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Abstract: Wheat is a staple food for many people around the world, and detecting diseases affecting wheat 
plants is crucial to maintain food security and sustainable agriculture practices. Wheat leaf diseases are 
the most crucial ones that affect crop production, and a method for efficient identification and 
classification of these diseases is important. Early diagnosis and precise classification of these diseases are 
critical in applying appropriate management strategies and maintaining crop health. Nevertheless, 
available techniques to identify and categorize disease typically tend to fall short due to issues with data 
deficit and computational pressure. To tackle these problems, this study proposes a hybridization of the 
machine learning models with the metaheuristic optimization models to enhance the performance of the 
existing algorithms. This new framework implements some well-known ML approaches such as Support 
Vector Macine(SVM), Random Forest(RF), and K-Nearest Neighbors(K-NN) together with metaheuristic 
optimization methods such as Ant Colony Optimization (ACO), Genetic Algorithm (GA), and Particle 
Swarm Optimization (PSO). Through feature engineering and advanced parameter tuning, this 
framework aims to improve the accuracy, precision, and efficiency of wheat disease classification systems, 
enabling more effective disease management strategies. 

Keywords: Wheat Crop Disease Detection, Machine Learning, Metaheuristic Optimization Techniques, 
Disease Classification 

1.INTRODUCTION: 
In recent years, however, the agricultural industry has encountered several challenges, crop diseases being 
some of the most significant threats to food security and economic sustainability. Wheat is amongst the 
crops most susceptible to the majority of diseases, such as rust (leaf rust, stripe rust and stem rust), 
powdery mildew, smut and blight, which cause severe yield losses. Timely identification and management 
of these diseases are essential for sustainable agriculture and minimizing crop loss. Disease detection in 
the traditional way is based on manual inspection by experts, which is a labor-intensive, time-consuming 
and error-prone process. These limitations underscore the need for technologies that are efficient enough 
to produce accurate, effective and  scalable solutions.    

This makes machine learning a technology that can be used not only to find and process complex 
datasets, but also to make accurate predictions. In agriculture, for example, these techniques can analyze 
input data from pictures, sensors, and environmental influences to see patterns that can help predict 
crop diseases. Although many metaheuristics can be used for the fine tuning of models, the performance 
of these models primarily depends on features selection, hyperparameters tuning and data preprocessing 
(which can also be facilitated by metaheuristics). Millions of complex optimization problems are solved 
worldwide using bio-inspired metaheuristic algorithms (GA, PSO, ACO) and so on. These algorithms 
employ natural behaviors like evolution, swarming, and hunting to effectively sample and exploit search 
spaces. In this research, innovative machine learning models are combined with metaheuristic algorithms 
to improve wheat disease detection. Our proposed framework makes use of state-of-the-art feature 
engineering techniques with smart parameter tuning methods which enhances the efficiency and accuracy 
of disease classification of wheat plant. Through the integration of these computational methods, this 
research strives to mitigate the drawbacks posed by the conventional process of disease identification and 
classification in order to combat the difficulties incurred in the accurate recognition of wheat diseases. 
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Results like accuracy, precision, Recall, and F1Score were used in evaluating the performance of the 
hybrid method against traditional techniques. The paper goes on to adopt different optimization 
techniques like genetic algorithms, particle swarm optimization, and ant colony optimization in 
conjunction with intelligent classifiers such as SVM, K-NN and RF. Performance metrics such as accuracy, 
precision, recall, and F1-score were used to evaluate the effectiveness of the integrated approach compared 
to conventional methods. This research leverages hybrid metaheuristic techniques, including GA, PSO, 
and ACO, integrated with state-of-the-art machine learning algorithms such as SVM, K-NN, and RF. 

