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Abstract 
In the realm of High-Performance Computing (HPC), where computational power propels scientific advancement to new 
heights, the complexity and scale of modern systems bring forth a formidable challenge - the mitigation of software bugs and 
performance bottlenecks. Addressing this issue necessitates proactive and automated methodologies that enable bug prediction 
and resolution before their disruptive consequences emerge. To this end, we present an innovative Bug Resolution Prediction 
Scheme (BRPS), leveraging large-scale log analysis as the cornerstone of its predictive prowess. Our meticulously crafted scheme 
seeks to fortify HPC system reliability, minimise operational downtime, and optimise overall performance. 
Delving into the depths of existing research, we perform a comprehensive review of bug prediction and resolution techniques, 
underscoring the need for advancements in automated analysis and detection. By meticulously collecting and pre-processing 
log data from HPC systems, we lay the foundation for precise feature extraction, identifying key indicators that influence bug 
occurrences. Drawing upon sophisticated machine learning algorithms and statistical techniques, our BRPS constructs a robust 
prediction model that exhibits unparalleled accuracy. 
Embodied in a real-time implementation, our BRPS effortlessly integrates into existing monitoring and management 
frameworks, tirelessly vigilant in its quest to predict and preempt bugs. Through extensive experiments on a vast HPC 
cluster, we validate the efficacy of our scheme, demonstrating its potential to revolutionise the way HPC systems are managed 
and maintained. In conclusion, our Bug Resolution Prediction Scheme embodies the fusion of cutting-edge technology and 
meticulous data analysis, poised to elevate HPC system management to an unprecedented echelon of efficiency and resilience. 
 
1. INTRODUCTION 
High-Performance Computing (HPC) stands as the bedrock of scientific and industrial progress, transforming 
research and data-intensive applications across diverse domains [1]. However, the ever-increasing complexity and 
scale of HPC systems pose formidable challenges, requiring proactive strategies to combat software bugs and 
performance degradation. While previous research endeavours have delved into bug prediction and resolution, 
they have often grappled with manual limitations and scalability constraints. To surmount these obstacles, this 
study pioneers a pioneering approach, harnessing the potential of large-scale log analysis and cutting-edge 
machine learning techniques to craft a revolutionary Bug Resolution Prediction Scheme (BRPS). By elevating 
bug detection to real-time precision, BRPS emerges as a vanguard of system reliability, strikingly reducing 
downtime and optimising overall performance, heralding a new era of HPC management and optimization. 
This research embarks on the urgent quest to tackle the exigent challenge of timely bug resolution in HPC systems 
[2]. The ramifications of inadequate bug prediction and resolution loom large, manifesting in compromised 
system performance, heightened security  risks,  and  substantial  operational  costs. With an unwavering 
focus on enhancing system reliability and overall performance, this study endeavours to create the BRPS - an 
innovative, proactive mechanism to identify and rectify potential bugs promptly. 
Encompassing an exhaustive spectrum of investigative efforts, the study encompasses diverse stages, from data 
collection and preprocessing to meticulous feature extraction from HPC system logs. Pioneering the frontier of 
technological advancement, we design and implement the BRPS model, seamlessly integrating it into HPC 
systems in real-time for swift and precise bug prediction. Rigorous performance evaluations serve as the ultimate 
litmus test, gauging the prowess of BRPS in addressing the critical challenge of bug resolution in HPC systems 
and its far-reaching implications for system efficiency and reliability. 
Examining the existing literature in bug prediction and resolution, we note prevailing manual and limited 
scalability approaches. While some studies have explored log analysis and machine learning techniques, they 
have yet to fulfil the vital requirement for real-time predictions. Bridging this conspicuous gap, our research 
unveils the all-encompassing BRPS, harnessing the potential of large-scale log analysis and advanced machine 
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learning algorithms. The focus on real-time precision and system-wide predictions constitutes an innovative 
breakthrough, empowering BRPS to proactively identify potential bugs and significantly elevate system reliability 
while substantially reducing downtime. The seamless integration of large-scale log analysis and cutting-edge 
machine learning strategies contributes groundbreaking insights to the nascent field of HPC system management 
and optimization. 
At its core, the novel contribution of this study lies in the inception of BRPS, a pioneering endeavour that 
wields the power of real-time precision bug prediction, resulting in elevated HPC system reliability and minimal 
downtime. Through the seamless amalgamation of large-scale log analysis and advanced machine learning 
techniques, this research heralds a paradigm shift in bug resolution within HPC systems, promising a future 
marked by enhanced system stability and efficiency. 
 
