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Abstract 
The timely plant disease detection is important for the sustainable environment and yield protection. This paper presents a 
comparative analysis of the hybrid method with the advanced deep learning (DL)methods for early detection of diseases in plants. 
Accurate and early diagnosis plays a crucial role in minimizing crop losses and enhancing agricultural productivity. By reducing the 
overuse of pesticides and enabling targeted interventions, these models contribute to more sustainable farming practices. The study 
highlights how intelligent disease detection can support environmental conservation by lowering chemical runoff and reducing resource 
waste. This study focuses on evaluating the performance of five advanced machine and DL models such as Vision Transformer (ViT), 
ResNet-50, EfficientNet-B5, and Xception alongside a proposed hybrid approach that combines ExtraTrees with K-Nearest Neighbors 
(KNN) for plant disease classification. The objective is to assess each model’s classification accuracy, computational efficiency, and 
resource consumption for selecting the most appropriate model in agricultural applications. The proposed ExtraTrees + KNN hybrid 
approach shows the highest overall efficiency and delivering strong classification accuracy while maintaining minimal computational 
overhead. Vision Transformer (ViT) achieves competitive results in terms of accuracy but requires comparatively more resources. 
ResNet-50 and EfficientNet-B5 also perform well. Xception performs moderately in predictive performance. The hybrid model’s 
capability makes it suitable for deployment in resource-constrained agricultural environments where computational resources are not 
enough as required by other deep learning models. This research is also highlighting the importance of evaluating both predictive 
performance and resource efficiency for sustainable plant disease monitoring and management system. 

Keywords— Plant disease detection, EfficientNet-B5, XCEPTION, Environment control, Sustainability. 

INTRODUCTION  

Plant disease detection is essential for achieving a sustainable environment because it directly influences agricultural 
productivity, resource efficiency, and ecological balance. Early and accurate identification of plant diseases allow targeted 
treatment to minimizes the inappropriate usage of chemical pesticides and fertilizers which are considered as the major 
contributors to soil degradation, water contamination, and loss of soil [1, 2]. By preventing the outbreak of crop diseases, 
farmers can reduce crop losses, excessive land use, and also decrease the carbon footprint related to the overproduction 
[3,4]. The intelligent disease detection supports agriculture practices where resources such as water, nutrients, and energy 
are used optimally [5]. This not only enhances food security but also promotes long-term environmental conditions. 
During climate changes and high food demand, these advanced technologies for plant disease monitoring allows the 
growth of sustainable agricultural system [6, 7]. 
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In this study, we conduct an in-depth evaluation and comparative analysis of the proposed hybrid approach with the four 
advanced DL models such as Vision Transformer (ViT), ResNet-50, EfficientNet-B5, and Xception for plant disease 
detection [8]. The objective is to assess each model’s performance, accuracy, and operational efficiency [9]. The need for 
effective plant disease detection techniques arises from the agriculture practices where crops are spoiled by the diseases if 
not treated on time [10]. Accurate and timely diagnosis is essential for deploying plant treatment strategies and 
minimizing agricultural losses in the under developed countries [11]. Deep learning has the ability to learn complex 
patterns from large datasets, and DL models can perform on the unseen data by learning from the complex patterns of 
existing data [12].EfficientNet-B5, is a type of CNN model which is widely used for its ability to deliver high accuracy with 
optimized scalability and resource usage [13]. Its design has the balance between computational cost and predictive 
performance which makes it suitable for environments with limited hardware resources. This research is also utilizing the 
model for detecting diseases in the plants. ViT presents itself as DL model which is used successfully in image-based 
classification tasks through its self-attention mechanisms that holds global image dependencies [14]. ResNet-50 is another 
DL model which is developed by Microsoft introduces residual learning to allow learning process in deeper networks 
without degradation. This method has been proven effective in extracting high-level features for classification tasks [15]. 
Xception model is also selected for comparative study in this research which offers efficient classification for plant disease 
detection. These models provide classification of images to identify diseases in plants for offering sustainable agricultural 
solutions. The integration of advanced DL models into the agricultural sector is a step towards the precision farming, 
where advanced technologies are used to optimize inputs and maximize the agricultural productivity [16]. This research is 
proposing a hybrid model by combining the two machine learning based approaches as discussed in the next section of 
proposed methods. This introduction provides the base for developing the plant disease detection method which can be 
used universally for all kind of plants if the training model is trained well on large datasets and then can be employed 
on real world problems with unseen data. The other subsequent sections include proposed methodology, experimental 
results, and conclusion of the research work. The evolution of ML and DL approaches have created new opportunities 
for solving challenges in agriculture by early detection of plant diseases [17]. Early and accurate identification of plant 
diseases is critical not only for protecting crop yields but also for ensuring long-term food security in regions with 
limited agricultural resources [18].The conventional methods can detect at lateral stages when it is difficult to revive for 
the plants but the modern methods can detect the plant disease at early stages which are difficult to be identified by the 
bare eyes. The conventional methods of disease detection rely upon manual visual inspection, but the modern methods 
use advanced techniques for detecting diseases in plants at early stages. Above all, if the diseases are detected at lateral 
stages, then they cause excessive pesticide usage, which poses environmental risks and health risks [17]. By using 
intelligent, and AI detection systems, the farmers can implement these methods easily without investing much to 
minimize chemical usage, and can also minimise the carbon emissions by protecting the environment from pesticides. 
This study presents a comparative study of the proposed hybrid mechanism with the high-performance DL models, for 
improving the accuracy of detection of plant diseases at early stages and to analyse the computational complexity and 
resource utilization by all the methods considered for this research study.   