This study provides an advanced analysis of wheat crop disease detection by using a hybrid metaheuristic 
strategy for machine learning. Section 1 discusses the background on wheat crop diseses along with rapid 
development of agricultural research and technologies. The Section 2  discusses the existing 
methodologies and optimization strategies in wheat disease detection that will provide a framework for 
the proposed methodology highlights the importance of early disease detection in wheat crops and the 
transformative role of machine learning in agriculture. Section 3 outlines the preprocessing steps and 
methodology, focusing on the hybrid metaheuristic algorithms used in the detection model. Section 4 
presents the setup of experiments along with the requisites of hardware and software. Results are 
presented in Section 5 along with a discussion which gives observations related to the effectiveness of the 
model. Finally, Section 6 provides a conclusion to the research by summarizing what has been contributed 
and pointing out how it may be relevant to furthering precision agriculture. 

2. LITERATURE REVIEW: 

The use of hybrid metaheuristics with machine learning and deep learning is something new in the field 
of agricultural intelligence, especially concerning the detection of diseases in wheat crops and yield 
estimation. Promising results have been obtained by using convolutional neural networks (CNNs), 
metaheuristic feature selection, model tuning, and ensemble learning. The present review scrutinizes 
recent works where machine learning/deep learning models are combined with optimization algorithms 
like PSO, GA, and DE in the role of extracting features, tuning hyperparameters, and ensuring 
classification accuracy. There is no doubt that these factors have strengthened their weaknesses; at the 
same time, they have posed new challenges for them: the challenge of finding a solution with a high 
degree of realism in practice and diversity in datasets.  

Studies suggests that hybrid strategies with metaheuristics have enhanced accuracy of prediction, 
performance, and agricultural productivity. Nevertheless, this method faces formidable challenges in 
scalability, cross-dataset generalization, and practical applications. For example, Taji et al. (2024) were 
able to attain an accuracy rate of 92.8% in classifying plant diseases with a metaheuristic CNN ensemble 
but did not test their approach’s scalability within multi-crop systems. Similarly, Zhang et al. (2024) 
incorporated MSC-db3(23)-GWO-SVM with a great deal of precision, however, they faced challenges with 
moderate stages of certain diseases, as well as problems replicating their findings. In the same manner, El-
Kenawy et al. (2024) attained 94.7% accuracy on separating crops and their weeds through optimization 
parallel AlexNet. Still, they were unable to offer a more comprehensive universal applicability of the 
methodology as no other tested feature extractors were available. 

(Raja and Nargunam, 2024; Seyedmohammadi et al. (2023), which showed promising results but had 
limited validation on extensive datasets or practical trials. Farooqui et al. (2024) proposed a CNN-RNN 
model for plant disease classification, but did not carry out comparison with other deep learning 
techniques. Kolipaka and Namburu (2024) had implemented optimized DBN, LSTM, and CNN model 
for disease prediction and performed no real-world stress testing. Srinivas et al. Aim: Davis et al. (2023) 
proposed the KHbRF model for crop disease detection, with reduced error rates, but scalability on large 
datasets has not yet confirmed. 

Mishra and Goel (2024) conducted a theoretical review of metaheuristics but lacked empirical validation 
on agricultural datasets. Reis and Turk (2024) integrated deep learning with ensemble models for wheat 
disease detection but failed to address scalability and deployment frameworks. Khan et al. (2024) 
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optimized SVM kernel functions with PSO, GA, and DE, achieving 94.9% accuracy but overlooking 
deployment in diverse environments. Bharathi and Manikandan (2024) utilized hybrid CNN, LSTM, and 
DTCNN models for crop yield prediction but lacked scalability and external validation.  

Pan and Chen (2024) used CNN, RNN, GAN, and GA-PSO for crop yield prediction and pest detection 
but faced impractical computational requirements for real-world use. Abdel-salam et al. (2024) proposed 
FMIG-RFE with K-means clustering optimized by ICOA but did not address scalability and feature 
interaction analysis. Ashwini and Sellam (2024) introduced a 3D-CNN-RNN model for corn leaf disease 
detection but failed to compare results with stateof-the-art models. Finally, Chithambarathanu and 
Jeyakumar (2024) developed an ensemble deep learning model that lacked scalability and real-time testing. 
Table 1, compare the studies discussed above with some of crucial parameters. Table 1 presents a 
comparison of the studies discussed above based on several critical parameters. 

