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Abstract 
Due to its ability to integrate multimodal data and improve spatial, spectral, and temporal resolution, image fusion 
has emerged as a key tool in remote sensing. Although they have been useful, traditional picture fusion techniques like 
Principal Component Analysis (PCA) and Wavelet Transform sometimes have trouble maintaining both spatial 
features and spectral accuracy. Convolutional Neural Networks (CNNs), Generative Adversarial Networks (GANs), 
and Transformer-based models are among the deep learning-based techniques that have recently emerged has 
revolutionized image fusion by offering improved feature extraction, noise reduction, and information retention. This 
research investigates the advancements in deep learning-driven image fusion techniques, comparing them with 
conventional methods in terms of accuracy, computational efficiency, and real-world applicability. Additionally, the 
study explores the impact of fused high-resolution images in critical remote sensing applications such as urban mapping, 
disaster management, and environmental monitoring. The findings highlight the advantages and limitations of existing 
models while identifying future research directions for optimizing deep learning architectures for picture fusion for 
remote sensing. 
Keywords: Generative adversarial networks, convolutional neural networks, edge detection, spatial resolution, 
segmentation, and feature extraction. 
 
1. INTRODUCTION 
In modern times, remote sensing is one of the most common approaches to investigate and analyze the 
Earth surface, no human is involved within. The rapid advancement of sensor technology with data 
acquisition system also has resulted in explosive growth of data from remote sensing field. However, its 
usefulness in real applications is constrained by its limitation in spatial resolution, spectral resolution, 
and temporal coverage. Image fusion has been studied as a potential method to overcome these challenges 
by combining auxiliary information from different sources to obtain enhanced visual Interpretability, 
accuracy and quality of fused images [1]. 
1.1 Background  
Remote sensing has transformed several scientific and economic fields by enabling the acquisition of 
critical data about the Earth's surface without direct touch. Remote sensing uses satellites and airborne 
sensors to facilitate applications such as military surveillance, urban planning, environmental monitoring, 
and disaster management. To improve data quality and interpretation, sophisticated methods like image 
fusion must be developed because individual sensors frequently have limitations in spatial, spectral, or 
temporal resolution [2]. 
An essential method for creating a single, more informative image is image fusion, which combines data 
from several image sources. It is a useful technique for remote sensing applications because it increases 
spectral integrity, reduces ambiguity in image interpretation, and improves spatial resolution [3]. 
Conventional image fusion techniques, such as Principal Component Analysis (PCA) and Wavelet 
Transform, have been essential in merging data from many sensor modalities and spectral bands. Deep 
learning-based fusion techniques, which provide better performance, have emerged as a result of these 
methods' frequent inability to preserve both spatial and spectral integrity [4]. 
Since high-resolution imaging offers better details for object detection, change detection analysis, and 
land cover classification, it is especially crucial for information extraction in remote sensing. Thanks to 
advancements in super-resolution techniques, researchers have successfully reconstructed high-resolution 
images from low-resolution inputs, substantially increasing the accuracy of remote sensing analysis [5]. 
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Digital image processing methods including edge detection, segmentation, and feature extraction have 
also increased the ability to extract meaningful information from remotely sensed images [6]. 
1.2 High-Resolution Images significance in Information Extraction 
The quality of the obtained images is greatly influenced by the geographical, spectral, and temporal 
resolutions of the remote sensing data. For a variety of applications, such as precision agriculture, 
environmental sustainability, and urban infrastructure design, high-resolution photos offer finer details 
that are essential [7]. High-resolution satellite photography, for instance, is crucial to flood monitoring 
and damage assessment in order to identify areas that have been inundated and assess the extent of 
infrastructure damage [2]. The clarity of images used for surveillance, facial recognition, and other security 
applications is also enhanced by super-resolution techniques [3]. 
In remote sensing image processing, one of the primary concerns is the trade-off between spectral and 
spatial resolution. While multispectral and hyper spectral images give extensive spectral information but 
experience poorer spatial resolution, panchromatic images offer great spatial resolution but lack spectral 
variety [8]. This gap is filled by image fusion algorithms, which integrate spectral and spatial features from 
several sources while maintaining spectral integrity and spatial sharpness [9]. 
The necessity for automatic and effective image fusion techniques has grown along with the need for 
rapid and accurate information. Deep learning-based techniques such as Convolutional Neural Networks 
(CNNs) and Generative Adversarial Networks (GANs) have demonstrated better performance in 
extracting and integrating features from remote sensing pictures [10]. The accuracy of tasks involving item 
recognition and classification in high-resolution images is significantly increased by these models' capacity 
to learn hierarchical representations [11]. 
1.3 Research Objectives 
The main aim of this study is to evaluate deep learning-based image fusion methods and compare them 
with traditional approaches. The key objectives of this research include: 
1. Review Traditional Methods: Study techniques like PCA, IHS, and Wavelet Transform, including 
their advantages and drawbacks. 
2. Examine Deep Learning based Approaches: Analyze how CNNs, GANs, and Transformers improve 
image fusion in remote sensing. 
3. Assess Application Areas: Explore the use of high-resolution fused images in urban planning, disaster 
management, environmental monitoring, and defence. 
4. Identify Challenges and Future Scope: Discuss issues like high computational cost, limited training 
data, and model transparency, and suggest future research directions. 
 