LITERATURE REVIEW 

Plant disease detection techniques have experienced a significant transformation through the adoption of advanced 
techniques, which have become increasingly important in monitoring the plant diseases to support agriculture sector 
globally [5]. These approaches play a major role in improving the accuracy and early disease identification to reduce the 
environmental and economic damage caused by crop infections [6]. In [2], the authors have proposed a DL-based 
solutions, supported by smartphone applications for the identification of particular plant diseases. The model has 
achieved accuracy rates as high as 97.35% which is highlighting the practical value in regions that depend heavily on 
smallholder farming systems [7]. The integration of artificial intelligence into traditional farming practices in developing 
countries provide an opportunity to improve efficiency of agriculture sector as mentioned in ref [8].In paper [9], the 
authors have shown consistent improvement in classification accuracy while maintaining computational efficiency by 
integrating advanced methods in a single methodology for detection of plant diseases. This method is useful in areas 
with limited hardware resources [8]. Many authors have used image processing methods to enhance the image quality 
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and then ML based methods such as Random Forest, decision trees, XGBoost, AdaBoost, SVM are applied for the 
detection of diseases in plants [10, 11, 12].  The reliable plant disease detection is also made by reinforcement learning 
models with the accurate classification in securing global food supplies [13]. As agriculture sector is facing an 
increasingthreats from climate change and emerging plant pathogens, the use of intelligent systems is becoming essential 
for sustainable environment and efficient food production. The DL models are good in providing high accuracy but 
their computational complexity is high and it is difficult to use them without having good hardware infrastructure [14]. 
The authors have presented light DL models for the detection of plant diseases for the resource constrained 
environments.  The authors have presented the plant disease monitoring method with the integration of drone 
technology for real-time monitoring of crop health across agricultural fields [15]. The use of AI in disease detection is 
also highlighted as proactive measure for detection of diseases at early stages. Studies of CNN architectures and transfer 
learning have further added value to the DL based plant monitoring systems by making these models enable for 
determining the patterns of unseen data [11]. Testing results with accuracies reaching 98.3% confirm the real-world 
viability of this systems for minimizing crop losses [11]. In the era of smart agriculture, the smart algorithms and 
integrated approaches based on reinforcement learning, transfer learning are able to identify the diseases quickly even 
on the unseen data [12]. The optimal utilization of resources makes the environment more sustainable and scalable for 
agriculture practices. Simultaneously, the integration of advanced image processing methods can add value to the ML 
based classifiers by improving the classification accuracy [13].  In conclusion, the ML methods, drone-based methods 
with sensor and ML technologies, hybrid methods and integration of DL models allow early detection of plant diseases 
and maintaining a sustainable environment efficiently.  