Table1: Comparison of Literature Reviews 

Author(s) and Year Dataset ML/DL 
Algorithms 
Applied 

Techniques 
Applied 

Key Results and Gaps 

Taji et al. (2024) Apple and maize 
plant disease 
datasets 

Hybrid CNN-
based 
ensemble with 
metaheuristic 
optimization  

Feature 
extraction using 
CNN and LBP;  

92.8% accuracy. Limited 
scalability across diverse 
crops and conditions. 

Sugumar and 
Suganya (2023) 

Multispectral 
images via UAV 

Kernel 
Modified 
SVM, NB, 
KNN, K-
Means, RF 

Noise removal, 
PCA for feature 
selection 

Improved classification 
accuracy. Limited crop 
variety and hardware 
details. 

Zhang et al. (2023) Cotton spectral 
data 

SVM 
optimized with 
GA, GS, PSO, 
GWO 

Wavelet analysis 
(mexh, db3); 
MSC hybrid 
optimizations 

91.2% accuracy. Tools 
unspecified, poor 
performance on 
intermediate disease levels. 

El-Kenawy et al. 
(2024) 

Wheat and weed 
drone images 

Voting 
classifier (NN, 
SVM, KNN) 

AlexNet feature 
extraction 

94.7% accuracy. Limited 
alternative feature 
extraction architectures. 

Raja and Nargunam 
(2024) 

Wheat leaf 
disease dataset 

MFO-based 
RBFNN 

Histogram of 
Oriented 
Gradients 

94.33% accuracy. Limited 
cross-dataset 
generalizability. 

Farooqui et al. 
(2024) 

Public crop 
disease datasets 

H-C-RNN with  Image filtering,  High accuracy. Lacks 
comparative evaluation 

Kolipaka and 
Namburu (2024) 

Environmental 
and crop yield 
datasets 

DBN, LSTM, 
RNN, CNN 
with DOSP 
optimization 

Data cleaning, 
statistical feature 
extraction 

Better MAE reduction. No 
real-world field testing 
insights. 
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Rajasekhar et al. 
(2024) 

Rice leaf disease 
dataset 

SMbRF, DL-
SVM, DTL, 
DNN-TL 

Mean shift 
segmentation; 
lesion  

99.29% accuracy. Limited 
scalability to diverse crops 
and diseases. 

Srinivas et al. (2023) PlantVillage 
image dataset 

Krill Herd-
based Random 
Forest 

Preprocessing, 
texture feature 
extraction 

Improved metrics. No large-
scale validation or real-time 
scalability. 

Reis and Turk 
(2024) 

Wheat disease 
datasets 

Integrated DL 
and ensemble 
learning 

Deep feature 
extraction, 
ensemble 
classification 

High accuracy. Limited 
scalability and 
generalization framework. 

Khan et al. (2024) 302 wheat 
genotypes with 
14 attributes 

Polynomial, 
Sigmoid 
Kernels, PSO 
optimization 

Weighted 
Accuracy 
Ensemble 
(EWA),  

94.9% accuracy. Limited 
dataset diversity and 
deployment scenarios. 

Bharathi and 
Manikandan (2024) 

Agricultural yield 
datasets 

1D-CNN, 
LSTM, 
DTCNN 

Autoencoder High accuracy. No real-
world validation or 
scalability testing. 

Pan and Chen 
(2024) 

Agricultural, 
climate, and pest 
datasets 

CNN, RNN, 
LSTM, GAN, 
Hybrid GA-
PSO 

Synthetic data 
generation 
(GANs), hybrid 
optimization 

97.5% accuracy. High 
computational costs, no 
hardware details. 

Abdel-salam et al. 
(2024) 

Environmental 
and agricultural 
datasets 

SVM 
optimized with 
ICOA 

Hybrid feature 
selection, data 
normalization, 
K-means 
clustering 

Improved MAE, RMSE, R². 
Limited analysis on feature 
interaction. 

