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Abstract 
High-resolution imagery is essential for critical applications such as environmental monitoring, urban planning, and 
disaster response, where accurate details support informed decision-making. However, limitations in available imaging 
systems for public use and resource constraints often result in low-resolution satellite images lacking the necessary 
detail. Super-resolution (SR) methods have emerged to address these limitations, with deep learning approaches like 
Generative Adversarial Networks (GANs) and Transformer-based models offering promising results. This study 
investigates a GAN-focused SR approach, linking Real-ESRGAN with Transformer-based methods such as SwinIR to 
obtain higher-resolution usable images. Real-ESRGAN’s multi-scale discriminators and Residual-in-Residual Dense 
Blocks (RRDB) effectively capture complex textures and mitigate noise, making it suitable for high-detail satellite 
imagery. Our results demonstrate significant improvements in image clarity and overall perceptual quality, supporting 
applications requiring precise, high-resolution images. 
Keywords: Super-Resolution; Image Enhancement; Geospatial Imagery; GAN; ESRGAN; SwinIR; Transformer 
Models; Image Quality. 
 
INTRODUCTION 
The very rationale of this research paper, "Super-Resolution of Geospatial Images Using Enhanced 
GANs," is supported with the need for high-resolution satellite imagery in the applications of 
environmental monitoring, urban planning, and disaster response whose operations greatly rely on 
images that are more precise and detailed. From those applications, particularly image quality turns into 
a matter of fundamental importance to help decide analysis of land cover, following environmental 
changes, and understanding infrastructure of urban areas. Satellite images lack the necessary resolution 
due to limitations in capabilities, adverse atmospheric conditions, and scarce resources, thus making it 
difficult to acquire good visuals. These traditional SR techniques, like bicubic and bilinear interpolation, 
attempted to achieve an enlarged version with their approximations of the missing pixel values. Though 
such methods were easy to implement, however they frequently produced outputs that blurred images or 
failed to preserve rich details of intricate textures. On this count, these initial Super Resolution (SR) 
techniques could not be applied for applications requiring high resolution images. The development of 
Convolutional Neural Networks (CNNs) marked a big breakthrough in the field of SR, allowing models 
like SRCNN to learn mappings from low-to-high resolution images with extensive training on paired 
datasets. However, despite the leap forward in the use of CNN-based SR, this method suffers from low-
frequency detail capture, hence making its applications restricted in the fields of remote sensing and 
medical imaging, where fine textures and details are very crucial. GANs brought a paradigm shift in SR 
technology, with GANs employing an architecture of a generator-discriminator network where the 
generator produces synthetic images at high resolution, while the discriminator aims to distinguish 
between real and synthetic images. Such an adversarial setup puts pressure on the generator to produce 
sharper images with more natural textures. Recently, works such as SwinIR have begun to model local 
and global dependencies within an image using self-attention mechanisms that promise to bring a new 
revolution in the SR task. Transformer models demonstrated their potential in processing large structural 
variations characteristic for application such as satellite imagery. This work will leverage the real-ESRGAN 
along with SWIN IR to form an improved GAN model to fulfil particular high-resolution requirements 
for satellite imagery, especially at variable terrain and environmental conditions. The rationale of 
choosing Real-ESRGAN alongside transformer-based approach alternatives, such as SwinIR, is due to the 
former's better ability to retain high-frequency details; hence, in order to capture complex textures and 
reduce real-world image degradations like noise and blurring.  
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Related Work 
Traditional SR Methods: 
Interpolation and the low-level techniques of super-resolution tried to increase the resolution of an image 
by filling in missing data based on data from surrounding pixels. Bicubic, bilinear, or other interpolative 
procedures are rather simple but often produce very blurry and grainy images with very poor detail. Such 
methods rely on simple mathematical assumptions and cannot reproduce or generate complex textures, 
useful mostly in high-fidelity applications like geospatial analysis, where fine details and intricate patterns 
are important[16]. 
The Emergence of CNN-Based SR Models: 
The development of Convolutional Neural Networks (CNNs) was an important milestone in the history 
of SR technology because CNNs enabled models to learn feature mappings between low and high-
resolution images, making models better approximations of complex details. The earlier CNN-based 