PROPOSED METHODS 
TO SUPPORT THE EFFECTIVE APPLICATION OF DEEP LEARNING IN AGRICULTURAL DISEASE MANAGEMENT, THIS STUDY 

FOLLOWS A STRUCTURED APPROACH TO EVALUATE AND COMPARE THE PERFORMANCE OF SEVERAL NEURAL NETWORK 

MODELS. THE METHODOLOGY IS CAREFULLY DESIGNED TO ADDRESS TWO ESSENTIAL PRIORITIES: ACHIEVING HIGH 

CLASSIFICATION ACCURACY AND PROMOTING ENVIRONMENTAL SUSTAINABILITY. THE EVALUATION INCLUDES FOUR 

WELL-ESTABLISHED ARCHITECTURES—VISION TRANSFORMER (VIT), RESNET-50, EFFICIENTNET-B5, AND XCEPTION 

ALONG WITH THE PROPOSED HYBRID MODEL THAT COMBINES EXTRATREES AND K-NEAREST NEIGHBORS (KNN) 
THROUGH A CONFIDENCE-BASED ENTROPY MODULATION MECHANISM. THIS HYBRID APPROACH IS DESIGNED TO 

DYNAMICALLY SWITCH BETWEEN GLOBAL AND LOCAL CLASSIFIERS BASED ON PREDICTION CERTAINTY, THEREBY 

OPTIMIZING BOTH ACCURACY AND COMPUTATIONAL EFFICIENCY.EACH MODEL IS TRAINED USING A DIVERSE DATASET 

ENCOMPASSING VARIOUS PLANT SPECIES AND ASSOCIATED DISEASES. PERFORMANCE IS ASSESSED OVER MULTIPLE 

TRAINING CYCLES USING KEY METRICS SUCH AS ACCURACY, PRECISION, RECALL, AND INFERENCE LATENCY. IN 

ADDITION TO EVALUATING PREDICTIVE PERFORMANCE, THE STUDY GIVES SIGNIFICANT ATTENTION TO 

COMPUTATIONAL EFFICIENCY BY MONITORING CPU AND MEMORY USAGE, SYSTEM TEMPERATURE, AND ENERGY 

CONSUMPTION. THESE CONSIDERATIONS ARE CRITICAL NOT ONLY FOR EFFECTIVE MODEL DEPLOYMENT BUT ALSO FOR 

MINIMIZING THE ENVIRONMENTAL IMPACT OF MACHINE LEARNING WORKLOADS. BY ANALYZING BOTH MODEL 

PERFORMANCE AND RESOURCE CONSUMPTION, THIS COMPREHENSIVE EVALUATION FRAMEWORK SUPPORTS THE 

DEVELOPMENT OF SOLUTIONS THAT ARE NOT ONLY ACCURATE AND EFFICIENT BUT ALSO ENVIRONMENTALLY 

RESPONSIBLE—MAKING THEM WELL-SUITED FOR REAL-WORLD AGRICULTURAL ENVIRONMENTS WITH LIMITED 

INFRASTRUCTURE AND A GROWING EMPHASIS ON SUSTAINABLE PRACTICES. 