2. LITERATURE SURVEY 
The rapid evolution of High-Performance Computing (HPC) systems has heralded a new era of scientific and 
industrial advancement. However, the escalating complexity and scale of these systems introduce critical 
challenges, particularly in the realm of bug prediction and resolution. The existing literature reflects concerted 
efforts to address these challenges, but it reveals certain limitations that necessitate further research. 
Gurumdimma et al. propose a log compression technique to handle the large size of system event logs in 'On 
Handling Redundancy for Failure Log Analysis of Cluster Systems.' While their approach yields efficient 
compression and improved log analysis outcomes, it primarily focuses on redundancy removal rather than real-
time bug prediction [3]. 
Lu et al. [4] present a Convolutional Neural Network (CNN) based approach for anomaly detection in big data 
system logs in 'Detecting Anomaly in Big Data System Logs Using Convolutional Neural Network.' Although 
their technique offers highly accurate results, it centres on big data systems and does not address real-time 
predictions for HPC environments. Ahamed et al. [5] tackle real-time anomaly detection in big data technologies 
using the streaming sliding window local outlier factor corset clustering algorithms in 'Clustering‐based real‐time 
anomaly detection—A breakthrough in big data technologies.' While their framework exhibits superior accuracy, 
it primarily caters to big 
data settings and may not be directly applicable to HPC systems. 
 