2. RELATED WORK 
The field of image fusion has seen tremendous change over time, moving from conventional statistical 
and mathematical approaches to sophisticated deep learning-based solutions. The main objective of image 
fusion is to integrate data from many sources to produce a higher-resolution, more informative image that 
improves spectral and spatial quality. For image fusion in remote sensing, conventional techniques 
including Principal Component Analysis (PCA), Wavelet Transform, and Intensity-Hue-Saturation (IHS) 
transformation have been widely used. Although these methods have proven effective in combining 
images from several sources, they frequently struggle with information loss, reduced feature retention and 
spectral distortion. 
Deep learning has transformed image fusion by using neural networks to automatically extract intricate 
spatial and spectral characteristics. Convolutional neural networks, or CNNs, have been essential in 
enhancing fusion quality by learning hierarchical representations of input images. Additionally, 
Generative Adversarial Networks (GANs) have introduced the ability to generate highly realistic fused 
images by employing adversarial training mechanisms. More recently, Transformer-based models have 
gained popularity, because they provide better feature attention and global context learning capabilities, 
which further improved the accuracy and effectiveness of image fusion. 
A detailed review of the literature on both traditional and deep learning-based image fusion methods is 
provided here. It compares the efficacy of different methods in diverse remote sensing applications, 
looking at their advantages and disadvantages. By analyzing previous research, this study identifies gaps 
in current methodologies and highlights potential improvements that can be integrated into future fusion 
frameworks. 
2.1 Summary of Traditional and Deep Learning-Based Image Fusion Techniques 
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Image fusion is an essential technique in the field of remote sensing, has enabled the merging of several 
image sources to improve spatial, spectral, and temporal resolution. Conventional image fusion methods 
including Intensity-Hue-Saturation (IHS), Wavelet Transform, and Principal Component Analysis (PCA) 
transformation, have been widely used for enhancing image quality. These methods are computationally 
efficient and have been successfully applied to satellite and aerial imagery. However, they often struggle 
with maintaining a balance between spatial and spectral integrity, leading to the emergence of more 
advanced fusion techniques (Ha et al., 2018) [13]. 
Deep learning based image fusion has gained popularity due to its ability to learn hierarchical features. 
Convolutional Neural Networks (CNNs) effectively enhance feature extraction and spatial details in fused 
images (Zhang et al., 2018) [14]. Generative Adversarial Networks (GANs) further improve fusion quality 
by producing realistic images with reduced artefacts and preserved fine details (Ravi et al., 2018) [15]. 
Overall, deep learning approaches outperform traditional methods by learning complex patterns from 
large datasets (Liang & Wang, 2019) [16]. 
2.2 Comparison of Existing Approaches 
PCA, Wavelet Transform, and IHS are examples of traditional image fusion methods that rely on 
statistical and mathematical concepts. Although PCA lessens redundant data, it frequently results in 
information loss (Yang et al., 2019) [17]. Although wavelet-based techniques offer multi-resolution 
analysis, reconstruction artifacts could be introduced (Kawulok et al., 2019) [18]. Although IHS increases 
spatial resolution, its accuracy in remote sensing applications is limited due to spectrum distortion (Zhang 
et al., 2019) [19]. 
Deep learning based approaches address these limitations by learning hierarchical and contextual features 
automatically. CNNs enhance spatial resolution while maintaining spectral consistency and have shown 
improved performance in remote sensing tasks (Cheng et al., 2020; Liu et al., 2020) [20, 21]. Advanced 
models such as GANs and transformer-based architectures further improve fusion quality by capturing 
complex spatial patterns and producing high-resolution images with fewer artefacts (Zhang et al., 2021) 
[22]. 
However, real-time deployment is limited by the massive datasets and expensive processing resources 
needed for deep learning models. Another issue is their limited interpretability (Kaur et al., 2021; Jiang 
et al., 2021) [23, 24]. To increase effectiveness and performance, recent studies concentrate on optimizing 
architectures, attention mechanisms, and hybrid models (Qiao et al., 2021) [25]. Additionally, multi-
frame and spatiotemporal super-resolution methods have demonstrated encouraging outcomes in 
improving detail extraction for geospatial and environmental applications (Li et al., 2021; Shan et al., 
2022; Zhou et al., 2022) [26–28]. Scalability, interpretability, and robustness in practical image fusion 
tasks are the goals of ongoing developments (Wang et al., 2022–2023) [29–33]. 
 