 

Image Data With Plant Diseases 
This research utilizes a dataset of 90,000 RGB images of crop leaves with both healthy and diseased plants available on 
GitHub. The dataset is organized into 36 classes, where each class is representing a specific crop and particular disease(s). 
Crops included in the dataset span a diverse range, such as apple (affected by apple scab, black rot, and cedar apple rust, 
along with healthy samples), grape (including black rot, Esca/black measles, and leaf blight), corn or maize (with instances 
of cercospora leaf spot, common rust, gray leaf spot, northern leaf blight, and healthy leaves), and potato (showing early 
blight, late blight, and healthy foliage). Other crops represented include bell pepper (bacterial spot and healthy), peach 
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(bacterial spot and healthy), strawberry (powdery mildew, leaf scorch, and healthy), blueberry (powdery mildew and 
healthy), tomato (healthy only), soybean (healthy), and orange, specifically affected by huanglongbing (citrus greening). 
The dataset also contains samples from raspberry and squash, though disease annotations for these are unspecified. For 
experimental purposes, the dataset is divided using a 70:30 ratio as training and testing set while retaining the original 
directory structure to ensure efficient model training. In addition, a separate directory is created to house independent 
test images for predictive analysis. This structured and methodical approach enables a thorough evaluation of each 
model's performance across all stages.The following visual representation includes a selection of representative images 
illustrating various plant health conditions and disease manifestations as shown in Fig.1. Each image has a unique plant-
disease and it is forming one of the 36 defined classes in the dataset. The collection spans a diverse range of crops 
commonly affected by plant diseases, such as maize (corn), tomatoes, potatoes, grapes, apples, peaches, strawberries, 
oranges, bell peppers, soybeans, cherries, raspberries, squash, and blueberries. These images highlight a range of visual 
symptoms such as leaf discoloration, spotting, blight, and other indicators of plant stress or infection. By examining these 
visual samples, one can better understand the difficulties in detection of plant diseases in real-world agricultural 
environments. 

          Fig 1 (a): Corn plant diseases 

           Fig 1 (b): Soyabean plant diseases 

The dataset comprises a total of 36 classes representing various plant-disease combinations and includes approximately 
90,000 images. Among the crops, tomato dominates the dataset with around 40,000 images, reflecting its high 
variability and disease coverage. This is followed by apple with 6,000 images, potato with 5,600, grape with 5,500, and 
corn (maize) with 5,400. Other crops include peach (4,500 images), strawberry (3,600), cherry (including sour) (3,500), 
and bell pepper (3,900). Smaller subsets are observed for blueberry (1,800), squash (1,700), orange, raspberry, and 
soybean—each contributing approximately 2,000 images. This distribution reflects a diverse representation of plant 
species and disease conditions, offering valuable insight into the frequency and variation of plant health issues across 
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different crops. It also aids in developing and evaluating robust deep learning models by ensuring sufficient sample size 
and variability for each class. Here below is the details of the proposed hybrid method. 

 
ExtraTrees + KNN with confidence-based entropy modulation 

MOTIVATION 
In plant disease detection, classification accuracy relies on the model’s ability to identify both global patterns and subtle 
local variations. ExtraTrees (Extremely Randomized Trees) is a robust ensemble method that generates diverse decision 
trees using random feature splits, enabling fast and stable predictions [18, 19]. It excels in extracting global patterns 
from large datasets. Meanwhile, K-Nearest Neighbors (KNN) is a non-parametric algorithm that classifies based on local 
similarity, making it effective for ambiguous or borderline cases [20]. By combining ExtraTrees with KNN, and adding a 
confidence-based switching mechanism, the proposed hybrid model leverages both strengths to improve reliability and 
reduce misclassifications. 
 
