

# Analysing The Present Themes And Future Prospects Of Circular Supply Chain Management: A Critical Review

Vaishali Patel <sup>1\*</sup>, Dr. Pina Bhatt<sup>2</sup>, Dr. Jigar Doshi<sup>3</sup>

<sup>1</sup>Research Scholar, Department of Mechanical Engineering, Silver Oak University, Ahmedabad - 380061, Gujarat, India, vaishukkpatel@gmail.com, 0009-0004-8578-9537

<sup>2</sup>Professor, Department of Mechanical Engineering, Silver Oak University, Ahmedabad - 380061, Gujarat, India pmbhatt15@gmail.com, 0000-0002-2874-5798

<sup>3</sup>Professor, Department of Mechanical Engineering, Silver Oak University, Ahmedabad - 380061, Gujarat, India jigardoshi11@gmail.com, 0000-0002-4998-1263

## Abstract:

Circular Supply Chain Management (CSCM) has emerged as a critical strategy for promoting sustainability and advancing the circular economy across industries. This review critically examines the current themes and future directions of CSCM, focusing on key drivers, challenges, and sector-specific implementations. Regulatory pressures, stakeholder awareness, and economic incentives drive organizations toward circular practices, while high investment costs, technological complexities, and organizational resistance hinder adoption. Digital technologies—including artificial intelligence, big data analytics, blockchain, and the Internet of Things—play a pivotal role in enabling traceability, predictive planning, and resource optimization. Reverse logistics and closed-loop systems underpin circular operations, facilitating product recovery, remanufacturing, and sustainable business models. Sector-specific implementations across automotive, textile, manufacturing, electronics, and heavy industries highlight tailored strategies, benefits, and challenges. Emerging trends such as industrial symbiosis, eco-industrial parks, globalization, and technology-enabled transparency suggest a pathway toward resilient, sustainable, and globally integrated supply chains. The review underscores the need for holistic approaches combining technological, managerial, and policy interventions to achieve operational efficiency, environmental sustainability, and long-term competitiveness.

**Keywords:** Circular Supply Chain Management, Digital Technologies, Reverse Logistics, Closed-Loop Systems, Sector-Specific Circular Practices

## 1. Key Drivers and Challenges in Circular Supply Chain Management

Circular supply chain management (CSCM) is a strategic approach that supports sustainability and advances the circular economy. Farooque et al. (2019) highlight that regulatory and environmental pressures, growing stakeholder awareness of sustainability, and the economic need to reduce resource consumption and minimize waste are key drivers encouraging organizations to adopt circular practices. Advancements in technology, notably those linked to Industry 4.0, like artificial intelligence, the Internet of Things (IoT), the analysis of big data, and predictive modeling, allow the operations of the supply chain to become more circular by providing visibility, traceability, and operational efficiency as shown in Figure 1 (Kristoffersen et al., 2020; Awan et al., 2021; Dev et al., 2020). Sharing knowledge with suppliers, collaborators and research institutions supports the circular economy (Jabbar et al., 2020). It helps innovate products, packaging and processes.

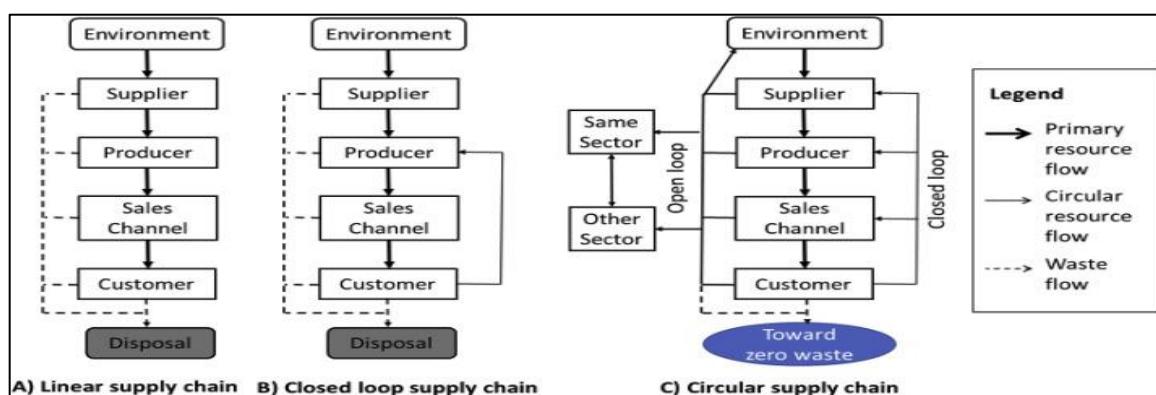



Figure 1. Technologies efficiency in circular supply chains.