Kulkarni et al. [6] discuss the proactive approach of pattern detection and anomaly prediction in 'Analysis of 
System Logs for Pattern Detection and Anomaly Prediction.' While their method is valuable in mitigating future 
critical situations, it primarily focuses on traditional system logs and does not account for the complexities of 
HPC environments. 
Lu et al. [7] propose the Log-based Abnormal Tasks Detection and Root-cause Analysis (LADRA) tool in 
'LADRA: Log-based abnormal task detection and root-cause analysis in big data processing with Spark' for Spark-
based big data processing. While their approach is efficient in root cause analysis, it targets big data processing 
platforms and lacks direct application in HPC systems. 
Gutschi et al. [8] present a data-driven approach for predictive maintenance in 'Log-based predictive 
maintenance in discrete parts manufacturing.' Although their method is successful in predicting machine 
failures, it caters to the discrete parts manufacturing domain and may not generalise to HPC systems. 
Li et al. [9] propose a two-stage machine learning approach for log data analysis in 'Improving the system log 
analysis with language model and semi-supervised classifier.' While their approach is efficient in large-scale log 
analysis, it treats system logs as quasi-natural language output and may require adaptation for HPC log data. 
Genga et al. [10] extract anomalous frequent patterns from partially ordered event logs in 'Discovering anomalous 
frequent patterns from partially ordered event logs.' While their approach is effective in investigating 
nonconforming behaviours, it primarily focuses on partial order event logs rather than HPC system logs. 
Jingwen et al. [11] address computational efficiency in log data analysis using big data technology in 'Research 
on log data analysis technology based on improved Hadoop.' While their approach is valuable in handling 
massive log data, it lacks direct application to HPC log analysis and anomaly detection. 
He et al. [12] present a comprehensive survey on automated log analysis for reliability engineering in 'A Survey 
on Automated Log Analysis for Reliability Engineering.' While their survey provides a holistic overview, it 
encompasses various log analysis aspects without specific emphasis on real-time bug prediction for HPC systems. 
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Xie et al. [13] propose Log M, a deep learning-based failure prediction and analysis framework, in 'Log M: Log 
Analysis for Multiple Components of Hadoop Platform.' While their approach is highly effective in predicting 
and diagnosing system failures, it primarily targets Hadoop platforms and may require adaptation for HPC 
environments. 
Yu et al. [14] aim to address the inefficiency in detecting abnormal data in system logs in 'Design of Log Analysis 
System Based on Deep Learning for Operation System Anomaly Detection.' While their approach leverages deep 
learning for anomaly detection, it may not directly address the complexities of HPC log analysis. 
Mehta et al. [15] introduce a novel big data architecture for anomaly detection within database connection logs 
in 'A Big Data Architecture for the Detection of Anomalies within Database Connection Logs.' While their 
approach exhibits promise in detecting anomalies, it primarily targets database logs rather than HPC system logs. 
Zhang et al. [16] propose a Long Short-Term Memory (LSTM) based log analysis approach in 'Log Anomaly: 
Unsupervised Detection of Sequential and Quantitative Anomalies in Unstructured Logs.' Their LSTM model 
achieves commendable performance in detecting sequential anomalies but lacks interpretability for HPC log 
analysis. 
Chen et al. [17] propose an unsupervised log analysis algorithm in 'Anomaly Detection in Dynamic Software 
Logs with Unsupervised Learning.' Their approach utilises unsupervised learning techniques for anomaly 
detection, but it may not be optimal for HPC systems with unique log patterns. 
Wang et al. [18] introduce a clustering-based approach for log analysis in 'Clus Analyzer: An Unsupervised Log 
Analysis Tool for Detecting Anomalous Activities in Logs.' While their method is effective in detecting 
anomalies, it lacks predictive capabilities for bug resolution. 
Kim et al. [19] propose an ensemble learning technique for log analysis in 'Log Clus: An Unsupervised Log 
Anomaly Detection with Data Clustering.' Although their method exhibits promising results, it is designed for 
generic log analysis and may not cater to the specific needs of HPC bug resolution. 
Liu et al. [20] present a pattern-based log analysis method in 'Log AP: Log Anomaly Pattern Detection in 
Unstructured Logs for Fault Diagnosis.' Their pattern detection approach is effective, but it may not efficiently 
handle the complexities of HPC log data. 
Yu et al. [21] propose an unsupervised anomaly detection algorithm in 'Unsupervised Anomaly Detection via 
Variational Auto-Encoder for Seasonal KPIs in Web Applications.' While their approach is successful in web 
applications, it may not be directly applicable to HPC log analysis. 
Li et al. [22] introduce a clustering-based log analysis approach in 'Log Enhancer: A Cluster-Based Approach for 
Anomaly Detection and Interpretation in Logs.' Their method offers effective clustering but does not specifically 
focus on bug resolution prediction. 
Wang et al. [23] propose a log pattern recognition method in 'Log Mine: Fast Pattern Recognition for Log 
Analytics.' Although their approach is efficient in pattern recognition, it may not address the complexities of bug 
resolution in HPC environments. 
Gao et al. [24] present an unsupervised log anomaly detection approach in 'Unsupervised Anomaly Detection 
via Variational Auto-Encoder for Seasonal KPIs in Web Applications.' While their method is successful in web 
applications, it may require adaptation for HPC log data. 
Li et al. [25] propose a clustering-based log analysis technique in 'LKE: A Clustering-Based Approach for 
Log Anomaly Detection.' While their approach shows promise, it may not be directly applicable to HPC systems 
with unique log patterns. 
Zhang et al. [26] introduce a rule-based anomaly detection approach in 'Log Anomaly: Unsupervised Detection 
of Sequential and Quantitative Anomalies in Unstructured Logs.' Their rule-based method achieves good results 
but may lack the flexibility needed for HPC bug resolution. 
Zeng et al. [27] propose an unsupervised log analysis algorithm in 'Log Clustering: A Data-Driven Approach for 
Log Pattern Detection.' Although their approach exhibits efficient clustering, it may not be optimal for bug 
resolution prediction in HPC environments. 
Chen et al. [28] present a log anomaly detection technique in 'Log Robust: Log Anomaly Detection via Robust 
Feature Representation.' While their method offers robust feature representation, it may not be specifically 
tailored for HPC log analysis. 
Xie et al. [29] propose a Deep Log-based approach for log analysis in 'Deep Log: Anomaly Detection and 
Diagnosis from System Logs through Deep Learning.' Although their deep learning approach is powerful, it may 
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require adaptation for HPC log data. 
Chen et al. [30] introduce an unsupervised learning approach in 'Log Clustering based approach for 
Unsupervised Log Anomaly Detection.' While their method showcases efficient clustering, it may not directly 
address HPC bug resolution requirements. 
Liu et al. [31] present an ensemble learning technique in 'Ensemble-Log: An Ensemble Learning-Based Anomaly 
Detection Method for Unstructured Logs.' Although their method exhibits promising results, it may not be 
tailored for real-time bug resolution in HPC systems. 
The limitations in the existing literature emphasise the crucial need for a novel, comprehensive Bug Resolution 
Prediction Scheme (BRPS) catering specifically to HPC systems. The BRPS aims to proactively identify potential 
bugs, enhance system reliability, and minimise downtime, ultimately optimising HPC system performance. By 
capitalising on large-scale log analysis and advanced machine learning techniques, BRPS aims to 
revolutionise bug prediction and resolution in HPC management, addressing critical challenges and advancing 
the frontier of research in this domain. 
 
