
International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 8, 2025

https://theaspd.com/index.php

3656

Evaluating Input Validation Techniques For SQL Injection

Defense

Jiho Choi 1, Taek Lee2*, and Hoon Ko3*
1,2,3Department of Computer Science and Engineering, Sunmoon University, 70, Sunmoon-ro 221 beon-

gil, Tangjeong-myeon, Asan 31460, Republic of Korea

Emails: choe31904@naver.com1, comtaek76@sunmoon.ac.kr2, hoonko21@sumnoon.ac.kr3

Abstract: This study compares four SQL Injection defense techniques: input normalization, blacklist and whitelist

filtering, and FSM-based context validation. Experiments using identical attack payloads show that normalization

improves overall filtering accuracy, while blacklist filtering is simple to implement but vulnerable to evasion. In contrast,

whitelist and FSM-based methods provide strong defensive performance but require greater implementation effort and

maintenance. Overall, no single technique is sufficient on its own; instead, a multi-layered defense strategy that

integrates normalization, filtering, and context validation is shown to be the most effective approach.

Keyword: SQL Injection, Input Normalization, Blacklist/Whitelist Filtering, FSM-based Validation, Multi-layered

 Defense

1. INTRODUCTION

Web applications rely heavily on user-provided input, and insufficient validation of such input can lead

to critical security vulnerabilities such as SQL Injection (SQLi) [1][2]. SQL Injection is a widely known

attack technique in which an adversary injects malicious SQL statements into application input fields to

access or manipulate database contents. Despite the development of numerous defensive solutions, SQLi

remains one of the most frequently reported vulnerabilities across modern web systems [3]. Successful

exploitation can result in personal data leakage, account compromise, unauthorized data modification,

and other severe security incidents [4]. Moreover, as SQLi techniques continue to evolve through

obfuscation, encoding, and structural manipulation, simple string-based filtering is increasingly ineffective

at preventing sophisticated attack vectors. To address these challenges, this study focuses on input pattern

validation, a core component of SQLi defense. The objective is to systematically compare and analyze the

effectiveness of three major defensive strategies under a unified experimental environment [5][6][7].

First, an input normalization pipeline—comprising HTML unescaping, URL decoding, NFKC

transformation, and Unicode homoglyph handling—is applied to assess how preprocessing influences the

detection of obfuscated payloads.

Second, regular-expression-based Blacklist and Whitelist filtering techniques are implemented to evaluate

detection accuracy, false-positive rates, bypass resistance, and inherent structural limitations.

Third, a context-aware FSM (Finite State Machine)–based validation mechanism is constructed, in which

input is tokenized and examined according to syntactic and contextual state transitions. This enables

identification of structural anomalies that simple regex-based filters cannot detect.

The study employs a test set consisting of 500 normal inputs and 500 SQLi payloads, allowing the

quantitative comparison of these techniques with respect to detection rate, false positives, and bypass

success. Through this evaluation, we demonstrate the limitations of traditional filtering approaches and

highlight the defensive advantages of normalization and context-based analysis. Furthermore, we derive

key design considerations for constructing a robust, multi-layered SQLi defense framework.

The remainder of this paper is organized as follows. Section 2 reviews SQL Injection attack techniques

and discusses the limitations of conventional validation mechanisms. Section 3 presents the structure of

input patterns and outlines the defensive models implemented in this study. Section 4 provides the

experimental setup, results, and comparative analysis of normalization, regex-based filtering, and FSM-

based validation methods, and Section 5 summarizes key findings and proposes future research directions.

2. INPUT PATTERN VALIDATION PROBLEM FOR SQL INJECTION DEFENSE

Web applications often embed user-provided input directly into database queries. If such input is not

sufficiently validated, SQL Injection vulnerabilities may arise. In this case, an attacker can inject

manipulated strings such as ' OR '1'='1 into input fields to bypass authentication or to exfiltrate and

modify data [Fig. 1].

https://theaspd.com/index.php
mailto:choe31904@naver.com
mailto:comtaek76@sunmoon.ac.kr
mailto:hoonko21@sumnoon.ac.kr

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 8, 2025

https://theaspd.com/index.php

3657

[Fig. 1] Pattern Validation Problem

Fig. 1 conceptually illustrates how such vulnerabilities arise. An attacker injects a malicious SQL pattern

into an input field—such as a login form—and if the system fails to properly validate the input, the injected

string is incorporated directly into the query, causing the database to execute unintended commands [8].