Source: Adapted from Kristoffersen et al. (2020).

Despite this strong motivation, organizations are still confronted with many challenges in adopting and implementing CSCM. The effective implementation is hindered due to high initial capital investments, complexity of positioning circular processes within linear supply chains and lack of human resources (Lahane et al., 2020; García-Buendía et al., 2024). In addition, the lack of standardization of practices and frameworks related

to the circular economy and technology integration difficulties create operational uncertainties in reverse logistics, product recovery and efficient use of secondary materials (De Angelis et al., 2018; Batista et al., 2018). These challenges also worsen due to organizational resistance, limited knowledge of decision-makers, and uneven uptake.

According to the literature, organizations need to embrace digital technologies, initiate cross-sector collaborations, and establish structured frameworks for circular operations to maximize the benefits of CSCM. By tackling these issues while leveraging the key drivers, firms can move away from linear and create resilient circular supply chains which can provide environmental sustainability, competitiveness and long-term operational efficiency.

## 2. Role of Digital Technologies in Enabling Circular Supply Chains

Digital technologies are increasingly recognized as critical enablers for the successful implementation of circular supply chains. They provide the tools and platforms necessary to integrate, monitor, and optimize circular processes across the value chain. Technologies such as big data analytics, artificial intelligence (AI), blockchain, and the Internet of Things (IoT) allow companies to enhance traceability, improve resource efficiency, and make data-driven decisions that support sustainability objectives (Bag et al., 2021; Dubey et al., 2019). As shown in *Table 1*, these technologies contribute significantly to improving efficiency and sustainability outcomes across operations.

Big data and AI facilitate predictive analytics, enabling firms to forecast demand, manage reverse logistics, and reduce waste by optimizing production, distribution, and end-of-life processes. These technologies also improve social and environmental sustainability by providing actionable insights for reducing resource consumption and carbon footprint (Dubey et al., 2019; Bag et al., 2021). Blockchain technology contributes to transparency and trust in circular supply chains, securing transactions, tracking materials, and ensuring compliance with sustainability standards, although adoption barriers such as technical complexity and high implementation costs persist (Kouhizadeh et al., 2021).

Table 1: Digital technologies in circular supply chains

| Digital Technology           | Efficiency/Impact Metrics                                                              | Example Indicators                                           | Challenges (Numeric)                                  |
|------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|
| Artificial Intelligence (AI) | 20-30% reduction in waste through optimized demand forecasting and production planning | 25% improvement in resource utilization in manufacturing     | 40% firms cite lack of skilled data scientists        |
| Big Data Analytics           | 15-25% increase in supply chain visibility and responsiveness                          | Real-time analytics reduce lead times by 10-15%              | 30% of large companies struggle with data privacy     |
| Blockchain                   | Up to 50% improvement in traceability for critical materials                           | 35% reduction in counterfeit goods and compliance violations | High implementation cost: \$500K-\$2M per project     |
| Internet of Things (IoT)     | 20-40% decrease in maintenance costs via predictive maintenance                        | 30% extension of product lifecycle                           | 25-35% rise in infrastructure and security costs      |
| Digital Twins                | 15-30% improvement in lifecycle management and remanufacturing efficiency              | Simulations reduce trial/error costs by 20%                  | 10-15% require high investment in data infrastructure |

Source: Own processing

The IoT allows real-time monitoring of products, materials, and equipment across the supply chain, enabling firms to implement circular strategies such as predictive maintenance, product life extension, and resource recovery (Ingemarsdotter et al., 2019). The comparative efficiency gains enabled by these technologies are illustrated in *Figure 2*, which shows clear improvements across traceability, maintenance cost reduction, and lifecycle management. Institutional factors, including regulatory pressures, market expectations, and stakeholder engagement, further influence the adoption and effectiveness of these digital tools in supporting circular operations (Ranta et al., 2018; Govindan & Hasanagic, 2018).