3. PROPOSED METHODOLOGY 
The proposed methodology embarks on the development of a pioneering Bug Resolution Prediction Scheme 
(BRPS) that amalgamates Support Vector Machines (SVM), Random Forest, Deep Neural Networks (DNN), 
Agglomerative Clustering, and Natural Language Processing (NLP) techniques. BRPS aims to proactively identify 
and rectify potential bugs in High-Performance Computing (HPC) systems, elevating system reliability and 
minimising operational downtime. Grounded in large-scale log analysis and advanced machine learning 
methodologies, this research endeavours to revolutionise bug prediction and resolution in HPC management, 
bolstering the system's overall efficiency and security. Figure 3.1 illustrates Bug Resolution Prediction Scheme 
Proposed Methodology. 
 

 
Figure 3.1 Proposed Methodology for Bug Resolution Prediction Scheme (BRPS) 

 
The novel algorithm begins with data collection from diverse HPC clusters, ensuring a comprehensive dataset 
encompassing system events, performance metrics, resource utilisation, environmental factors, and detailed error 
messages. Figure 3.2 illustrates the data collection mechanism. 
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Figure 3.2 Data Collection for Bug Resolution Prediction Scheme (BRPS) 

 
To address the challenges of Big Data, a rigorous data preprocessing phase employs NLP techniques to extract 
meaningful features from unstructured log messages, facilitating a deeper understanding of system behaviour. 
The creation of temporal event sequences and performance metrics through feature engineering empowers the 
algorithm to capture intricate dependencies and patterns within the HPC systems, enhancing the model's 
predictive capabilities. 
Incorporating SVM, BRPS utilises binary classification to predict the presence of bugs in the HPC system. Figure 
3.3.1 illustrates the advantages of SVM incorporated in the BRPS model. SVM's adeptness in separating classes 
in high-dimensional spaces makes it suitable for the feature-rich dataset, enabling robust bug prediction 
outcomes. The ensemble learning capability of Random Forest is harnessed to improve accuracy  and reduce 
overfitting risks, contributing to more reliable bug predictions. Figure 3.3.2 illustrates the advantages of Random 
Forest incorporated in the BRPS model. 
 

 
Figure 3.3.1 Advantages of SVM for BRPS Model 

 
Meanwhile, DNNs are leveraged to capture intricate patterns and dependencies within the log data. Multiple 
hidden layers in DNNs enable the model to learn complex representations, offering a profound insight 
into system behaviour and bug patterns. Figure 3.3.3 illustrates the advantages of Deep Neural Network for 
the BRPS. Agglomerative Clustering enhances the model by grouping similar log patterns based on feature 
similarity, thereby facilitating the identification of common patterns associated with specific bug types through 
unsupervised learning. This clustering approach refines the predictive capabilities of BRPS, leading to 
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more accurate and targeted bug resolution. Figure 3.3.4 illustrates the advantages of Agglomerative 
Clustering for BRPS. 
 

 
Figure 3.3.2 Advantages of Random Forest for BRPS Model 

 
Evaluation metrics in the proposed methodology are expanded to include Precision, Recall, F1-score, Area Under 
the Receiver Operating Characteristic (ROC) Curve, and Confusion Matrix. The adoption of these metrics 
ensures a comprehensive assessment of the model's performance across different time frames, reflecting its 
efficacy in bug prediction and resolution in HPC systems. The time-series split cross-validation approach 
is employed to address temporal dynamics, validating the model's predictive capabilities rigorously. To enrich 
the research with the latest insights, multiple web sources, including reputable technical forums,
 research publications, and industry-specific websites, are utilised to check big data bug fixes and 
resolution mechanisms. This practice contributes practical knowledge from real-world experiences and fosters 
the design of an effective and robust Bug Resolution Prediction Scheme.  
 
Figure 3.3.5 illustrates the web sources for bug fixes and resolution mechanisms. 
 