Feature extraction  
Each input image is represented as a feature vector x ∈ ℝᵈ, derived from traditional descriptors (like color, texture) or 
deep learning models. The ExtraTrees classifier (FET) is trained to predict a soft probability distribution over k classes for 
a given input as follows: 
P(x) = FET(x) = [p₁, p₂, ..., pk] 
where pᵢ is the predicted probability that x belongs to class i, and the sum of all probabilities equals 1. This output is 
then used for confidence assessment. 
∑pᵢ = 1 
Confidence estimation via entropy modulation 
The certainty of the prediction is evaluated using Shannon entropy. The entropy of the probability distribution P(x) is 
calculated as follows: 
H(x) = − ∑ pᵢ × log (pᵢ + ε) 
where ε is a small value to prevent log (0). This entropy score reflects how uncertain the model is — the higher the 
entropy, the lower the confidence. We normalize the entropy to derive a confidence score C(x) ranging from 0 to 1. 
C(x) = 1 − H(x) / log(k) 
A threshold τ ∈ [0, 1] is set. If C(x) > τ, the prediction from ExtraTrees is trusted. If not, the model defers to KNN for 
refinement. 
 KNN-based local refinement 
When C(x) ≤ τ, the prediction is passed to KNN (FKNN), which looks at the k nearest neighbors in the training dataset. 
The predicted class is the one most frequent among those neighbors as shown below. 
ŷKNN = argmaxyⱼ ∑ 𝟙(yᵢ = yⱼ) 
Here, 𝟙 is the indicator function, which equals 1 when the neighbor's label matches class yⱼ. This allows KNN to make 
localized decisions based on actual observed patterns. 
Final decision rule 
The final prediction is selected based on the confidence score: 

𝑦̂(𝑥) = {
𝑎𝑟𝑔𝑚𝑎𝑥𝑖(𝑝𝑖), 𝑖𝑓 𝐶(𝑥) > 𝑟

𝑦̂𝐾𝑁𝑁,                     𝑖𝑓 𝐶(𝑥) ≤ 𝑟
 

This dynamic rule allows the system to adapt its strategy based on the reliability of the initial prediction, making it both 
flexible and accurate in diverse classification scenarios. 
 
Resource utilization analysis 
In this study, the resource consumption was conducted to explore the percentage of resource utilization. On mobile 
devices, RAM and CPU usage can significantly influence the device’s thermal behavior. Increased computational load 
may lead to a rise in operating temperature, potentially triggering thermal throttling—a built-in mechanism that reduces 
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system performance to prevent overheating, ultimately impacting throughput and operational stability. To mitigate this 
issue, the study implemented a passive cooling solution on the Raspberry Pi, using thermal paste with a strategically 
placed heatsink. This approach enhances thermal dissipation and helps maintain optimal operating temperatures, 
thereby preventing the onset of thermal throttling. The application of thermal paste improves the transfer of heat from 
the chip to the heatsink, while the heatsink facilitates efficient dispersal of that heat into the surrounding environment. 
Passive cooling was selected over active methods such as fan-based solutions, which, although effective, consume 
additional power—a limitation for battery-operated systems. This decision reflects a practical balance between 
maintaining device performance and conserving energy during prolonged use.On constrained platforms like the 
Raspberry Pi, this methodical approach to resource analysis highlights the intricate relationship between performance, 
thermal regulation, and power efficiency. The models used in this study are rigorously evaluated not only for their 
classification performance but also for their computational demands, ensuring that their deployment is both technically 
viable and energy-conscious. 
 
Experiment data recording and testing 
The data has to be gathered carefully, then the treatment of data is important for the classifiers to perform well on the 
balanced data. The objective is to consistently record and track key performance metrics for the data. Throughout the 
study, essential parameters such as CPU usage, RAM consumption, latency, and model accuracy were systematically 
monitored and documented. To support real-time observation of these metrics, tailored logging mechanisms were 
seamlessly integrated into the experimental framework. 
 
DATA ANALYSIS 
During the proposed work, careful attention was given to extracting meaningful insights, identifying operational 
patterns, and refining models and experimental setups through detailed data analysis. Comprehensive logging played a 
vital role, serving as a rich source of information for post-experimental evaluation. Advanced analytical techniques were 
applied to the log data to uncover significant trends and relationships. Logs were regularly reviewed to pinpoint areas 
requiring improvement, and the insights gained were used to iteratively refine model configurations, experimental 
procedures, and the logging system itself. This continuous feedback loop was essential for achieving consistent 
optimization and ensuring the robustness and efficiency of the overall experimental process. 
 