Systems that rely solely on simple integrity checks cannot detect obfuscated SQL payloads and are

therefore highly susceptible to bypass attempts; insufficient filtering further increases the likelihood of a

successful SQL Injection attack. Accordingly, effective SQL Injection defense requires analyzing the

structural patterns of input values and blocking malicious input before it reaches the database. Input

pattern validation techniques are thus essential components of a robust defense mechanism [9]. Motivated

by this perspective, the present study compares and experimentally evaluates several pattern-based defense

strategies, including input filtering, normalization, and context-aware validation. In the experiment, a

representative attack method—Union-based SQL Injection—was employed. The target system was a PHP-

based bulletin board with no protective measures applied. The SQL payload used for the attack is next

‘$sql = “SELECT * FROM users WHERE usersid =’$id”. The database used for testing consisted of the

following fields: idx (int), username (varchar), usersid (varchar), userspw (varchar), usersemail (varchar), and regdate

(datetime) [Fig. 2].

[Fig. 2] Users records in the member database table

To perform the attack on the constructed database, a payload such as ' OR '1'='1 -- was used, with a trailing

space added to ensure proper termination of the query syntax.

[Fig. 3] Compromised Bulletin Board

https://theaspd.com/index.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 8, 2025

https://theaspd.com/index.php

3658

[Fig. 4] Board Contents

When this payload is inserted into the ID input field and any arbitrary value is entered in the Password

field, the query condition evaluates to True, resulting in an authentication bypass that logs in the attacker

as the second row’s admin account. Once the attack succeeds, the attacker gains admin-level access,

enabling the creation, modification, and deletion of posts, as well as viewing posts created by other users

[Fig. 3][Fig. 4].

3. INPUT PATTERN-BASED DEFENSE STRATEGY

To effectively evaluate SQL Injection defense mechanisms, it is essential to systematically compare the

performance of each protection stage that processes user input. In this study, four defensive techniques—

extending beyond simple string-based filtering to include input normalization and context-aware

structural validation—were implemented, and their detection rates, false-positive rates, and bypass success

rates were quantitatively measured [9].

First, regular-expression-based blacklist and Whitelist filtering methods were implemented to compare the

efficiency of pattern-blocking and allowlist-based approaches. Although both techniques are widely used,

they exhibit fundamental structural limitations that make them vulnerable to various evasion attacks. In

this study, obfuscated SQL payloads were applied to evaluate the detection performance of each method.

Second, an input normalization pipeline—composed of HTML unescaping, URL decoding, NFKC

normalization, and Unicode homoglyph mapping—was constructed to analyze how normalization affects

the detection accuracy of filtering-based methods. The performance before and after normalization was

compared to assess its impact.

Third, an FSM (Finite State Machine)–based context validation technique was implemented, in which

input strings are tokenized and evaluated according to their contextual state transitions. This method was

tested to determine whether it can more effectively detect evasion techniques—such as nested structures,

quote breaking, and insertion of benign-looking strings—that are difficult to identify using simple regular

expressions.

Finally, all three techniques were evaluated using the same attack dataset, and detection rates, false

positives, and bypass results were measured. Based on these outcomes, the structural differences and

practical defensive effectiveness of the methods were comprehensively compared and analyzed.

3-1 INPUT VALUE NORMALIZATION

The second method, input normalization, refers to the process of restoring attacker-modified payloads to

a standardized form before filtering is applied. For example, when attempting to block the word “복숭

아,” an attacker may evade the filter by transforming the string into variants such as “복숭ㅇr,” “Peach,”

or “복ㅅㅜㅇ아.” Input normalization converts such obfuscated representations back into their canonical

form, “복숭아,” prior to inspection. The normalization process includes several steps—HTML entity

decoding, URL decoding, Unicode homoglyph normalization, and case folding—ensuring that the
semantic meaning of the input remains consistent. This preprocessing phase is effective in detecting
evasion techniques such as mixed encoding, insertion of special characters, and string fragmentation,
thereby compensating for the inherent limitations of simple string-based filtering [10].

3-2 REGULAR-EXPRESSION-BASED BLACKLIST & WHITELIST

The first method applies regular-expression-based Blacklist and Whitelist filtering techniques. As

illustrated in the figure, both approaches examine the input at an early stage, but they differ in their

operational principles. The Blacklist approach blocks any input containing prohibited words or patterns,

whereas the Whitelist approach permits only predefined characters or patterns and rejects all others. In

the Blacklist method, commonly used SQL Injection components—such as UNION, --, and #—are detected

and blocked either on the client side or the server side. In contrast, the Whitelist method only accepts

https://theaspd.com/index.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 8, 2025

https://theaspd.com/index.php

3659

characters included in an approved set, such as numbers, alphabetic characters, and selected special

symbols, filtering out all remaining input [Fig. 5][11].