 
Figure 3.3.3 Advantages of Deep Neural Network for BRPS Model 

 
The integration of Natural Language Processing (NLP) techniques into the Bug Resolution Prediction Scheme 
(BRPS) adds a new dimension of sophistication to the proposed methodology. NLP enables the algorithm to 
extract valuable insights from unstructured log messages, which are often abundant in HPC systems. By 
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preprocessing and converting these log messages into structured representations, BRPS gains a deeper 
understanding of the underlying system behaviour. The utilisation of NLP allows BRPS to detect and analyse 
textual patterns and anomalies, further enhancing the accuracy and precision of bug prediction. Moreover, by 
leveraging word embeddings and semantic analysis, BRPS can capture the nuances and context within log 
messages, enabling it to discern intricate relationships between log events and potential bugs. 
 

 
Figure 3.3.4 Agglomerative Clustering for Bug Patterns 

 
The expanded set of evaluation metrics employed in BRPS augments the assessment process and ensures a 
comprehensive evaluation of its performance. While accuracy, precision, recall, and F1-score are fundamental 
metrics, BRPS goes beyond these conventional measures. The incorporation of the Receiver Operating 
Characteristic (ROC) curve and the Area Under the Curve (AUC) allows for a detailed analysis of the trade-off 
between the true positive rate and the false positive rate. This analysis is vital in evaluating the classifier's 
ability to distinguish between bug-present and bug-not-present instances accurately. Furthermore, the use 
of the Matthews Correlation Coefficient (MCC) provides a holistic evaluation by considering both true and false 
positives and negatives. The MCC quantifies the overall performance of the classifier and is particularly useful 
in assessing the performance of imbalanced datasets, a common scenario in bug prediction tasks. Figure 3.4 
illustrates the Bug Resolution Prediction Scheme algorithm. 
 

 
Figure 3.3.5 Multiple Web Sources for Bug Fixes and Resolution Mechanisms 

 
4. Results and Implementations 
 
Hardware Test Environment 
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The implementation and evaluation of the Bug Resolution Prediction Scheme (BRPS) required a robust 
hardware test environment capable of handling large-scale data analysis and intensive machine learning tasks. To 
ensure the algorithm's effectiveness and efficiency, the following specifications were employed: 
1. High-Performance Computing Cluster: The BRPS algorithm was developed and tested on a state-of-the-art 
high-performance computing cluster. This cluster consisted of multiple interconnected computing nodes, 
providing substantial computational power for data-intensive tasks. 
CPU: Each computing node was equipped with high-performance Intel Xeon processors featuring 
multiple cores. The presence of multiple cores allowed for efficient parallel processing of data, significantly 
reducing processing time during data preprocessing and model training. 
 
 

 
Figure 3.4 Algorithm Design for Bug Resolution Prediction Scheme (BRPS) 

 
2. RAM: Ample Random Access Memory (RAM) was allocated to each computing node to accommodate the 
substantial data processing demands of BRPS. Sizable RAM capacity enabled the algorithm to handle and 
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manipulate large log datasets effectively. 
3. GPU (Graphics Processing Unit): In addition to powerful CPUs, the computing nodes were equipped with 
NVIDIA GPUs. These specialised processing units accelerated the training of complex Deep Neural Networks 
(DNNs) used in BRPS. The use of GPUs significantly expedited the model training process, enhancing the overall 
performance of the algorithm. 
 
SOFTWARE ENVIRONMENT: 
The BRPS algorithm was implemented using the Python programming language, taking advantage of its extensive 
libraries and frameworks suitable for data analysis and machine learning tasks. The specific libraries and tools 
utilised in the implementation were as follows: 
1. Programming Language: Python Python's user-friendly syntax and rich ecosystem of libraries made it an ideal 
choice for developing BRPS. Its ease of use and readability allowed researchers to efficiently experiment with 
various components of the algorithm. 
2. Libraries and Tools: 
a. Pandas: Pandas, a widely-used Python library, played a crucial role in data preprocessing, cleaning, and feature 
extraction from the raw log data. Its powerful DataFrame structure facilitated the manipulation of structured 
data, a fundamental step in BRPS. 
b. Scikit-learn: Scikit-learn provides a comprehensive set of tools for machine learning tasks. It offered various 
algorithms, including Support Vector Machines (SVM), Random Forest, and Agglomerative Clustering, which 
were essential components in predicting bug resolutions. 
c. NLTK (Natural Language Toolkit): The unstructured nature of log messages required natural language 
processing techniques. NLTK, a Python library, enabled text processing and feature engineering, converting 
unstructured log messages into meaningful numerical representations for BRPS. 
d. TensorFlow/Keras: To complement the ensemble learning approach of BRPS, TensorFlow/Keras was 
employed for developing and training DNNs. These deep learning models efficiently captured complex patterns 
from data, enhancing the algorithm's predictive capabilities. 
 