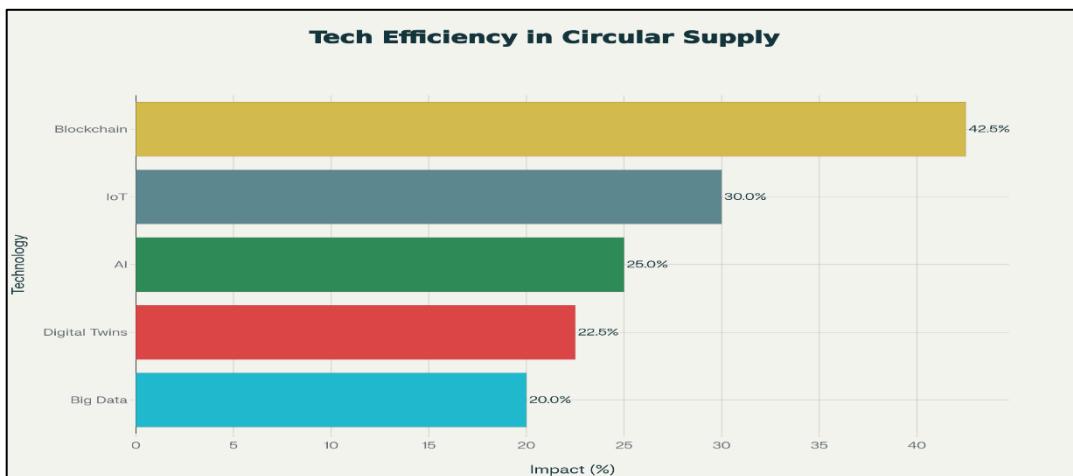



Figure 2: Technologies Efficiency in circular supply chains

The numeric table reveals that digital technologies drive substantial efficiency gains in circular supply chains, with blockchain leading at up to 50% improvement in traceability, followed by IoT at 20-40% reduction in maintenance costs and AI at 20-30% waste reduction. These metrics highlight how AI and big data enhance resource utilization by 15-25%, while digital twins optimize lifecycles by 15-30%, underscoring their role in minimizing environmental impact and boosting sustainability. Challenges like high costs (e.g., \$500K-\$2M for blockchain) and skill gaps (40% of firms) temper adoption, yet the overall data supports transformative potential for resilient operations.

Moreover, digital technologies underpin the development of circular business models by providing the analytical and operational capabilities required to transform traditional linear supply chains into circular networks (Kazancoglu et al., 2018; Rosa et al., 2019). Collectively, the integration of these technologies not only enhances operational efficiency but also strengthens firms' ability to innovate sustainably, aligning with broader circular economy goals and creating resilient, transparent, and adaptable supply chains.

### 3. Reverse Logistics and Closed-Loop Systems

Reverse logistics and closed-loop supply chain systems form a critical backbone of circular supply chain management. They enable the collection, recovery, remanufacturing, and recycling of products, components, and materials at the end of their lifecycle, thereby reducing waste and maximizing resource efficiency (Masi et al., 2017; Kirchherr et al., 2017). These systems transform the traditional linear supply chain, where products move from production to consumption and disposal, into a closed-loop system where materials continuously circulate, supporting environmental sustainability and operational efficiency (Urbinati et al., 2017; Linder & Williander, 2017). The reverse material flow process is illustrated in *Figure 3*, which depicts the structure of a closed-loop supply chain and its reverse logistics components.