[Fig. 5] BlackList·WhiteList Procedure

3-3 FSM (FINITE STATE MACHINE)

The Finite State Machine (FSM) is a context-based technique used to track how an attacker’s input alters

the structure of an SQL query, and it can be regarded as a form of SQL syntax validator. The FSM

processes an SQL query character by character and transitions between states accordingly. The initial state

is 0, and when a single quotation mark (') or double quotation mark (") is encountered, the machine

transitions into a string state (state 1). In this state, keywords such as OR or AND are treated purely as

text and therefore are not considered attack indicators. When comment patterns such as -- or /* are

detected, the FSM transitions into a comment state (state 2), in which all subsequent characters are treated

as comments until a newline or the closing */ is reached. Additional states are defined to handle other

syntactic elements such as escape characters, parentheses, and operators. By leveraging this contextual

information, the FSM determines whether user input modifies the structural semantics of the query. This

enables effective detection of various evasion techniques—such as quote breaking, comment-based

obfuscation, and keyword insertion—that cannot be reliably captured through simple filtering alone [12].

4. EXPERIMENT & ANALYSIS

In this experiment, a total of 1,000 inputs were used, consisting of 500 SQL Injection payloads and 500

normal inputs, such as valid login attempts, incorrect passwords, and nonexistent account queries. This

configuration simulates a realistic login environment in which legitimate and malicious requests coexist,

enabling a balanced evaluation of attack-blocking performance and false-positive occurrences.

4-1 Filtering Technique Based on Input Normalization

(1) Basic Normalization

In the first experiment, only basic normalization techniques—such as simple URL decoding, HTML entity

conversion, and whitespace/character cleanup—were applied. As a result, all 500 SQLi payloads

successfully bypassed the defense, indicating that the basic normalization alone failed to provide effective

protection [Fig. 6].

[Fig. 6] Basic Normalization

(2) Enhanced Normalization

In the second experiment, additional defensive steps were introduced in the sequence of normalization

→ reduction → whitelist filtering → SQL token-level blocking. As a result, all SQLi payloads were

successfully prevented, achieving a 0% bypass rate [Fig. 7].

https://theaspd.com/index.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 8, 2025

https://theaspd.com/index.php

3660

[Fig. 7] Enhanced Normalization

4-2 Regular-Expression-Based Blacklist and Whitelist Filtering

(1) Basic Blacklist-Whitelist

The first experiment applied a simple Blacklist and Whitelist approach, and both methods were

completely bypassed (100% bypass rate), resulting in a failure to defend against SQL Injection attacks [Fig.

8][Fig. 9].

[Fig. 8] Basic Blacklist

[Fig. 9] Basic Whitelist

(2) Hybrid Filtering

Hybrid filtering is an enhanced technique that combines normalization, whitelist enforcement, SQL

keyword blocking, and meta-character restrictions. In the experiment, this method successfully blocked

100% of SQL Injection payloads, with no bypass attempts observed. However, the input constraints were

excessively strict, resulting in the unintended rejection of some legitimate user inputs. Thus, although the

security effectiveness is very high, the method presents usability limitations that make it difficult to deploy

directly in real-world services [Fig. 10].

[Fig. 10] Hybrid Filtering

https://theaspd.com/index.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 8, 2025

https://theaspd.com/index.php

3661

4-3 FSM (Finite State Machine) based Context Validation Method

(1) Basic FSM

The first experiment employed a basic FSM that relied solely on simple string inspection, without state-

based blocking for SQL meta-characters (e.g., OR, --, '). As a result, most payloads were able to pass as long

as their structural form appeared minimally valid.

[Fig. 11] Basic FSM Result

As a result, because additional protection mechanisms such as input normalization and character-level

whitelisting were not applied, all 500 SQLi payloads successfully bypassed the defense, leading to a

complete failure in protection [Fig. 11].

(2) Enhanced FSM

In the second experiment, the same CSV input dataset was used, but the FSM design was significantly

reinforced. The applied techniques included input normalization, whitelist filtering, state-based blocking

of SQL meta-characters and keywords, and the use of Prepared Statements in the final stage.

[Fig. 12] Enhanced FSM Result

The enhanced FSM technique successfully blocked all 500 SQL Injection payloads, while normal inputs

and general error cases were processed without any issues.