3. METHODOLOGY 
3.1 Description of Dataset and Pre-processing Techniques 
The dataset utilized in this study consists of remote sensing pictures, both high-resolution and low-
resolution, gathered from many sources, such as optical, SAR, and multispectral sensors. The deep 
learning-based image fusion models are trained and tested using these photos. These dataset’s diversity 
guarantees that the suggested model is reliable and flexible enough to accommodate a range of distant 
sensing applications. 
Data Collection 
The dataset includes images from publicly available remote sensing repositories such as Sentinel-2, 
Landsat, and MODIS. These datasets provide a diverse range of spectral and spatial resolutions, allowing 
for comprehensive experimentation. The collected data comprises: 
• Optical Images: Captured in visible and near-infrared regions, offering high-quality spectral 
information. 
• SAR (Synthetic Aperture Radar) Images: Used for all-weather monitoring, capable of capturing details 
even in cloud-covered conditions. 
• Infrared and Thermal Images: Utilized for temperature and vegetation analysis, which is essential for 
environmental and agricultural studies. 
Pre-processing Techniques 
Before training the model, a number of pre-processing techniques were used on the unprocessed photos 
to guarantee uniformity and improve model functionality. These actions include: 
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• Radiometric and Geometric Corrections: Adjustments for atmospheric effects and geometric 
distortions to ensure image consistency across different sensors. 
• Image Normalization: Pixel values were scaled between 0 and 1 to standardize input data, making model 
training more efficient and reducing computational complexity. 
• Noise Reduction: Gaussian and median filtering were applied to remove noise and artifacts that could 
affect the fusion quality. 
• Data Augmentation: Rotation, flipping, contrast adjustments, and cropping were applied to improve 
generalization and avoid overfitting by diversifying the training sample. 
• Multi-Resolution Alignment: To achieve a standard spatial resolution, images were resized using 
bicubic interpolation, ensuring accurate alignment of multi-source data for effective fusion. 
3.2 Deep Learning Architecture Used 
The study employs multiple deep learning architectures to enhance image fusion quality. These models 
include Transformer-based models, Generative Adversarial Networks (GANs), and Convolutional Neural 
Networks (CNNs). Each architecture brings unique advantages in terms of feature extraction, detail 
preservation, and computational efficiency. 
Convolutional Neural Networks (CNNs) 
CNNs are utilized to take input photos and extract hierarchical spatial and spectral information. The 
CNN-based design used in this study consists of multiple key components that contribute to improved 
image fusion. Convolutional layers are employed Edges, textures, and patterns are examples of low-level 
and high-level characteristics that may be extracted. which are essential for enhancing spatial resolution. 
Batch normalization stabilizes the learning process by speeding up convergence, decreasing internal 
covariate shift, and normalizing feature maps. 
The non-linearity is introduced by the ReLU activation function into the model, improving its learning 
capability. Pooling layers reduce spatial dimensions, lowering computational complexity while ensuring 
efficient feature representation. Finally, the fusion layer combines extracted characteristics from several 
picture sources to produce a final fused image that preserves essential details and improves overall image 
quality. 
Generative Adversarial Networks (GANs) 
High-resolution fused pictures with realistic textures and details are produced using GANs. A 
discriminator and a generator are the two primary parts of the design. The generator produces an artificial 