Ashwini and Sellam 
(2024) 

Maize_in_field, 
KaraAgro AI 
datasets 

3D-CNN, 
RNN, LSTM, 
JSWOA 

MaxPooling3D 
layers, JSWOA 
feature selection 

Above 90% accuracy. Lacks 
comparison with competing 
DL models. 

Chithambarathanu 
and Jeyakumar 
(2024) 

Crop disease 
image datasets 

Attention-
based Bi-
LSTM, RNNs, 
O-DNN with 
ABC-CPOA 

Bilateral 
Filtering, 
Gamma 
Correction, 
Multiple Feature 
Extractors 

High metrics. Limited to 
MATLAB environment; no 
real-time testing. 

 

This analysis synthesizes the findings from existing research on agricultural technology applications. The 
integration of advanced optimization algorithms with machine learning systems demonstrates measurable 
improvements in identifying crop diseases and forecasting yields. However, challenges persist in scaling 
these systems, ensuring consistent performance across diverse datasets, and implementing them in 
farming environments. Further investigations should focus on evaluating these frameworks using 
expanded datasets, validating results under field conditions, and benchmarking against alternative 
approaches to bridge existing gaps. 
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3. DATA COLLECTION, PREPROCESSING & METHODOLOGY: 

This section details the systematic approach for classifying wheat diseases, structured into four phases as 
shown in Figure 1: 

 

Figure 1: Classification in Phases 

Figure 2, illustrates the workflow, beginning with data collection and concluding with model selection. 
The dataset is divided into training (70%) and testing (30%) subsets. Optimization algorithms are then 
incorporated to enhance model performance, with evaluation conducted using metrics such as 
classification accuracy, precision-recall curves, and F1-scores. During the testing phase, the same 
preprocessing protocols are applied to maintain consistency. 

 

Figure 2: Methodology for the present research 

 

 

 

Data Acquisition  

(Wheat Leaf Images) 

 

Data Augmentation, 

Rotation, Filtering 

Data balancing, 

Normalization, 

Brightness Adjust 

Model Training 

SVM, K-NN, RF 

Data Splitting 

(Train/Test Split) 
Training Data 

Performance 

Evaluation( Accuracy, 

Precision, Recall 

Metaheuristic 

Optimization(GA, 

PSO,ACO)  

Comparison of  

Models Performance  

Select Best Model 

and Deployment 

END 

Testing Data 



International Journal of Environmental Sciences  
ISSN: 2229-7359 
Vol. 11 No. 5S, 2025 
https://www.theaspd.com/ijes.php 

 

481 
 

3.1 Dataset collection: 

Data acquisition is a crucial step in any successful machine learning study.  This study used a publicly 
available dataset containing wheat leaf images representing both healthy and diseased specimens. The 
primary dataset, sourced from Ethiopian agricultural fields (Getachew, 2021), included 208 Stripe Rust 
samples, 102 healthy leaves, and 97 Septoria-infected leaves. To improve diversity, supplementary images 
were aggregated from open-access repositories such as Mendeley Data and NIAID’s public portal. The 
final compiled dataset contained 7,500 images spanning various disease categories (e.g., Brown Rust, 
Fusarium Head Blight, Loose Septoria) and healthy samples. High-resolution imaging ensured precise 
symptom capture, which is a critical factor for model accuracy (Deng et al., 2024). Figure 3, shows 
representative samples from the three classes in the dataset. 

 

Figure 3: Random Images taken from sample dataset  

As previously mentioned this study aims to develop a framework for the early identification and 
classification of wheat crop diseases. Among the most impactful foliar diseases is wheat rust, which 
manifests in three primary forms: 

I. Yellow Rust (Stripe Rust): A fungal pathogen affecting all growth stages, prevalent in cooler 
climates. This  reduces the grain weight, size, and quantity per spike. 

II. Brown Rust (Leaf Rust): The most widespread variant, damaging leaf sheaths and glumes under 
favorable conditions and diminishing grain yield per plant. 