4-4 Comparative Analysis of the Four Methods

This section compares and analyzes the security effectiveness and limitations of input normalization,

regex-based Blacklist/Whitelist filtering, and FSM-based context validation, based on experimental results

obtained using an identical test vector. The dataset consisted of 1,000 total inputs (500 normal and 500

SQL Injection payloads), and each technique was evaluated in terms of SQLi blocking rate, normal request

handling, and susceptibility to bypass attacks.

(1) Comparative Evaluation Across Methods

The comparison of input normalization, Blacklist/Whitelist filtering, and FSM-based context validation

under the same experimental conditions revealed distinct characteristics and security levels for each

technique.

First, basic normalization applied only simple preprocessing steps such as URL decoding and HTML

entity handling. As a result, the structural meaning of the SQLi payloads remained intact, allowing all

500 attack payloads to bypass detection. This confirms that normalization alone is not a standalone

defense mechanism but rather an auxiliary step intended to enhance the accuracy of subsequent filtering.

Second, the basic Blacklist approach—relying on keyword-based string matching—proved vulnerable to

common evasion methods such as case manipulation, whitespace insertion, and encoding changes. In the

experiment, all attack payloads successfully bypassed this method, while all normal inputs were accepted.

https://theaspd.com/index.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 8, 2025

https://theaspd.com/index.php

3662

This aligns with prior studies demonstrating the inherent limitations of purely pattern-based Blacklist

filtering.

Third, basic Whitelist filtering blocked all 500 SQLi payloads due to its strict acceptance of only

predefined characters. However, the approach also rejected 100% of normal inputs, highlighting

significant usability concerns and its impracticality for direct deployment in real-world systems.

Fourth, the basic FSM method analyzed SQL context states—such as string, comment, and code states—

rather than relying solely on string comparison. While this enabled greater resilience to evasion attempts,

the limited SQL keyword set, absence of normalization, and simplified state transitions allowed several

payloads to bypass detection.

(2) Security Operation Strategy Recommendations

Based on the enhanced experiments—Enhanced Normalization, Enhanced Hybrid, and Enhanced FSM—

this study confirms that no single technique is sufficient to completely block SQL Injection attacks.

Instead, a multilayered defense architecture composed of Normalization → Character-Based Whitelist →

SQL Token/Keyword Validation → FSM or Prepared Statement provides the most effective protection.

From these results, the following operational strategies are recommended for practical deployment.

a. Apply normalization to all incoming inputs

The enhanced normalization experiment applied multi-step preprocessing—multiple URL/HTML

decodings, Unicode NFKC normalization, control character removal, and whitespace compression. All

500 SQLi payloads were fully exposed during normalization and subsequently blocked (0% bypass). This

demonstrates that normalization serves as the primary defensive layer that determines the accuracy of all

subsequent filtering. Therefore, all inputs must be normalized into a standardized form before entering

the service logic.

b. Apply Whitelist filtering selectively to fixed-pattern fields

In the enhanced Hybrid experiment, applying a Whitelist (letters, digits, and underscores) solely to the

user ID field resulted in a 100% blocking rate for all SQLi payloads. However, because broad Whitelist

enforcement can inadvertently block legitimate inputs, it should be selectively applied to fields with

predictable formats, such as user IDs, page numbers, or integer parameters. Limiting Whitelist filtering

to high-risk, fixed-structure fields ensures strong protection while preserving usability.

c. Use Blacklist filtering as a supplementary detection layer

The enhanced Hybrid experiment demonstrated that adding SQL keyword (e.g., OR, UNION, SELECT)

and meta-character (e.g., ‘, ”, --) blocking provided an additional layer of defense, effectively catching

payloads that might otherwise bypass normalization or Whitelist filtering. Although Blacklist filtering is

weak as a standalone defense, it is valuable as a supplementary signature-based layer that enhances the

overall detection capability.

d. Apply FSM or Prepared Statements as the final defense layer

The enhanced FSM experiment accurately tracked SQL context states (code, string, comment) and

achieved a 100% blocking rate for all 500 SQLi payloads while correctly handling all normal inputs. FSM

is the most powerful final defensive layer, capable of detecting attacks that evade simple string-based filters.

Prepared Statements provide a comparable level of security by fully separating query logic from input

values. Therefore, a multilayered structure of Normalization → Whitelist/Blacklist → FSM or Prepared

Statement constitutes the most reliable SQL Injection defense pipeline.