fused image by combining features from different sources, utilizing residual blocks and attention 
mechanisms to enhance spatial and spectral consistency.  
Conversely, the discriminator makes a distinction between synthetic and genuine fused images, ensuring 
that the generator produces high-quality and visually coherent outputs. The loss function used in GANs 
combines adversarial loss with pixel-wise and perceptual loss, ensuring that the fused images retain 
structural integrity and fine details, making them suitable for advanced remote sensing applications. 
Transformer-Based Models 
Transformer-based models learn long-range relationships between picture features by using self-attention 
processes to improve fusion accuracy. When it comes to collecting global contextual linkages in remote 
sensing pictures, these models are very useful. The model can analyze data thanks to the multi-head self-
attention mechanism dependencies across different spatial regions, leading to improved contextual 
understanding.  
The feed-forward network processes attention-weighted feature representations, refining the overall 
feature extraction process. Positional encoding ensures that spatial information is preserved throughout 
the fusion process, maintaining meaningful feature integration. Additionally, skip connections are 
incorporated to retain fine details during feature transformation, preventing the depletion of high-
frequency data and making sure the fused images maintain their visual and structural quality. 
3.3 Training Process and Evaluation Metrics 
Training Process 
High-performance computer resources were used to train the deep learning models in order to guarantee 
effective convergence and excellent picture fusion. With an initial learning rate of 0.0001, the Adam 
optimizer was used during the training phase to provide consistent and flexible model parameter changes. 
The application of structural similarity index measure (SSIM) and mean squared error (MSE) as loss 
functions was essential in maintaining the balance between pixel-wise accuracy and perceptual image 
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quality. These loss functions ensured that the fused images retained fine details while minimizing 
distortions, ultimately leading to better feature preservation and more accurate image reconstruction. 
To maintain stable gradient updates and efficient memory utilization, a batch size of 16 was chosen. This 
configuration allowed for effective model training while preventing overfitting and ensuring 
generalization to unseen data. The models were trained for 100 epochs to achieve optimal convergence, 
striking a balance between learning efficiency and computational feasibility. The NVIDIA GPU was used 
for the training procedure. with 32GB VRAM, enabling accelerated computation and reducing training 
time significantly. The high-performance hardware setup ensured that the deep learning models could 
process large-scale remote sensing datasets efficiently, making the fusion technique viable for real-world 
applications. 
Evaluation Metrics 
To assess the combined pictures' quality, a number of quantitative measures were used: 
• Peak Signal-to-Noise Ratio (PSNR): determines the sharpness of the fused image by measuring the 
signal power to noise ratio. Better fusion quality is suggested by a higher PSNR. 
• Structural Similarity Index Measure (SSIM): Evaluates the perceptual similarity between the fused and 
reference images, capturing structural distortions. 
• Entropy: determines how much information is kept in the merged picture, ensuring that meaningful 
details are not lost during the fusion process. 
• Visual Comparison: Qualitative evaluation of fusion performance based on human perception, 
verifying that the fused images preserve important spatial and spectral details. 
 
