, low-level control over system
resources, and concurrency support (Table 1). Rust’s ownership model and thread-safe architecture enable
high-performance data processing, essential for real-time bandwidth optimization.

Table 1: Properties of Rust

Property Description
Memory Safety Eliminates data races and
memory leaks
Thread-safe, enabling
Concurrency _
parallel processing
Close to C/C++ levels,
Performance i
ensuring low latency
Error Pattern-matching-based
Handling error handling

2.1.2. Apache Cassandra

Apache Cassandra was selected as the distributed database for its high scalability and fault tolerance. It
enables rapid data retrieval and storage, supporting real-time decision-making by the reinforcement
learning model. Table 2 and Figure 1 demonstrate the image nad properties of Apache Cassandra.

Table 2: Properties of Apache Cassandra

Property Description
Data Model Wide column store
Scalability Linear  scalability
across nodes
Fault Tolerance Repl'%cation across
multiple nodes
Low read and write
Latency
latency
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Figure 1: Apache cassandra

2.1.3. Envoy Proxy

Envoy proxy facilitates inter-node communication and data flow regulation (Table 3 and Figure 2). It
offers layer 7 observability and adaptive load balancing, improving real-time data transmission and
minimizing network congestion.

Table 3: Properties of Envoy Proxy

Property Description
Protocol Support HTTP/1.1, HTTP/2, ¢gRPC
Load Balancing Dynamic and adaptive
Observability Built-in metrics and tracing
Latency Reduction Optimized routmg and connection
pooling
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2.2. Experimental Procedure

The experimental setup involved deploying the edge-based bandwidth optimization framework in a
simulated network environment consisting of 50 edge nodes connected through a hierarchical network
topology. The hierarchical topology was selected to mirror real-world communication networks, where
data transmission occurs through multiple layers of interconnected nodes, including edge, aggregation,
and core layers. This topology reflects the complexity of modern networks, where data traffic flows
through various levels, creating challenges in managing congestion and optimizing resource allocation

(Figure 3).
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Figure 3: An Adaptive Congestion Control Optimization
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To test the flexibility and resilience of the suggested system the network was exposed to a variety of traffic
scenarios such as high-load burst and congestion-prone circumstances. Stressing the systems ability to
function at peak load high-load scenarios replicated situations in which network traffic hit or surpassed
80% of the available bandwidth. To mimic unexpected spikes in data transmission such as user surges
during peak hours or Distributed Denial-of-Service (DDoS) attacks burst traffic was put into place. In
order to test the systems capacity to identify and reduce congestion through dynamic bandwidth
reallocation scenarios that were prone to congestion were constructed by selectively overloading particular
network nodes and links. High-performance programming languages and platforms were used in the
implementation of the suggested framework to guarantee scalability low latency and real-time flexibility.

2.3. Methods

In order to predict network congestion and traffic patterns and enable proactive load balancing the
AGNN employs graph-based node embeddings. The AFBA mechanism combines the outputs of the
DQN and AGNN to adjust bandwidth allocation every 100 milliseconds ensuring balanced load low
packet loss and enhanced network stability. Current centralized and decentralized models are
outperformed by the proposed framework in terms of packet delivery ratio and bandwidth utilization
latency reduction. Particularly well-suited for this integrated approach are applications with high demand
and sensitivity to latency such as industrial IoT and online gaming video streaming.

2.3.1Deep Q-Network (DQN)

In order to optimize network efficiency the reward function was designed to give positive rewards for
balanced load distribution successful packet delivery and low transmission latency. Penalties were
imposed for irregular resource use higher latency and packet drops. Previous state-action-reward
experiences were randomly sampled during training and stored in memory by the DQN models
experience replay mechanism. By preventing correlation between successive training episodes this method
increased generalization learning stability and effectiveness (Eq 1).

St={L,P,U,C}J (1)

where:

L. = latency at time t

P, = packet drop rate at time t

U, = bandwidth utilization at time t
C. = congestion level at time t

2.3.2 Attention-Based Graph Neural Network (AGNN)

By examining real-time traffic patterns among network nodes the Attention-Based Graph Neural Network
(AGNN) was created to improve the frameworks predictive power. Using a graph-based architecture in
which each node stood in for an edge device and the edges for network links the AGNN was trained on
node traffic data. Real-time traffic load packet loss node connectivity and link capacity were among the
input data. Through the analysis of real-time traffic patterns across network nodes the Attention-Based
Graph Neural Network (AGNN) increases the accuracy of predictions.

This defines in (Eq 2) the input graph G=(VE)G = (V E)G=(VE).
V={v1,v2,...,vn} 2)

where V represents the set of network nodes,

In order to create node embeddings that captured each nodes structural and traffic-related properties the
AGNN used graph convolutional layers. The networks topology and traffic state were represented in low
dimensions by the convolutional layers after processing the adjacency matrix and node feature matrix.
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Based on each nodes traffic load connectivity and congestion levels an attention mechanism was used to
determine how important each one was. Higher attention weights were given to nodes that had a greater
impact on network performance or higher traffic volumes enabling the model to concentrate on
important nodes.