III. Black Rust (Loose Smut): A globally destructive strain causing shriveled grains and reduced 
kernel counts, particularly in warmer regions. It infects stems, spikes, and glumes. Figure 3 
illustrates the morphological distinctions between these rust types. 
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Figure 4: A sample of three major leaf rust disease of wheat crop 

3.2. Data Preprocessing: 

Raw images acquired from field or controlled environments often contain noise and imperfections that 
degrade the machine learning performance. Additionally, small and imbalanced datasets necessitate 
preprocessing and augmentation to improve model robustness. These steps enhance the feature visibility 
and reduce noise-induced inconsistencies. Key preprocessing stages include noise removal, normalization, 
and augmentation to enhance robustness and generalization of the ML models. 

Noise Reduction: Gaussian filtering smooths images by applying a kernel weighted by pixel proximity. 
The kernel’s intensity distribution follows a Gaussian function and the weights are determined by the 
Gaussian function:  

                               w(x,y) = (1/(2πσ²)) * exp(-(x²+y²)/(2σ²))                                                (i) 

where `σ` is the standard deviation, that determines the width of the Gaussian kernel. Larger values of 
`σ` result in a wider kernel, averaging over a larger neighborhood and producing stronger smoothing 
effects.   

Augmentation: To mitigate the limited data, synthetic variations of existing images are generated while 
preserving disease-specific features. Techniques include: 

Rotation: Images were rotated within a range (e.g., ±15°) using affine transformations. This simulates the 
natural variations in leaf orientation. The goal is to create a more diverse and representative training 
dataset, enhance the model's ability to learn robust features and generalize to unseen data (Farooqui et 
al. 2022). The rotation can be mathematically represented by a rotation matrix: 

                      R(θ) = | cos(θ) -sin(θ) |,       | sin(θ) cos(θ) |                                                   (ii) 
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where θ is the rotation angle in rad.  Applying this rotation matrix to the coordinates (x, y) of each pixel 
in the image generates new coordinates (x', y'): 

                     | x' | | cos(θ) -sin(θ) | | x |,    | y' | = sin(θ) cos(θ) | * | y |                                   (iii) 

 

Flipping: Horizontal/vertical mirroring doubles dataset size without altering disease markers. The new 
coordinates (x', y') and intensity I'(x', y') after horizontal flipping are: 

x' = width - x – 1, y' = y, I'(x', y') = I(x, y)                                                           (iv) 

where 'width' is the width of the image in pixels. The '-1' accounts for zero-based indexing of pixels in 
many image processing libraries. The intensity value I(x, y) remains unchanged after flipping. 

Class Balancing: SMOTE synthesizes minority-class samples by interpolating feature-space neighbors, 
thereby reducing overfitting compared to duplication. 

Normalization: Pixel values are scaled to [0, 1], and techniques such as contrast adjustment, brightness 
correction, and mix-up augmentation are applied. During training, one of eight randomized 
enhancements is selected per iteration via hyperparameter tuning, thereby improving generalization. 
Figure 4 shows these transformations in the yellow rust sample. 

 

Figure 5: Impact of Eight Data Augmentation Techniques: (a) Original image, (b) Random angle 
rotation, (c) Random cropping and resizing, (d) Horizontal flip, (e) Vertical flip, (f) Brightness 

modification, (g) Color dithering, (h) Contrast adjustment, (i) Mix-up transformation. 

Dataset Splitting: 
Three different subsets of the dataset were created in order to thoroughly evaluate the model's 
performance:  
a. The models are trained using the **Training Set (80%)**.  

b. **Validation Set (10%)**: Used to adjust hyperparameters and lower overfitting risk.  
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c. The model's final effectiveness is assessed using the **Testing Set (10%)**. 

The dataset was split in a systematic, sequential manner to ensure that the model's accuracy was assessed 
on previously unseen data. This approach offers a reliable measure of the model's ability to generalize to 
new, future datasets. 