4. EXPERIMENTAL RESULTS 
4.1 Comparison of Fused Images vs. Non-Fused Images 
The suggested image fusion technique's efficacy is illustrated by contrasting fused images with their non-
fused counterparts. In remote sensing applications, non-fused images often suffer from poor spatial 
resolution, spectral distortion, and reduced feature representation, limiting their usability in critical tasks 
like object detection and land cover categorization. The fused images generated using deep learning-based 
approaches exhibit significantly improved spatial details and spectral consistency, ensuring enhanced 
interpretability and usability. 
A detailed qualitative assessment of the fused images shows that they maintain better structural integrity, 
preserve color composition, and reduce noise artifacts compared to individual sensor images. The fusion 
process enhances the clarity of boundaries, edges, and textures, making the images more suitable for 
various remote sensing applications. Moreover, the visual comparison highlights the ability of fused 
images to correct misalignment issues that arise from multi-source data acquisition. 
4.2 Performance Evaluation Using PSNR, SSIM, and Other Metrics 
Several quantitative measures, including as entropy, the Structural Similarity Index Measure (SSIM), and 
the Peak Signal-to-Noise Ratio (PSNR), are used to assess the effectiveness of the suggested fusion 
technique. These measurements shed light on the fused pictures' fidelity, quality, and information 
retention. 
• PSNR Analysis: Compared to the non-fused pictures, the fused images' PSNR values were consistently 
higher. Better image quality and less distortion are indicated by a higher PSNR. The fused pictures' 
enhanced signal-to-noise ratio attests to the efficacy of the suggested method in reducing noise while 
preserving important spatial and spectral details. 
• SSIM Evaluation: The SSIM values demonstrate that the fused images retain structural patterns more 
effectively than non-fused images. SSIM uses structural information, contrast, and brightness to 
determine how similar two images are. According to the findings, the fusion method improves local 
structural integrity, which makes the photos better suited for feature extraction and categorization tasks. 
• Entropy Measurement: The entropy of the fused images is higher than that of non-fused images, 
suggesting that the fusion process retains a greater amount of useful information. Higher entropy values 
correspond to better image richness, which is crucial for accurate remote sensing analysis. 
“In general, PSNR values above 35 dB, SSIM scores above 0.90, and entropy levels higher than 7.0 were 
observed in deep learning-based fusion approaches, indicating superior performance compared to 
traditional methods.” 
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4.3 Case Studies in Different Remote Sensing Applications 
The proposed image fusion method was tested in various real-world remote sensing applications to 
evaluate its practical benefits. Three case studies were conducted in urban mapping, disaster management, 
and agricultural monitoring. 
• Urban Mapping: Fused images provided enhanced clarity for identifying urban features such as roads, 
buildings, and vegetation. The higher spatial resolution allowed for better differentiation between urban 
structures, improving land-use classification and planning efforts. 
• Disaster Management: The fusion technique was applied to flood monitoring and post-disaster 
assessment. The results showed that fused images facilitated clearer identification of flood-affected areas, 
allowing for more precise damage assessment and efficient resource allocation during disaster relief 
operations. 
• Agricultural Monitoring: Fused images improved vegetation index calculations, leading to more 
accurate crop health assessments. The integration of multispectral and infrared data in the fusion process 
enabled better differentiation of healthy and stressed vegetation, aiding in precision agriculture and 
sustainable farming practices. 
 