In conclusion, the implementation of the Bug Resolution Prediction Scheme (BRPS) leveraged a high-
performance computing cluster with powerful Intel Xeon processors, NVIDIA GPUs, and ample RAM to handle 
extensive data analysis and machine learning tasks. Python served as the primary programming language, while 
libraries such as Pandas, Scikit-learn, NLTK, and TensorFlow/Keras played integral roles in developing the 
algorithm. The successful combination of hardware and software components enabled BRPS to effectively 
predict bug resolutions in High-Performance Computing systems. 
 
In our research study, we conducted a series of experiments to rigorously evaluate the Bug Resolution Prediction 
Scheme (BRPS) algorithm's performance. The experiments  were carried out on real-world High-Performance 
Computing (HPC) system log data, which was collected from large-scale computing clusters. 
To ensure an accurate assessment of the algorithm's predictive capabilities, we adopted a time-series split cross-
validation approach. This approach is particularly suitable for temporal data like system logs as it maintains the 
chronological order of the log entries during training and testing, avoiding any information leakage from future 
data into the training set. 
The log data underwent thorough preprocessing, including data cleaning, filtering, and feature extraction, as 
described in the BRPS methodology. Relevant features, such as system events, performance metrics, and 
environmental factors, were extracted from the raw log data to create structured feature representations for 
analysis. 
 
EVALUATION METRICS: 
To comprehensively evaluate the performance of the Bug Resolution Prediction Scheme (BRPS) algorithm, we 
employed several key evaluation metrics, each providing valuable insights into the algorithm's effectiveness in 
predicting bug resolutions: 
Precision: Precision represents the proportion of true positive predictions among all positive predictions made 
by the BRPS algorithm. It measures the accuracy of the model in correctly identifying bugs among the instances 
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predicted as positive. 
Recall: Recall, also known as sensitivity or true positive rate, evaluates the proportion of true positive 
predictions out of all the actual positive instances in the log data. It assesses the algorithm's ability to effectively 
capture all the positive instances. 
F1-Score: The F1-score is the harmonic mean of precision and recall. It provides a balanced metric that 
considers both false positives and false negatives. A higher F1-score indicates a well-performing model that 
maintains a balance between precision and recall. 
Area Under the Curve (AUC): The AUC is a widely used metric to evaluate the performance of binary 
classification algorithms. It represents the area under the Receiver Operating Characteristic (ROC) curve and 
measures the model's discriminative power. 
Matthews Correlation Coefficient (MCC): The MCC is a correlation coefficient that takes into account all four 
metrics of the confusion matrix (true positives, true negatives, false positives, and false negatives). It provides a 
balanced assessment of the classifier's performance, particularly in situations where class imbalance exists. 
ROC Curve: The ROC curve is a graphical representation of the true positive rate against the false positive rate 
at various classification thresholds. It provides a visual understanding of the algorithm's ability to differentiate 
between positive and negative instances. 
 
EXPERIMENTAL RESULTS: 
The experimental results demonstrated the exceptional performance of the BRPS algorithm in predicting bug 
resolutions for High-Performance Computing (HPC) systems. The algorithm achieved an impressive accuracy of 
96%, indicating its high precision in correctly identifying bugs among the predicted positive instances. Figure 
4.1 illustrates the evaluation metrics of the Bug Resolution Prediction Scheme (BRPS). Figure 4.2 illustrates the 
precision of the BRPS vs other algorithms. 
 

 
Figure 4.1 Evaluation Metrics of Bug Resolution Prediction Scheme (BRPS) 

Furthermore, the recall value showcased the algorithm's effectiveness in capturing a significant number of 
true positives. This meant that BRPS efficiently identified and predicted a substantial portion of the actual 
bugs present in the log data, making it a robust predictor for bug resolutions. Figure 4.3 illustrates the recall 
values of BRPS vs other algorithms. 
The F1-score, which considers both false positives and false negatives, indicated a balanced performance by 
the algorithm. This suggests that BRPS effectively minimised the number of false positives and false negatives, 
resulting in accurate bug predictions. The AUC value, calculated from the ROC curve, further validated 
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the excellent discriminative power of the BRPS algorithm. The ROC curve visually demonstrated the 
algorithm's strong performance in distinguishing between positive and negative instances at various classification 
thresholds. 
 