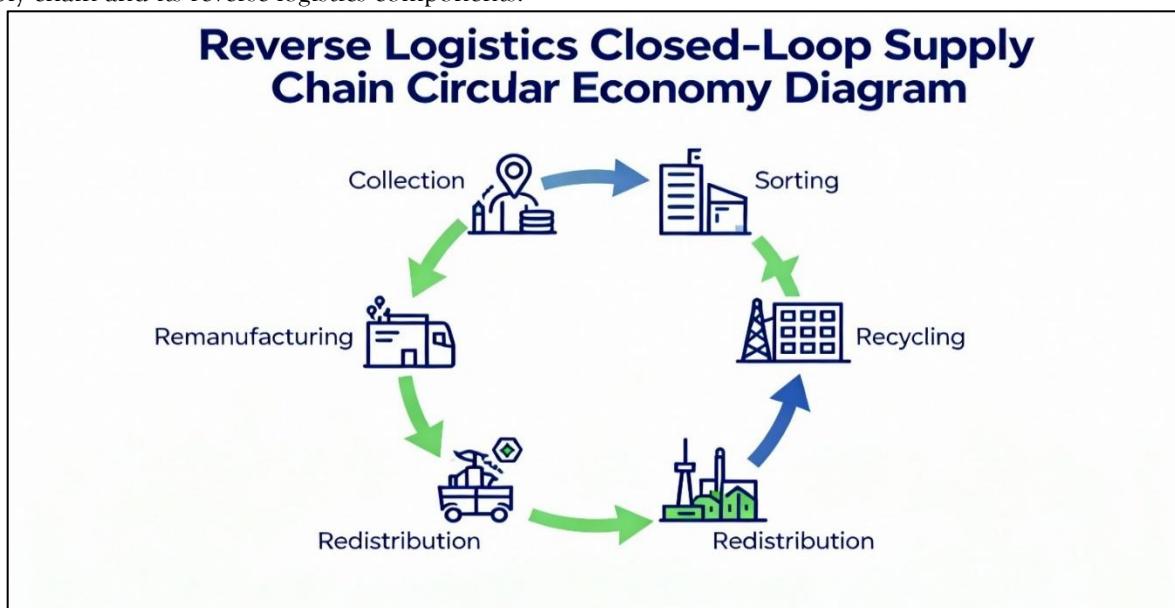



Figure 3: Reverse Logistic Closed Loop Supply Chain Diagram  
 Source: Own processing

Business models that emphasize product usage over ownership, such as leasing, sharing, and pay-per-use frameworks, leverage reverse logistics to enable circular economy practices. Digital technologies, including big data and IoT, support the monitoring and optimization of material flows, allowing firms to implement usage-focused strategies effectively and enhance industrial symbiosis (Bressanelli et al., 2018; Tseng et al., 2018). These digital tools help companies track returned products, predict maintenance needs, and ensure that recovered materials are reintroduced into production cycles efficiently.

The design of circular business models is closely linked to reverse logistics capabilities. Firms must address uncertainties related to product return rates, material quality, and remanufacturing costs to fully capture environmental and economic value (Linder & Williander, 2017; Manninen et al., 2018). Systematic literature reviews highlight that the success of closed-loop supply chains depends on integrating supply chain configuration, reverse logistics processes, and circular business strategies to achieve resilience, cost-efficiency, and sustainability (Merli et al., 2018; Masi et al., 2017).

Overall, reverse logistics and closed-loop systems not only contribute to environmental sustainability but also create strategic advantages by reducing material dependency, lowering production costs, and enabling companies to meet growing regulatory and consumer demands for sustainable practices. These systems form the operational foundation of the circular economy, ensuring that resources are continuously cycled through the value chain rather than being lost as waste (Kirchherr et al., 2017; Urbinati et al., 2017).

#### 4. Sector-Specific Implementations of Circular Supply Chains

The implementation of circular supply chains varies significantly across industrial sectors, reflecting differences in resource intensity, product complexity, and regulatory requirements. In the automobile sector, circular economy practices focus on vehicle remanufacturing, component reuse, and material recovery to minimize waste and reduce environmental impact. Agyemang et al. (2019) highlight that while the automotive industry benefits from strong technological capabilities and structured processes, challenges such as high initial investment, lack of skilled personnel, and regulatory barriers limit the full adoption of circular supply chains. The comparative overview of sector-wise circular practices is presented in *Table 2*, summarizing key benefits, challenges, and enabling technologies across industries.