Table 1: Comparison Table 

Method 
Category 

Techniques/
Models 

Spatial 
Quality 

Spectral 
Fidelity 

Computa
tional 
Complexi
ty 

Advantages Limitations 

Traditional 
Methods 

PCA, IHS, 
Wavelet 
Transform, 
Brovey 

Medium Medium Low 
Simple, fast, 
widely used 

Often trade-off 
between spatial 
and spectral 
details; limited 
adaptability 

 
 
GAN-Based 
Methods 

 
 
FusionGAN, 
Pan-GAN 

 
 
High 

 
 
High 

 
 
High 

 
 
Generates realistic 
images; reduces 
artifacts 

 
 
Training 
instability; high 
computational 
cost 
  

Transformer
-Based 
Methods 

Spectral-
Spatial 
Transformers
, Dual-Path 
Transformers 

Very High Very High Very High 

Captures long-
range 
dependencies; 
excellent global 
context modeling 

Very high 
computational 
requirements; 
complex 
architecture; 
needs large 
datasets 

Super-
Resolution 
Fusion 

SRCNN, 
SRGAN 
variants 

Very High 
Medium–
High 

High 

Improves 
resolution of low-
res images; 
enhances object 
detection 

May introduce 
artifacts; spectral 
fidelity not always 
perfect 
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5. DISCUSSION 
5.1 Strengths and Limitations of the Proposed Approach 
The deep learning-based image fusion approach offers several advantages over traditional methods. One 
of its key strengths lies in its ability to retain both high spatial resolution and spectral accuracy, ensuring 
superior image quality. By leveraging CNNs, GANs, and Transformer-based architectures, the model 
enhances edge details, texture representation, and feature preservation, making it highly effective for 
various remote sensing applications. The fusion technique proves to be widely applicable across domains 
such as urban analysis, environmental monitoring, and disaster management, demonstrating its versatility 
and efficiency. 
Despite these strengths, the approach also presents certain limitations. One significant challenge is the 
computational complexity associated with deep learning-based fusion, as it requires substantial processing 
power and memory resources. This complexity makes real-time processing difficult, necessitating the 
development of optimized algorithms and hardware acceleration techniques. Additionally, the accuracy 
of fusion models is heavily dependent on large, diverse training datasets, which may not always be readily 
available. Data scarcity can limit the generalization ability of the model, impacting its performance across 
different environmental conditions.  
Another drawback is the inability of deep learning models to be interpreted. Although these techniques 
achieve high accuracy, their decision-making process remains opaque, making it difficult for users to 
understand how specific features are integrated during the fusion process. This lack of transparency can 
hinder trust in automated image fusion systems, particularly in critical applications where interpretability 
is essential. 
5.2 Potential Improvements and Future Research Directions 
Deep learning optimization should be the main emphasis of future studies architectures to reduce 
computational costs while maintaining high fusion quality. One promising avenue is the development of 
lightweight network architectures that require fewer computational resources, making real-time 
applications more feasible. More efficient CNN and Transformer models could be designed to balance 
performance and efficiency, enabling faster image fusion without compromising accuracy. Another 
potential improvement lies in the integration of self-supervised and semi-supervised learning techniques, 
which would reduce dependency on large labeled datasets. These approaches allow models to learn feature 
representations from unlabeled data, addressing the issue of data scarcity and improving model 
generalization. 
Enhancing model interpretability is another crucial area for future research. Explainable AI (XAI) 
techniques should be incorporated into deep learning-based fusion models to provide better insights into 
how decisions are made. This would improve user confidence and facilitate adoption in critical 
applications such as defense, healthcare, and environmental monitoring. Additionally, future 
advancements should focus on expanding the fusion approach to incorporate multi-modal data sources 
such as LiDAR, hyperspectral sensors, and other remote sensing modalities. Integrating multiple data 
types would improve accuracy in specialized applications, further enhancing the utility and effectiveness 
of image fusion methods. 
 
6. CONCLUSION 
The study on deep learning-based image fusion has demonstrated its potential to significantly improve 
the remote sensing pictures' spectral and spatial quality. By integrating multiple image sources, the 
proposed fusion techniques improve feature extraction, noise reduction, and structural preservation, 
ensuring more accurate and reliable image analysis. The comparative evaluation with non-fused images 
highlights the better performance of fused pictures in terms of information retention, structural similarity, 
and clarity. Utilizing deep learning models like Transformers, GANs, and CNNs further enhances fusion 
outcomes by leveraging hierarchical feature learning and self-attention mechanisms. 
The research's conclusions have important ramifications for remote sensing and other domains. Better 
land use classification, urban planning, and environmental monitoring are made possible in remote 
sensing applications by the enhanced picture quality achieved by fusion. The improved spectral fidelity 
benefits agricultural assessments by providing precise vegetation health analysis, while the increased 
spatial resolution aids in disaster management by improving damage assessment and response planning. 
Furthermore, the adaptability of deep learning-based fusion methods extends beyond remote sensing, 
with potential applications in medical imaging, autonomous navigation, and security surveillance. 
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Despite its effectiveness, deep learning-based image fusion faces challenges such as high computational 
requirements, dependency on large classified datasets and an inability to comprehend the model. Future 
studies must to concentrate on optimizing computational efficiency, incorporating self-supervised 
learning techniques, and enhancing model transparency through explainable AI approaches. 
Additionally, integrating multi-modal data sources, such as LiDAR and hyperspectral imaging, could 
further improve fusion performance and broaden its applicability across various domains. 
By addressing these challenges, deep learning-driven image fusion can continue to evolve, paving the way 
for more advanced, efficient, and interpretable fusion techniques that enhance decision-making in remote 
sensing and beyond. 
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