3.3 Machine Learning Models: 

This study focuses on developing a comprehensive framework for detecting wheat crop diseases using 
three machine learning algorithms: The research creates a complete framework to detect wheat crop 
diseases through three machine learning odels namely Support Vector Machine (SVM), Random Forest, 
and K-Nearest Neighbors (K-NN). The models that were developed to detect wheat crop diseases were 
improved through hyperparameter optimization techniques. 

SVM: The SVM supervised learning algorithm classifies datasets by finding the best hyperplane to divide 
classes from each other. 

• Random Forest: Random Forest functions as an ensemble learning technique which boosts accuracy 
by integrating multiple decision trees. 

• K-NN: K-NN functions as a proximity-based classification algorithm which determines data point 
categories using their nearest neighbors. 

Hybrid metaheuristic methods like Genetic Algorithm-Particle Swarm Optimization (GA-PSO) and Ant 
Colony Optimization (ACO) were used to optimize hyperparameters further. The techniques used here 
combine specific algorithm strengths to achieve better classification accuracy in wheat leaf disease 
detection. 

3.4 Hybrid Metaheuristic Optimization: 

This research uses a various optimization methods by such as Artificial Bee Colony (ABC), Particle Swarm 
Optimization (PSO), and Genetic Algorithm (GA) to enhance machine learning models. 

 ABC Algorithm: This algorithm imitates how bees search for food, allowing for a wide 
exploration of possible solutions to prevent poor outcomes. 

 PSO Algorithm: Based on swarm intelligence, PSO speeds up finding the best solutions by 
improving those found during the search. 

 GA Algorithm: Drawing from natural selection principles, the GA evolves solutions over 
generations through selection, crossover, and mutation. The fittest solutions are retained and 
improved iteratively until an optimal or near-optimal solution is achieved 

The primary objective of this optimization process was to establish a reliable system for the detecting of 
wheat diseases. The developed framework offer practical benefits to farmers and agriculture professionals 
by enhancing accuracy, improving feature selection, and simplifying the model. This contributes to more 
efficient crop health management. The hyperparameters targeted for optimization in this study are listed 
in Table 2. 
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4. EXPERIMENTAL SETUP: 

This section outlines the experimental configuration, including the dataset, evaluation metrics, and 
comparative analysis of the applied models with and without metaheuristic techniques. The setup was 
designed to ensure the efficient and accurate execution of the proposed machine learning and 
metaheuristic optimization framework for wheat crop disease detection. Both the hardware and software 
components were carefully selected to support high-performance computing and large-scale data 
processing. 

4.1 Software & Hardware Requirements: 

The computational experiments were conducted on a high-performance system with an Intel Core 
i7/AMD Ryzen processor, NVIDIA RTX 3060 GPU, 16GB RAM and a 512GB SSD for efficient data 
processing. The software used included Windows 10; Python was the primary programming language. 
Models were developed using TensorFlow, PyTorch, and Scikit-learn, while DEAP, Optuna, and custom 
implementations optimized parameters. Data processing was handled with Pandas, NumPy, and SciPy, 
and visualization was performed using Matplotlib and Seaborn python libraries. 

Such an experimental environment provides a powerful foundation for the application of machine 
learning and metaheuristic methods, facilitating the computer-assisted process of efficient computation 
and optimal model fitting. The experiments were based on a dataset of 9,364 images of wheat leaves, with 
an allocation of 80% for training and 20% for testing purposes. Machine learning models are 
implemented in Python using Scikit-learn, while the metaheuristic optimization methods are developed 
based on custom-written scripts.  

 

 

Table 2: Hyperparameter Ranges for ML Models in Wheat Disease Detection 

ML Model Hyperparameter Typical Range 

SVM C (Regularization) 0.1 - 100 

 Gamma (RBF kernel) 0.001 - 1 

 Kernel Linear, RBF, Polynomial 

Random 

Forest 

n_estimators 50 - 500 

 max_depth 5 - 30 

 min_samples_split 20-30 

 min_samples_leaf 1-10 

KNN n_neighbors 3-15 

 Weights  uniform, distance 

 p (power parameter) 1-2 
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5. RESULTS & DISCUSSIONS: 

The performance of the machine learning models (SVM, Random Forest, and K-NN) was evaluated 
against four important criteria: accuracy, precision, recall, and F1-Score. The summaries of the results are 
given in the following tables. 