In the textile industry, sector-specific adoption emphasizes micro-level circular strategies, including product redesign, extended product life, and material recycling. Franco (2017) notes that incumbent firms face dynamic challenges such as resistance to change, high costs of retrofitting existing production processes, and the need for consumer acceptance of reused or remanufactured products. Despite these challenges, integrating circular strategies at the firm level helps achieve sustainability goals while fostering innovation in materials and design. Manufacturing sectors in general have increasingly explored digital-enabled circular practices, such as 3D printing, which allows for on-demand production and reduced waste. Despeisse et al. (2017) argue that additive manufacturing can unlock value in circular supply chains by shortening lead times, enabling material reuse, and facilitating product customization. Similarly, sectors engaged in high-volume or resource-intensive production have leveraged green supply chain management frameworks to assess environmental performance and enhance sustainability (De Oliveira et al., 2018; Ansari et al., 2017).

Collaboration is a critical enabler of sector-specific circular supply chains. Herczeg et al. (2018) emphasize the importance of industrial symbiosis networks, where multiple firms coordinate material flows and share resources to reduce overall environmental impact. In sectors such as electronics, chemicals, and heavy manufacturing, these networks allow firms to optimize resource use and achieve economies of scale in recycling and remanufacturing processes. Genovese et al. (2017) similarly note that collaborative approaches support the transition toward circularity by aligning supply chain stakeholders around shared environmental and economic objectives.

Table 2. Sector-specific circular supply chain (CSC) practices.

Source: Own processing.

| Sector     | Circular Supply Chain Practices                               | Key Benefits                                                                             | Challenges / Barriers                                                     | Enabling Factors / Technology                                                       |
|------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Automobile | - Vehicle remanufacturing- Component reuse- Material recovery | - Waste reduction- Cost savings in material procurement- Environmental impact mitigation | - High initial investment- Lack of skilled workforce- Regulatory barriers | - Advanced recycling technologies- Structured processes- Digital tracking for parts |

|                                                      |                                                                                                |                                                                                            |                                                                                                 |                                                                                                   |
|------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| <b>Textile</b>                                       | - Product redesign- Extended product life- Material recycling                                  | - Sustainability achievement- Innovation in design and materials- Brand image enhancement  | - Resistance to change- High retrofitting costs- Consumer acceptance of remanufactured products | - Eco-design software- Recycling machinery- Circular business models (e.g., take-back schemes)    |
| <b>General Manufacturing</b>                         | - 3D printing / additive manufacturing- On-demand production- Material reuse                   | - Waste reduction- Customization of products- Shorter lead times                           | - High capital costs for new technology- Supply chain integration complexity                    | - 3D printing- IoT and AI for production planning- Green supply chain frameworks                  |
| <b>Electronics / Chemicals / Heavy Manufacturing</b> | - Industrial symbiosis networks- Resource sharing- Collaborative recycling and remanufacturing | - Resource optimization- Economies of scale- Improved environmental performance            | - Coordination among multiple firms- Regulatory compliance- High upfront infrastructure         | - Collaborative platforms / networks- Shared reverse logistics systems- Circular economy policies |
| <b>Cross-sector / Emerging Trends</b>                | - Reverse logistics- Resource-efficient design- Stakeholder collaboration                      | - Resilient industrial ecosystem- Sustainable operations- Innovation in circular practices | - Sector maturity differences- Technological adaptation gaps- Policy alignment                  | - Policy support- Industry 4.0 technologies- Knowledge sharing / best practices                   |

Finally, overarching trends in the adoption of circular economy principles, as noted by Homrich et al. (2018), highlight gaps and pathways for integration across sectors. While sectors differ in their maturity and capacity to implement circular supply chains, common strategies such as resource-efficient design, reverse logistics, and stakeholder collaboration enable the transition toward a more sustainable and resilient industrial ecosystem. Sector-specific implementations provide valuable insights for tailoring circular practices to industry needs while addressing technological, economic, and regulatory challenges.