models, known as SRCNN[6], paved the path for applying CNNs in SR and depict better quality images. 
The more advanced architectures of SRCNN led to two more versions: VDSR (Very Deep Super-
Resolution)[3] and EDSR (Enhanced Deep Super-Resolution)[3], using deeper layers and residual 
connections in order to reserve more detailed information and achieve a better quality of  
images generally. 
Though VDSR and EDSR showed impressive progress, they still failed to reproduce realistic textures and 
fine-grained details, particularly in the satellite imagery, where fine details are of utmost importance for 
applications such as land cover analysis and infrastructure mapping in cities. CNN-based SR models were 
decent but frequently failed to reproduce fine grain textures created in complex geospatial images. 
Progress by GANs: 
The second big advancement in SR was the development of GANs, which have changed the SR paradigm 
by applying adversarial training to develop sharper and more realistic images. In models such as 
SRGAN[2], the GAN framework includes a generator that generates high-resolution images and a 
discriminator that classifies the input as real or generated, thereby forcing the generator to develop 
sharper, more natural textures. It was able to produce images with very high resolutions by better 
capturing the high-frequency components than CNN-only models. To improve SRGAN, ESRGAN 
introduced Residual-in-Residual Dense Blocks to preserve subtle texture better and remove artifacts. 
Additionally, ESRGAN employed a perceptual loss, calculated using a pre-trained VGG network, which 
gives more importance to perceptual quality than the pixel-wise accuracy to account for human visual 
perception[4]. This improvement further made ESRGAN highly effective for applications that need high 
fidelity in terms of textures, such as satellite imaging, where minute details really matter. 
Transformer-Based SR Models: 
Some promising alternatives recently have been proposed based on the Transformer architecture. For 
instance, SwinIR relies on self-attention mechanisms, capturing local and global dependencies across large 
regions of an image [7]. Transformers may be more capable to attend to spatial relationships across a 
broader context, and such capabilities would be beneficial when the dependency between pixels is very 
large in images. SwinIR resorts to the blocks of Swin Transformer to handle different structures 
effectively, making it as competitive as any other option within the field of SR. 
Focus of the Study on Real-ESRGAN: 
Comparing against the later comparison, the work demonstrates that real-ESRGAN, which is the more 
recent GAN model with refinement, is superior to the new challenges that have been set by satellite image 
SR. Real-ESRGAN can provide fine textures and high-frequency details under the help of multi-scale 
discriminators and the RRDB architecture so that it is actually viable for real-world degradations, such as 
noise and blurring in images[13]. This is very important for satellite imagery, where resolution output 
depends on the extents of downstream applications in mapping, environmental analysis, and all urban 
planning. 
Proposed Method 
This work explores the utility of Real-ESRGAN, or Enhanced Super-Resolution Generative Adversarial 
Networks and a Transformer-based model, which is SwinIR toward enabling high-fidelity image 
enhancement geospatial image based on specific requirements. It is opted due to its strong performance 
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in achieving high quality images and addressing complex features from satellite imagery. This research 
strives to output high resolution toward supporting geospatial downstream applications in mapping, land 
classification, and environmental monitoring. 
Dataset Preparation 
The dataset applied for this research is taken from Kaggle [16] which has around 200,000 images of which 
we used 5,000 images for training, and all of them were carefully prepared to provide a wide array of 
environmental conditions; hence, it would enable the model to generalize through different geospatial 
conditions. Such that in arrangement: 
High-Resolution Images (Ground Truth): This uses 1000 images as ground truth. These were high-
quality images since they are set as the target output meant to evaluate. 
Artificially degraded training images 4000:  Degradations simulating practical challenges commonly 
experienced in satellite imagery are added to the images provided for training. The following degradations 
are applied to the low-resolution images to improve the model's flexibility in dealing with common image 
degradation seen in satellite data. 
Noise Addition and Blurring to simulate atmospheric interference and other environmental impacts, 
simulating the common challenges encountered in satellite imagery. All images within the dataset have 
metadata available relating to the type of terrain, weather conditions, and information about acquisition. 
This metadata would be useful to determine performance through various environmental conditions and 
ensure the Real-ESRGAN product outputs are correct under multiple geospatial contexts. 
 