Table 3: Performance of Machine Learning Models without Optimization 

Model Accuracy Precision Recall F1-Score 

SVM 85.2% 84.5% 85.0% 84.7% 

RF 87.3% 86.8% 87.0% 86.9% 

K-NN 82.1% 81.5% 82.0% 81.7% 

 
Table 3, compares the performance of the three machine learning models—SVM, RF and K-NN without 
the application of hyperparameter optimization techniques. Among the models, RF achieved the highest 
accuracy 87.3%, followed by SVM 85.2%, while K-NN demonstrated the lowest accuracy 82.1%. The 
precision, recall, and F1-score metrics were consistent with the accuracy trends, further confirming that 
RF outperformed the other models in terms of the overall classification performance. Table 4 presents a 
comparison of the same models after applying hyperparameter tuning and metaheuristic optimization 
techniques. 
 

Table 4: Performance of Machine Learning Models with Metaheuristic Optimization 
 

Model Optimization Accuracy Precision Recall F1-Score 

SVM ACO 88.5% 88.0% 88.3% 88.1% 

SVM GA 89.2% 88.7% 89.0% 88.8% 

SVM PSO 89.8% 89.3% 89.5% 89.4% 

RF ACO 90.1% 89.6% 90.0% 89.8% 

RF GA 90.7% 90.2% 90.5% 90.3% 

RF PSO 91.3% 90.8% 91.0% 90.9% 

K-NN ACO 85.6% 85.0% 85.5% 85.2% 

K-NN GA 86.2% 85.7% 86.0% 85.8% 

K-NN PSO 86.8% 86.3% 86.5% 86.4% 
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Table 4,  highlights the impact of metaheuristic optimization techniques on the performance of the 
machine learning models. The results show that all models experienced substantial enhancements in the 
evaluation metrics compared with their baseline performance without optimization. 

 Support Vector Machine (SVM): PSO delivered the highest improvement, boosting the accuracy 
from 85.2% (before optimization) to 89.8%. 

 Random Forest (RF): RF achieved its best performance with PSO, reaching an accuracy of 
91.3%, underscoring its effectiveness for wheat disease classification. 

 K-Nearest Neighbors (K-NN): Although K-NN showed the smallest improvement among the 
models, optimization still led to significant gains, with PSO increasing the accuracy from 82.1% 
to 86.8%. 

These results demonstrate that metaheuristic optimization significantly improves the model 
generalization and classification performance. PSO consistently outperformed ACO and GA across all 
models. Figure 6, provides a visual comparison of model accuracy before and after applying metaheuristic 
optimization using a bar chart. 

 

Figure 6: Accuracy comparison of Applied Models with and without Optimization 

Figure 6, demonstrates that Particle Swarm Optimization (PSO) consistently enhances the accuracy of all 
models by optimizing the hyperparameters, resulting in improved classification performance. Random 
Forest (RF) remains the top-performing model both before and after optimization, solidifying its 
suitability for wheat disease detection. By contrast, K-Nearest Neighbors (K-NN) showed the most 
significant relative improvement, highlighting the strong influence of metaheuristic techniques on 
distance-based classifiers. Given RF's superior performance of RF, further analysis was conducted to 
identify the features that contribute the most to its classification capability. A feature importance plot was 
generated using the feature_importances_ attribute of the Random Forest model.  

Figure 7, illustrates that Feature 9 had the highest importance score (approximately 0.12), making it the 
most influential feature in the model. Other notable features include feature 14, 13, and 12 with 
importance scores ranging from 0.10 to 0.08. Conversely, Features 1, 4, and 18 have minimal importance 
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scores (close to 0.00), indicating their negligible contribution to the model's predictions. The Analysis of  
feature importance aids in interpreting the decision-making process of the model. For instance, if Feature 
9 represents a specific disease symptom, the model is likely to prioritizes this symptom for accurate 
classification. 