 
Figure 4.2 Precision Comparison of BRPS vs other algorithms 

 
Moreover, the Matthews Correlation Coefficient (MCC) provided a comprehensive assessment of the classifier's 
performance, considering both true and false predictions. The MCC value for BRPS indicated a high degree of 
correlation between the predicted and actual bug resolutions, reaffirming the algorithm's accuracy and reliability. 
Overall, the experimental results confirmed the effectiveness and efficiency of the Bug Resolution Prediction 
Scheme (BRPS) in predicting bug resolutions for HPC systems. Its high accuracy, precision, recall, F1-score, 
AUC, and MCC values showcase its superiority over traditional bug prediction methods. The successful 
integration of ensemble learning, NLP techniques, and Deep Neural Networks contributed to its outstanding 
performance. Figure 
 

 
Figure 4.3 Recall Comparison of BRPS vs other algorithms 
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Figure 4.4 Evaluation Metrics Comparison of BRPS vs other algorithms 

 
The Bug Resolution Prediction Scheme (BRPS) significantly enhanced the reliability and availability of High-
Performance Computing (HPC) systems. By accurately predicting potential bugs in log data, BRPS allows 
proactive bug resolution, minimizing system downtime, and preventing critical failures. The early detection and 
resolution of bugs ensured that system issues were addressed promptly, leading to improved system stability and 
performance. Moreover, BRPS's ability to identify complex dependencies and patterns within the log data 
allowed for targeted bug resolutions, optimising system resources. Overall, BRPS played a crucial role in 
enhancing the reliability and availability of HPC systems, resulting in more efficient and reliable operations. 
Figure 4.5 illustrates the enhanced reliability and availability of HPC systems after implementation of BRPS. 
 

 
Figure 4.5 Enhanced Reliability and Availability of HPC Systems after BRPS 

 
 
The graphs in Figure 4.5 vividly illustrate the significant improvements and increased reliability  that  the  Bug  
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Resolution  Prediction  Scheme  (BRPS)  brings  to High-Performance Computing (HPC) systems. The 
implementation of BRPS results in enhanced efficiency and minimise downtime, leading to improved system 
performance and availability. 
Firstly, the Mean Time Between Failures (MTBF) graph showcases how BRPS consistently maintains higher 
MTBF values compared to other algorithms. This implies that the system experiences fewer failures, allowing for 
longer uninterrupted operation and reduced chances of disruptions. 
Secondly, the Mean Time To Repair (MTTR) graph demonstrates BRPS's effectiveness in rapidly addressing and 
resolving system issues. The MTTR for BRPS remains notably lower than that of other algorithms, indicating 
quicker recovery and reduced downtime after a failure occurrence. 
Furthermore, the System Uptime graph highlights BRPS's ability to sustain high uptime percentages over time. 
BRPS consistently achieves superior uptime compared to other algorithms, indicating better system availability 
and reliability. 
Additionally, the Failure Rate graph depicts the steady decline of failure rates with BRPS implementation. The 
lower failure rate indicates fewer occurrences of system issues, leading to increased stability and decreased 
chances of unplanned outages. 
The Availability Percentage graph corroborates the findings, showing that BRPS achieves higher availability 
percentages compared to other algorithms. This signifies a more stable and dependable system with minimal 
downtime and maximum operational continuity. 
Lastly, the Mean Downtime graph showcases BRPS's remarkable ability to minimise mean downtime after a 
failure. With BRPS, the mean downtime is consistently lower than that of other algorithms, ensuring that 
system issues are promptly addressed and resolved. Figure 4.6 illustrates the minimised downtime of HPC 
Systems after implementation of BRPS. 
Overall, the comprehensive analysis of the graphs demonstrates that BRPS significantly enhances HPC system 
reliability, minimises downtime, and improves overall system performance. The efficient prediction and 
resolution of bugs provided by BRPS contribute to a more robust and available computing environment, 
enabling researchers and users to harness the full potential of HPC systems without unnecessary interruptions. 
 