PATTERN DETECTION 
In the proposed work, identifying meaningful patterns and extracting features from data requires a step by step 
approach for accurate classification of plant diseases. Various statistical techniques were employed to analyze the data 
rigorously and uncover both surface-level and underlying trends. Descriptive statistics were used to summarize the 
central tendencies and dispersion within the dataset, providing a clear overview of key metrics such as accuracy, delay, 
and resource consumption. To generalize findings beyond the sample, inferential statistical methods such as confidence 
intervals and hypothesis testing were applied, allowing for the estimation of model performance under different 
conditions. To examine the relationships between multiple variables and detect potential dependencies, correlation 
analysis was conducted. This enabled the identification of metrics that may influence one another, providing deeper 
insight into model behavior. 
  
OTHER COMPARATIVE MODELS 
Vision Transformer (ViT) 
The Vision Transformer (ViT), recognized for its ability to scale efficiently and capture global image features using self-
attention mechanisms, was trained over 15 epochs for this study. Unlike traditional convolutional neural networks, ViT 
divides input images into fixed-size patches and processes them through a series of transformer encoder layers, omitting 
convolutional and pooling operations entirely. The final dense layer consists of 36 output nodes, each corresponding to 
a distinct plant disease class. After training, the model is able to achieve accuracy of 96.95%. Detailed testing results and 
comparative analysis will be presented in the results section. 
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ResNet-50 
The ResNet-50 model used in this study was trained over 25 epochs and is based on the well-established ResNet 
(Residual Network) architecture, which incorporates identity shortcut connections to enable the training of deeper 
networks without suffering from vanishing gradients. Unlike architectures such as Inception, ResNet-50 relies on 
stacked residual blocks composed of convolutional layers, batch normalization, and ReLU activations. The final dense 
layer includes 36 output nodes, each representing a distinct plant disease category. After training, the model achieved a 
training accuracy of 92.56% and a test accuracy of 90.24%, reflecting its strong classification capabilities. Detailed test 
results and comparative performance metrics will be presented in the next section. 
EfficientNet-B5 
The EfficientNet-B5 model was trained for 38 epochs in this study. Its architecture is designed to optimize performance 
while maintaining computational efficiency, using standard convolutional blocks followed by a global average pooling 
layer before the final dense classification layer. The output layer contains 36 nodes for plant disease classes. After 
training, the model achieves training accuracy of 94.78% in classifying plant diseases. Detailed testing outcomes and 
comparisons will be presented in the following section. 
XCEPTION 
The XCEPTION model is also considered for training the data for identifying the unseen diseases in plants.  The 
XCEPTION model is used to detect diseases in diversified plants. The proposed hybrid model is compared against this 
model also to measure the accuracy of the model on the trained as well as on the testing data. 

EXPERIMENTAL RESULTS 

Model performance evaluation 
Evaluating model accuracy is essential for ensuring reliable identification of plant diseases. To achieve this, fundamental 
performance metrics such as accuracy, precision, recall, and F1 score were used to provide a comprehensive assessment. 
The dataset, consisting of plant leaf images classified into 36 distinct categories, was divided into training and test sets in 
ratio of 70:30. The training set enabled the model to learn patterns and relationships within the data, while the 
validation set was used to evaluate the model’s ability to generalize to new, unseen samples. A confusion matrix was 
constructed using values for true positives, true negatives, false positives, and false negatives, from which all 
performance metrics were calculated. Together, these measures offer a detailed understanding of the model’s 
effectiveness in handling both binary and multiclass classification tasks. 
The performance of the model is assessed using several key evaluation metrics. Accuracy reflects the overall correctness 
of the model by calculating the proportion of correctly classified plant diseases. Precision measures the accuracy of 
positive predictions by determining the ratio of true positives to the total predicted positive cases. Recall indicates the 
model’s ability to identify all relevant instances by computing the ratio of true positives to all actual positive cases. The 
F1 score, which is the harmonic mean of precision and recall, offers a balanced evaluation by accounting for both false 
positives and false negatives. This metric is particularly valuable when dealing with imbalanced datasets, where one class 
significantly outweighs the others. 
 