2.3.3 Adaptive Federated Bandwidth Allocation (AFBA)

The DQN and AGNN models outputs were combined by the Adaptive Federated Bandwidth Allocation
(AFBA) mechanism which acted as the decision-making layer and allowed for real-time bandwidth
allocation modifications. At 100 ms intervals bandwidth was adjusted in response to AGNN predictions
and real-time network feedback. In order to predict traffic surges and congestion points the AFBA
mechanism combined the predictions of the AGNN with the output of the DQN which identified
underutilized and congested links. The systems dual-input architecture enabled it to make well-informed
choices regarding traffic flow control and bandwidth redistribution. The DQN and AGNN outputs are
combined by the Adaptive Federated Bandwidth Allocation (AFBA) mechanism to dynamically modify
bandwidth allocation. AGNN prediction Pt and DQN output QtQ_tQt are combined by the decision
function as follows (Eq 3).

Bt=0Qt+pPt 3)

where:
Bt = bandwidth adjustment at time t

0,b= weight coefficients

During high-load scenarios, the system allocated extra bandwidth to congested nodes based on AGNN
predictions (Eq 4):

B/"" = B, } k - max(P))
)

where:
k = scaling factor

3. RESULTS AND DISCUSSION
3.1. Bandwidth Utilization Efficiency (BUE)

As indicated in Table 4 and Figure 4 the suggested systems bandwidth utilization efficiency (BUE) was
continuously higher than that of the centralized and decentralized models across all network load
scenarios. In comparison to the centralized models BUE of 76. 5 percent and the decentralized models
BUE of 82. 4 percent the proposed system achieved a BUE of 89. 2 percent at a network load of 25
percent. Due to the AGNNSs predictive accuracy the suggested system was able to foresee traffic spikes and
dynamically modify bandwidth allocation guaranteeing effective use of network resources.

Table 4 : Bandwidth Ultilization Efficiency (BUE) Under Different Network Load Conditions

Network Load BUE BUE
(%) BUE (Proposed) (Centralized) | (Decentralized)
25 89.2 76.5 82.4
50 87.6 72.1 81.2
75 85.4 68.3 79.6
100 83.9 65.2 71.4

820



International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 1s, 2025
https://www.theaspd.com/ijes.php

As the network load increased to 50%, the BUE of the proposed system slightly decreased to 87.6%,
while the centralized and decentralized models showed a more significant drop to 72.1% and 81.2%,
respectively. The higher BUE under moderate load conditions reflected the ability of the proposed system
to balance traffic distribution and prevent bottlenecks through real-time learning and adaptive allocation.
The BUE of the suggested system dropped even more to 85. 4 percent under high traffic conditions (75
percent load) but it was still much higher than the BUE of the decentralized model (79. 6 percent) and
the centralized model (68. 3 percent). The suggested system maintained a BUE of 83. 9 percent at full
capacity (100 percent load) whereas the centralized and decentralized models fell to 65. 2 percent and 77.
4 percent respectively. Through predictive and adaptive bandwidth allocation the combined DQN and
AGNN approach effectively maintained balanced load distribution and minimized congestion as
evidenced by the consistent advantage of the proposed system under varying traffic loads.

Figure 4: Bandwidth Utilization Efficiency (BUE)

The proposed system achieved higher bandwidth utilization efficiency across all load scenarios compared
to existing models. The AGNN’s predictive accuracy enabled preemptive congestion control, resulting in
balanced load distribution.

3.3. End-to-End Delay

The effectiveness of data transfer throughout the network under various load scenarios was demonstrated
by the end-to-end delay values displayed in Table 5. The suggested systems end-to-end delay at 25%
network load was 45 ms which was much less than the centralized models 58 ms and the decentralized
models 52 ms. . This reduced delay was a result of the effective path selection and traffic balancing made
possible by the AGNNs predictive traffic analysis and the DQNs real-time learning. Although the
suggested systems delay rose to 48 ms when the network load reached 50% it was still less than that of
the centralized and decentralized models which showed delays of 61 ms and 55 ms respectively. The
suggested system demonstrated an end-to-end delay of 53 ms at 75% load whereas the centralized and
decentralized models showed delays of 65 ms and 58 ms respectively. The proposed system outperformed
the centralized and decentralized models which showed delays of 69 ms and 62 ms respectively by
maintaining an end-to-end delay of 57 ms at full capacity (100 percent load). The suggested systems ability
to dynamically modify bandwidth allocation and balance traffic loads based on real-time network feedback
and AGNN predictions was demonstrated by the lower delay values.