5. CONCLUSION

In This study compared and analyzed four major SQL Injection defense techniques—input normalization,

regex-based Blacklist/Whitelist filtering, and FSM-based context validation—under a unified experimental

environment. The test vector consisted of 500 normal inputs and 500 SQLi payloads, and each technique

was evaluated in both basic and enhanced versions. In the basic experiments, normalization and Blacklist

filtering showed clear limitations as standalone defense mechanisms, as they were unable to block most

SQLi payloads. The Whitelist method successfully blocked all SQLi attempts but also rejected all normal

inputs, revealing a critical usability issue. The basic FSM achieved relatively high detection performance

but failed to completely mitigate all attack payloads. These findings indicate that no single technique is

sufficient to reliably defend against diverse SQLi evasion attacks. In contrast, the enhanced experiments

demonstrated that a multilayered architecture—combining normalization, Whitelist filtering, SQL

keyword and meta-character blocking, and FSM—achieved a 100% blocking rate across all 500 SQLi

payloads, with no bypasses observed. Enhanced FSM and enhanced normalization, in particular, played

a decisive role by accurately detecting payloads involving various forms of obfuscation, encoding

https://theaspd.com/index.php

International Journal of Environmental Sciences

ISSN: 2229-7359

Vol. 11 No. 8, 2025

https://theaspd.com/index.php

3663

transformations, and whitespace manipulation. These results empirically confirm that a sequential

multilayered strategy—consisting of normalization, character-based restriction, keyword inspection, and

context-aware validation—provides the most effective defense against SQL Injection. Therefore, the study

concludes that a stepwise defense structure of Normalization → Blacklist/Whitelist → SQL token

validation → FSM/Prepared Statement is essential for minimizing bypass attacks and ensuring robust

protection. Future research may extend this work through machine learning–based payload classification,

traffic sequence pattern analysis, and real-world service-level experiments to further validate and enhance

the multilayered defense framework.

Acknowledgments

This research was supported by the MSIT(Ministry of Science ICT), Korea, under the National Program

for Excellence in SW, supervised by the IITP(Institute of Information & Communications Technology

Planning & Evaluation) in 2025 (No. 2024-0-00023).

REFERENCES

1. W. G. J. Halfond, J. Viegas, and A. Orso, “A Classification of SQL -Injection Attacks and Countermeasures,” IEEE

International Symposium on Secure Software Engineering, pp. 13–15, 2006.

2. LIU, Anyi, et al. SQLProb: a proxy-based architecture towards preventing SQL injection attacks. In: Proceedings of the 2009

ACM symposium on Applied Computing. pp. 2054-20612009, 2009.

3. G. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using Parse Tree Validation to Prevent SQL Injection Attacks,” IEEE

International Workshop on Software Engineering for Secure Systems, pp. 106–113, 2005.

4. BALZAROTTI, Davide, et al. Saner: Composing static and dynamic analysis to validate sanitization in web applications. In:

2008 IEEE Symposium on Security and Privacy (sp 2008). IEEE, pp. 387-401, 2008.

5. F. Valeur, D. Mutz, and G. Vigna, “A Learning-Based Approach to the Detection of SQL Attacks,” Detection of Intrusions

and Malware & Vulnerability Assessment (DIMVA), vol. 3548, pp. 123–140, 2005.

6. SHIN, Yonghee; WILLIAMS, Laurie; XIE, Tao. SQLUnitgen: Test case generation for SQL injection detection. North Carolina

State University, Raleigh Technical report, NCSU CSC TR, 2006.

7. SCHOLTE, Theodoor, et al. An empirical analysis of input validation mechanisms in web applications and languages. In:

Proceedings of the 27th Annual ACM Symposium on Applied Computing, pp. 1419-1426, 2012.

8. AMMAGUNTA, Sathish, et al. Defending against SQL injection: Practical application with open-source tools for improved

cyber security. In: AIP Conference Proceedings. AIP Publishing LLC, pp. 020036, 2025.

9. JOSHI, Anamika; GEETHA, V. SQL Injection detection using machine learning. In: 2014 international conference on control,

instrumentation, communication and computational technologies (ICCICCT). IEEE, pp. 1111-1115, 2014.

10. ELIA, Ivano Alessandro; FONSECA, Jose; VIEIRA, Marco. Comparing SQL injection detection tools using attack injection:

An experimental study. In: 2010 IEEE 21st International Symposium on Software Reliability Engineering. IEEE, pp. 289-298,

2010.

11. Z. Su and G. Wassermann, “The Essence of Command Injection Attacks in Web Applications,” ACM SIGPLAN–SIGACT

Symposium on Principles of Programming Languages (POPL), pp. 372–382, 2006.

12. NGUYEN-TUONG, Anh, et al. Automatically hardening web applications using precise tainting. In: IFIP International

Information Security Conference. Boston, MA: Springer US, pp. 295-307, 2005.

https://theaspd.com/index.php