MODEL ANALYSIS 
A detailed examination of the theoretical foundations of each model reveals the distinct architectural strengths they bring 
to plant disease classification. The Vision Transformer (ViT) is based on transformer architecture and processes image 
patches as sequences, using self-attention mechanisms to capture global contextual relationships, which enhances its 
efficiency in learning complex visual patterns. ResNet-50 is highly effective in extracting deep hierarchical features. 
EfficientNet-B5 uses scaling strategies to balance network width, depth and resolution, optimizing both accuracy and 
computational efficiency. Xception employs depthwise separable convolutions and a consistent architectural layout with 
global average pooling, enabling efficient learning of spatial hierarchies within images. The proposed hybrid approach 
combines ExtraTrees and K-Nearest Neighbors (KNN) using a confidence-based entropy modulation mechanism. This 
method dynamically selects between global and local classifiers based on prediction certainty, offering a balance between 
high accuracy and efficient resource utilization. Each of these models, including the hybrid strategy, brings unique 
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advantages to the task of automated plant disease detection, supporting both performance and practical deployment in 
real-world agricultural systems 

    Table 1. Evaluation of classification accuracies 

Model Training  Test  Precision Recall 

Vision Transformer (ViT) 96.85 94.58 94.58 97.85 
ResNet-50 94.76 91.34 91.34 94.76 
EfficientNet-B5 96.88 93.45 93.45 96.88 
XCEPTION 92.75 89.21 89.21 92.75 
Proposed Model 98.25 96.0 92.0 93.0 

 

 

FIGURE 2. Model accuracy comparison 
Fig.2. is presenting the accuracy attained by various models including the proposed hybrid model and the advanced DL 
models. The best accuracy is attained by the proposed hybrid model. Whereas Vision Transformer (ViT) is able to 
provide best accuracy next to the proposed approach. The ResNet-50 stands out with its inception modules by providing 
acceptable accuracy in plant disease detection. EfficientNet-B5's architecture, also facilitates the efficient information flow 
for detecting the problems in plants w.r.t. diseases. On the other hand, XCEPTION, is also performing well in 
monitoring the classes of diseases accurately with a slight lower accuracy than the proposed n ViT models respectively. 
The testing data was used for experimentation to check the efficacy of the proposed and advanced DL models in the early 
detection of plant diseases with diversified plant types. Thirty percentage data have been used as the testing data. 30% 
images have undergone the classifiers for accurately classifying the images to segregate the plant disease classes. The 
images are treated and the feature extraction methods are integrated for getting enhanced features from the defected 
plants. Accuracy metrics provide details on how effectively each model performs across various plant types as shown in 
Fig.3. The proposed hybrid model, the DL models such as ViT, ResNet-50, EfficientNet-B5, and Xception, provide a 
strong performance for monitoring the plant diseases. The hybrid approach is capable to identify various types of plant 
diseases with greater accuracy. The proposed hybrid approach shows consistent effectiveness across all plant types and 
highlighting its robustness. 

 

 

FIGURE 3. Model accuracy with respect to each plant 
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After evaluation of accuracy, model latency was evaluated using varying image batch sizes to assess responsiveness. The 
models exhibited different levels of performance, particularly when processing high-resolution images. The proposed 
hybrid model, ResNet-50, EfficientNet-B5, and Xception maintained efficient response times, which is critical for real-
world deployment where fast and accurate plant disease detection is essential. The classification is important on timely 
basis. The delay in classification has a negative impact to assess the applicability of implemented models. The latency has 
been evaluated by transmitting requests for classification on plant diseases. This study is identifying the average latency 
for understanding the model's performance. The models ware deployed and image batch sizes were selected as 100, 200, 
300 and 500 images for the latency measurements process. Table. 3 is showing the latency of the models. 