Model Architecture 
For the model we have used both Real ESRGANs and SWIN models. Of the two models SWIN comes 
pre trained and training is done only on Real ESRGANs. The architecture of Real-
ESRGAN is specifically developed to handle intricate textures and details critical for geospatial 
applications; it is distinguished from other SR models. It mainly consists of four parts [13]: 
Degradation Modeling: 
The data given to the model is degraded in two steps. Thus the training data does not require degraded 
images. The degradation is built such that it simulates various types of noise [13]. 
U-net Discriminator: 
The discriminator part of GAN is built on spectral normalization [13].  
Synthetic data training: 
The training is done on the synthetic data generated by the degradation model. 
Artifact Reduction with Sinc Filters:  
Real-ESRGAN incorporates "sinc filters" in the degradation process to simulate and address common 
artifacts. The sinc filter can be defined as  
 
𝑘(𝑖, 𝑗) =  

𝜔𝑐

2𝜋√𝑖2+𝑗2
 𝐽1(𝜔𝑐  √𝑖2 + 𝑗2)                     (1) [13] 

where (i, j) is the kernel coordinate; ωc is the cutoff frequency; and J1 is the first order Bessel function of 
the first kind. 

Fig1: Real – ESRGAN block diagram 
 
The network architecture of SwinIR is described in their documentation as following[7]  
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Shallow Feature Extraction:  
A 3x3 convolution extracts basic features from the low-quality input. 
Deep Feature Extraction:  
Stacked Residual Swin Transformer Blocks (RSTBs) with shifted windows model long-range 
dependencies and include residual connections for stability. 
Image Reconstruction:  
Combines shallow and deep features; uses sub-pixel convolution for up sampling or a simple convolution 
for denoising. 
Task-specific Loss:  
Uses L1 loss for super-resolution and Charbonnier loss for denoising and artifact reduction 

 
Figure2: SwinIR Architecture 
Using outputs from both the models we intend to build a system where the strong points of these models 
can be used. Once the models are trained the outputs are overlayed to preserve most of the features. The 
input images can be taken from the user interface.  
Training Procedure 
We trained Real-ESRGAN using the procedure listed in the project. Following the steps, we reduced the 
number of epochs and training data due to limitations in computing power. The training data consisted 
of 5000 satellite images on 2000 epochs. The original model was trained on animated images and we 
trained it on satellite images. The training took approximately 6 hours on a GPU of size 8 gigabytes. The 
training could be faster if a more powerful computer was used as the procedure requires lot of computing 
power.  
Inference Process 
We have inferred the models using python scripts [13]. The code sourced included these scripts. Inference 
can be done by downloading pre trained models. We used a pre trained model for SwinIR [7] and used 
the trained model for Real – ESRGAN. For the resultant image we overlayed the outputs given by both 
the models. The output from the Real – ESRGAN model can be used inherently. The output from the 
other model requires some preprocessing before being used to produce the resultant image. The output 
from the SwinIR model have a yellowish tint due to the nature of the input images from the dataset, thus 
we adjusted the intensity value of blue to reduce this yellowness. One of the output images transparencies 
is reduced to 0.5 and overlayed on the other. Since SwinIR produces an output of varying size we resize 
the image and shift it slightly such that the features align perfectly.   
We used an image of moderate quality as an input for the first test case. The output is an image with 
increased resolution and more sharper features. An image of lower quality is used in the second test case. 
The output is an image with better quality and the noise in the image is reduced. These scripts are 
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connected to a user interface built with Streamlit framework in python. Once an image is uploaded the 
script is run in the terminal. The UI can only take one image input at a time and can be further improved 
to take multiple inputs.  
Evaluation Metrics 
There are several evaluation metrics using which we can compare the input and resultant images. The 
traditional techniques used to compare the quality of the images require both the images to be of same 
size. With our solution the images are of different size. There are two ways evaluate the output. With the 
first method we can resize the input image using traditional resizing techniques and compare the output 
from the models. This method might be inconsistent as all the output images are not the same size. 
With the second method we can train deep learning models to evaluate the image. This can take a lot of 
time and computing power. Due to the lack of resources we stick to visual comparison of images. 
Comparison of Images 
 

                                                           Image 1: moderate resolution image 
 
The image has been upscaled to a factor of 4. There is minimal loss of features on visual observation. 
Though the image has a light-yellow tint. Minute details are also preserved which can be observed. 
 

 
 
Image 2: Resultant Image 
 
Results 
The models have produced an enhanced image which is 4 times the size of the original image. The features 
and quality are preserved on a visual basis. There is a major enhancement in images that have a lot of 
noise and are distorted. The models could allow us to build a larger dataset for other purposes. 
Challenges: Using two models required a lot of computing power the time taken to enhance each image. 
The time taken to receive results is around 10 minutes per image. We are using computer with limited 
computing power and graphics processing power.   
 



International Journal of Environmental Sciences 

ISSN: 2229-7359 

Vol. 11 No. 11s, 2025 

https://theaspd.com/index.php 

 

100 

 

CONCLUSION 
This paper highlights the contributions of Real-ESRGAN and SwinIR in enhancing the quality of satellite 
imagery. These models Were versatile and adaptable, making them suitable not only for satellite images 
but also for training across various other domains of images. Both models have delivered good results 
when applied to satellite imagery. Real-ESRGAN employs a GAN-based approach, which is particularly 
effective in generating high-quality image enhancements. SwinIR, on the other hand, leverages the power 
of Swin Transformers to achieve remarkable results in image restoration and super-resolution. 
Future research in this domain is expected to focus on optimizing these models to reduce their 
computational requirements. This optimization will enable deployment for real-time processing, making 
them viable for time-sensitive projects such as disaster monitoring, urban planning, and environmental 
tracking. Another key area of improvement lies in the development of user-friendly interfaces. By 
enhancing the interface, users can gain greater flexibility and control, such as the ability to choose between 
Real-ESRGAN and SwinIR based on their specific requirements. Allowing users to select the model that 
best suits their needs could significantly reduce the processing time, making the system more efficient and 
accessible for diverse use cases. 
Additionally, integrating options for customized parameter adjustments could empower users to fine-tune 
outputs to their liking, ensuring the models cater to a broader spectrum of user preferences and 
application scenarios. These advancements will broaden the scope of these models and pave the way for 
their integration into various industries requiring high-quality image enhancement, further solidifying 
their role as indispensable tools in image processing and analysis. 
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