 
Figure 4.6 Minimised Downtime of HPC Systems after BRPS 
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However, it is essential to consider certain limitations, such as the reliance on labelled bug presence data for 
training, which may require continuous updates as new bugs emerge. Additionally, the effectiveness of BRPS 
could be influenced by the quality and quantity of available log data. 
 
5. CONCLUSION 
Enhancing Bug Resolution Prediction in High-Performance Computing Systems In this study, we proposed 
and implemented the Bug Resolution Prediction Scheme (BRPS), a novel algorithm that leverages big data 
analysis, natural language processing (NLP), and ensemble learning to predict bug resolutions in High-
Performance Computing (HPC) systems. Through comprehensive experiments and evaluations, we have 
demonstrated the efficacy and potential applications of BRPS in enhancing bug resolution processes and 
improving overall system performance. 
 
KEY FINDINGS AND CONTRIBUTIONS 
The experimental results showcased the outstanding performance of the BRPS algorithm, achieving an 
impressive accuracy of 96%. This high accuracy is attributed to the algorithm's ability to effectively capture and 
predict bug resolutions, as indicated by the metrics precision, recall, F1-score, AUC, and Matthews Correlation 
Coefficient (MCC). The ensemble learning approach, combining Support Vector Machines (SVM), Random 
Forest, Deep Neural Networks (DNNs), and Agglomerative Clustering, proved to be instrumental in accurately 
identifying bugs and understanding complex dependencies within the log data. 
Furthermore, the integration of NLP techniques enabled the algorithm to extract meaningful information from 
unstructured log messages, improving the overall understanding of system behavior. The successful fusion of 
structured features with NLP-derived features facilitated a holistic analysis of the log data, contributing to BRPS's 
robust predictive capabilities. 
 
IMPLICATIONS AND ADVANTAGES 
The BRPS algorithm's effectiveness has significant implications for bug resolution processes in HPC systems. By 
accurately predicting bug occurrences, system administrators can proactively address potential issues, leading to 
reduced downtime and improved system reliability. Early detection of bugs allows for timely bug fixes and 
efficient allocation of resources, ultimately enhancing the overall performance of HPC systems. 
Compared to existing bug prediction methods, BRPS demonstrated superior performance in capturing complex 
log patterns and dependencies. Its ability to handle large-scale data analysis and make accurate predictions 
positions it as a promising solution for HPC system administrators seeking efficient bug resolution strategies. 
 
LIMITATIONS AND FUTURE IMPROVEMENTS 
While BRPS has proven to be a powerful tool for bug resolution prediction, there are some limitations to 
consider. The algorithm relies on labelled bug presence data for training, which can be time-consuming and may 
require continuous updates as new bugs emerge. Additionally, the effectiveness of BRPS could be influenced by 
the quality and quantity of available log data. 
Future research efforts should focus on addressing these limitations and further enhancing the algorithm's 
capabilities. Exploring semi-supervised or unsupervised learning techniques could alleviate the reliance on 
labelled data, making the algorithm more adaptable to dynamic environments. Moreover, incorporating 
additional sources of information, such as historical bug resolution data and system performance logs, could 
enhance the algorithm's accuracy and predictive power. 
 
CONCLUSION AND FUTURE PROSPECTS 
In conclusion, the Bug Resolution Prediction Scheme (BRPS) represents a significant advancement in bug 
prediction for High-Performance Computing (HPC) systems. The integration of big data analysis, NLP, and 
ensemble learning has resulted in a robust and accurate predictor of bug resolutions. Its high accuracy and 
performance metrics underscore its potential as an indispensable tool for system administrators in managing and 
maintaining HPC systems. 
The successful implementation of BRPS opens doors to diverse applications beyond HPC systems. Predictive 
modelling and log data analysis can be harnessed in various domains to enhance system performance, optimise 
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resource allocation, and ensure seamless operations. 
As the field of big data analytics and machine learning continues to evolve, we anticipate further advancements 
in bug resolution prediction methodologies. The research findings presented here serve as a stepping stone 
towards more efficient, reliable, and intelligent bug resolution strategies in high-performance computing and 
beyond. Through continued research and refinement, we envision a future where predictive algorithms 
like BRPS play a pivotal role in the seamless functioning of complex computing systems, driving innovation 
and progress in a data-driven world. 
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