Table 3: Comparison of model latency 

Model 100 FPS 200 FPS 300 FPS 500 FPS 

ViT 0.10 0.46 0.80 1.50 
ResNet-50 0.21 0.76 1.10 2.00 
EfficientNet-B5 0.19 0.63 1.00 1.80 
Proposed 0.07 0.30 0.82 1.30 
XCEPTION 0.09 0.45 0.85 1.56 

Beyond accuracy evaluation, this study is including a detailed evaluation of model latency which is measured in frames 
per second (FPS) for different batch sizes, as shown in Table 3. The results show that the proposed hybrid model 
achieves the lowest latency while maintaining the highest accuracy, making it especially suitable for time-sensitive plant 
disease detection tasks. 
 
RESOURCE UTILIZATION  

 
 
 
 
 
 
 
 
 
 

Figure 4. Resource utilization  
To get a comprehensive understanding of each model's impact on system resources, it is mandatory to measure the 
resource utilization. These evaluations have been performed for the measurement of the consumption of resources with 
ambient conditions recorded at approximately 32°C temperature, 68 percent humidity, and wind speeds of 10 
kilometers per hour. The aim of testing under these environmental conditions was to observe how the models perform 
under typical field operating environments. The results shown in Fig.4. reveal the proposed approach is able to utilize 
the resources optimally and it helps to conserve the energy as well. All other approaches are also performing well but the 
proposed approach outperformed the other deep neural networking-based approaches which have high computational 
complexity. 
 
DISCUSSIONS 
When selecting a model for agricultural applications, it is essential to consider the specific environmental requirements 
and strike an appropriate balance between classification accuracy and computational efficiency. The proposed hybrid 
model presents a practical solution for plant disease detection, contributing to the protection and sustainability of green 
ecosystems. This comparative analysis of the proposed hybrid approach, ResNet-50, EfficientNet-B5, Vision Transformer 
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(ViT), and Xception highlights the individual strengths and limitations of each architecture in the context of plant disease 
classification. The models differ significantly in terms of accuracy, latency, resource consumption, and thermal 
performance.The results underscore the need for thoughtful model selection tailored to the demands and constraints of 
the target application. Among all evaluated models, the proposed hybrid approach stands out as the most lightweight and 
resource-efficient, while achieving the highest overall accuracy. Vision Transformer (ViT) follows as the second-best 
performer, offering strong accuracy with slightly higher computational demands. ResNet-50, with its deeper architecture 
and residual learning capabilities, delivers solid performance but may be more resource-intensive. EfficientNet-B5 proves 
to be well-suited for deployment on embedded systems, offering a balance between speed and accuracy. Xception, 
although less dominant, remains a suitable choice in scenarios that align with its design characteristics. In the rapidly 
evolving domain of agricultural technology, understanding and applying the strengths of each model—while addressing 
their limitations—can lead to meaningful advancements in precision farming and sustainable crop management 

CONCLUSION AND FUTURE SCOPE 
This hybrid model offers a balanced approach to plant disease detection. ExtraTrees provides speed and high-level 
pattern generalization, while KNN offers refined decision-making for ambiguous samples. The entropy-based confidence 
function acts as a mathematical gate, improving prediction reliability. This not only enhances classification accuracy but 
also minimizes overuse of chemical treatments in precision agriculture, contributing to more environmentally 
sustainable farming practices. This study’s exploration of Vision Transformer (ViT), ResNet-50, EfficientNet-B5, and 
Xception for plant disease classification provides valuable insights that inform future research and practical applications 
in agriculture. Each model offers distinct architectural strengths, presenting opportunities for targeted deployment and 
optimization in diverse agricultural settings. One promising direction for future work involves hybrid model integration. 
Combining the complementary capabilities of ViT, ResNet-50, EfficientNet-B5, and Xception could result in improved 
accuracy, resilience, and adaptability. Ensemble learning strategies may further enhance the effectiveness of these 
models by utilizing their unique features in a unified framework. Beyond technical performance, this approach 
contributes meaningfully to environmental sustainability. Early and accurate detection of plant diseases reduces 
unnecessary pesticide application, prevents large-scale crop losses, and promotes more efficient use of natural resources 
such as water, soil, and energy 
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