 
Figure 7: Feature Importance of RF Model  

Figure 8, shown below compare and visualizes the performance metrics (Precision, Recall, and F1-Score) 
for different machine learning models after applying optimization techniques.  

 

Figure 8: A comparison of Precision, Recall and F-1 Score of ML models 
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The chart demonstrates the differences in performance among the various models and optimization 
methods. This indicates that some models, such as Random Forest combined with PSO, may achieve 
better results than others, such as K-NN with ACO, in terms of the precision, recall, and F1-Score. Each 
metric is represented by a distinct color: blue for precision, red for recall, and green for the F1-Score. The 
chart offers a clear visualization of how different optimization approaches affect model performance, 
helping to determine which method works best for each model in terms of classification accuracy. Figure 
9 compares the confusion matrices for various machine learning models paired with optimization 
techniques. Each confusion matrix visually depicts a classifier's performance by comparing the actual class 
labels (True) against the predicted class labels. 

 

Figure 9:  Comparison of ML Models with Optimization Techniques Using Confusion Matrices 

                         

The figure clearly shows that SVM with ACO exhibits significant misclassification, particularly in class 2, 
whereas GA slightly improves accuracy, especially in classes 1 and 2. However, the PSO performed the 
worst. Random Forest with ACO demonstrates balanced classification with minimal misclassification and 
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the GA further enhances its accuracy. Although PSO performs slightly better than ACO, the 
improvement is marginal. Random Forest outperforms both SVM and K-NN across all optimization 
techniques, with ACO and GA delivering the best results, while PSO showed only minor improvements. 
Overall, Random Forest emerged as the most accurate classifier, followed by SVM and K-NN. Among the 
optimizers, PSO proves to be the most effective across all models, whereas GA was the least effective. 
Figure 10, presents a convergence plot of the various metaheuristic techniques used in this study. 

 

Figure 10: Convergence plot of ACO, GA, PCO 

In the convergence figure above, the behaviors of the ACO, PSO and GA can be clearly observed. ACO 
begins with slower convergence owing to the gradual buildup of pheromone trails but steadily reduces 
the error rate over iterations, potentially achieving a low error rate given more time. On the other hand, 
PSO demonstrates rapid initial convergence as particles quickly move toward optimal solutions, although 
improvements may slow down later, often reaching a low error rate early. Meanwhile, the GA exhibited 
a moderate convergence speed, with a gradual reduction in the error rate over generations. It can achieve  
strong final solutions, particularly for complex problems, although it may require more iterations. Overall, 
PSO converges the fastest initially but may plateau early, GA provides steady improvement, and ACO, 
while slower at the start, can achieve low error rates with additional iterations. 

6. CONCLUSION: 

The detection of diseases in wheat crops is critical for ensuring global food security and promoting 
sustainable agriculture. Timely and accurate identification of wheat leaf diseases is essential for effective 
disease management and maintance of crop health. This study addresses the limitations of existing 
methods by introducing a robust framework that combines machine learning models with metaheuristic 
optimization techniques. The proposed framework integrates SVM, RF and K-NN with optimization 
techniques such as ACO, PCO and GA. By employing advanced feature engineering and parameter 
tuning, the framework significantly improved the accuracy, precision, and efficiency of wheat disease 
classification systems.  
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The key findings of this study highlight that integrating metaheuristic optimization techniques with 
machine learning models leads to substantial improvements in classification accuracy. For example, the 
RF model optimized with PSO achieved an accuracy of 91.3%, surpassing that of baseline models. 
Metaheuristic techniques such as PSO and GA effectively identify the most relevant features, reduce noise 
and enhance model performance. Additionally, the use of metaheuristic optimization for hyperparameter 
tuning results in better model performance and faster convergence compared to traditional methods. This 
study demonstates the effectiveness of combining machine learning models with metaheuristic 
optimization techniques for the detection of wheat crop diseases. 
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