Table 5: End-to-End Delay Under Different Network Load Conditions
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Network Lond (8| B 000 | Cemalied | Decenraid
25 45 58 52
50 48 61 55
75 53 65 58
100 57 69 62

3.4. Packet Delivery Ratio

Table 6 demosntrates packet delivery ratio (PDR) values showed how dependable and effective the
suggested system was at guaranteeing successful packet transmission under various load scenarios. In
comparison to the centralized models PDR of 92. 3 percent and the decentralized models PDR of 95. 4
percent the proposed system achieved a PDR of 98. 1 percent at a network load of 25%. Predictive traffic
analysis and adaptive bandwidth allocation allowed the suggested system to minimize packet loss and
maintain steady transmission rates as evidenced by the higher PDR. The proposed systems PDR dropped
marginally to 96. 5 percent when the network load reached 50% whereas the centralized and decentralized
models showed lower PDR values of 89. 7 percent and 94. 1 percent respectively. With a PDR of 94. 7
percent under 75 percent load the suggested system maintained a considerable lead over the centralized
and decentralized models which displayed PDR values of 86. 8 percent and 92. 5 percent respectively.
The suggested system maintained a PDR of 93. 2 percent at full capacity (100 percent load) surpassing
both the decentralized models 91. 3 percent and the centralized models 84. 5 percent. It was shown that
the combined DQN and AGNN approach was effective in increasing transmission reliability and
decreasing packet loss because the suggested system was able to maintain high PDR values under high
load conditions.

Table 6: Packet Delivery Ratio (PDR) Under Different Network Load Conditions

Network Load (%9 | 'plop04 | Contrlzed | Decentelice
25 98.1 92.3 95.4
50 96.5 89.7 94.1
75 94.7 86.8 92.5
100 93.2 84.5 91.3

3.5. Computational Overhead

The processing efficiency of the suggested system in relation to the centralized and decentralized models
was indicated by the computational overhead values shown in Table 7 and Figure 5. The computational
overhead of the suggested system was 12. 4 ms at a 25 percent network load which was less than the
overhead of the centralized model (18. 5 ms) and the decentralized model (15. 2 ms. ). This lower
computational overhead demonstrated how well the DQN and AGNN models processed real-time
feedback and made adaptive bandwidth allocation decisions. The suggested systems computational
overhead increased marginally to 13. 2 ms when the network load reached 50% but it was still less than
that of the centralized and decentralized models which showed overhead values of 20. 3 ms and 16. 8 ms
respectively.
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Table 7: Computational Overhead Under Different Network Load Conditions

Load (%) Prz);(s))sed Cen(trxr'lasl)ized Dece(rrlrt;a)llized
25 12.4 18.5 15.2
50 13.2 20.3 16.8
75 14.8 22.1 18.4
100 16.5 24.7 20.3

The proposed systems computational overhead rose to 14. 8 ms at 75 percent load whereas the centralized
and decentralized models displayed higher overhead values of 22. 1 ms and 18. 4 ms respectively.
Compared to the centralized and decentralized models which recorded overhead values of 24. 7 ms and
20. 3 ms respectively the suggested system maintained a computational overhead of 16. 5 ms at full
capacity (100 percent load). The suggested systems effectiveness in handling real-time data and modifying
bandwidth allocation with little processing latency was shown by the reduced computational overhead.
Together with the AGNNSs predictive traffic analysis and the DQNs experience replay and target network
updates the suggested system was able to sustain low processing latency even when there was a high load.

100

75

Load (%) Proposed (ms) Centralized (ms) Decentralized (ms)

Figure 5: Results of Computational Overhead Under Different Network Load Conditions
4. CONCLUSION

All evaluated metrics including bandwidth utilization efficiency (BUE) jitter end-to-end delay packet
delivery ratio (PDR) and computational overhead showed superior performance when the suggested
adaptive edge-based bandwidth optimization framework was used. Its maximum BUE was 89. 2 percent
at 25% load and 83. 9 percent at full load. With jitter reduction values as low as 2. 1 ms under light load
and 3. 1 ms under heavy load the system demonstrated its ability to reduce transmission variability and
enhance data flow smoothness. Additionally the end-to-end delay was greatly decreased the suggested
system continuously outperformed the competing models maintaining a delay of 45 ms at 25% load and
57 ms at full load. The systems robustness and dependability under fluctuating traffic loads were
demonstrated by the high packet delivery ratio (PDR) which reached 98. 1 percent at low load and 93. 2
percent at full capacity. Confirming the effectiveness of the adaptive federated bandwidth allocation
(AFBA) mechanism the suggested system recorded an overhead of 12. 4 ms at 25% load and 16. 5 ms at
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full load. The results demonstrate how edge-based intelligent bandwidth management can improve
network performance and ease congestion in applications that are latency-sensitive and high demand.
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