## 5. Emerging Trends and Future Directions in Circular Supply Chain Research

Recent research on circular supply chains highlights several emerging trends that are shaping the future of sustainable industrial practices. One key trend is the growing focus on reverse logistics and closed-loop supply chains, particularly in sectors dealing with high-volume waste streams such as electronics. Islam et al. (2018) emphasize that managing Waste Electrical and Electronic Equipment (WEEE) requires integrated strategies for collection, recycling, and remanufacturing. These strategies not only reduce environmental impact but also create opportunities for resource recovery and economic value creation, reinforcing the need for comprehensive lifecycle management in circular supply chains.

Industrial ecology and eco-industrial parks represent another trend in the circular supply chain landscape. Belaud et al. (2019) illustrate how coordinated industrial networks can facilitate the sharing of resources, energy, and by-products among firms, thereby improving material efficiency and promoting sustainable industrial development. Such approaches support regional circularity and demonstrate how policy-driven initiatives can foster collaborative industrial ecosystems that reduce waste and enhance resource productivity.

Globalization and international trade are also influencing the evolution of circular supply chains. Plank et al. (2018) highlight that the cross-border movement of raw materials and intermediate products impacts resource consumption patterns, underscoring the importance of understanding supply chain interdependencies at the global scale. This perspective calls for new research that integrates circularity principles with international trade and resource management to reduce the ecological footprint of global supply networks.

Digital technologies, including blockchain and other data-driven solutions, are emerging as enablers of transparency, traceability, and accountability in circular supply chains. Saberi et al. (2019) note that blockchain can address challenges such as information asymmetry, fraud, and inefficient resource tracking, thereby enhancing the sustainability and reliability of supply chains. Integrating these technologies with circular practices

can enable more efficient reverse logistics, smarter inventory management, and better alignment of production with resource availability.

Finally, the strategic focus on sustainable supply chains is growing in both corporate and policy spheres. Villena and Gioia (2020) emphasize the importance of designing supply chains that are resilient, resource-efficient, and aligned with sustainability objectives. Future research is likely to explore hybrid models that combine technological innovation, policy frameworks, and cross-sectoral collaboration to advance circular economy goals. These directions point toward a holistic approach where technological, managerial, and regulatory interventions converge to enable sustainable, circular, and globally integrated supply chains.

## REFERENCES

1. Farooque, M., Zhang, A., Thürer, M., Qu, T., & Huisingsh, D. (2019). Circular supply chain management: A definition and structured literature review. *Journal of Cleaner Production*, 228, 882–900. <https://doi.org/10.1016/j.jclepro.2019.04.303>
2. Lahane, S., Kant, R., & Shankar, R. (2020). Circular supply chain management: A state-of-art review and future opportunities. *Journal of Cleaner Production*, 258, Article 120859. <https://doi.org/10.1016/j.jclepro.2020.120859>
3. García-Buendía, N., Moyano-Fuentes, J., Maqueira-Marín, J. M., & Cobo, M. J. (2024). Squaring circular supply chain management: A comprehensive overview of emerging themes and trends. *Business Strategy and the Environment*, 33(6), 5448–5471.
4. <https://doi.org/10.1002/bse.3932>
5. Kristoffersen, E., Blomsma, F., Mikalef, P., & Li, J. (2020). The smart circular economy: A digital-enabled circular strategies framework for manufacturing companies. *Journal of Business Research*, 120, 241–261. <https://doi.org/10.1016/j.jbusres.2020.07.044>
6. Awan, U., Sroufe, R., & Shahbaz, M. (2021). Industry 4.0 and the circular economy: A literature review and recommendations for future research. *Business Strategy and the Environment*, 30(4), 2038–2060. <https://doi.org/10.1002/bse.2731>
7. De Angelis, R., Howard, M., & Miemczyk, J. (2018). Supply chain management and the circular economy: Towards the circular supply chain. *Production Planning & Control*, 29(6), 425–437. <https://doi.org/10.1080/09537287.2018.1449244>
8. Batista, L., Bourlakis, M., Smart, P., & Maull, R. (2018). In search of a circular supply chain archetype: A content-analysis-based literature review. *Production Planning & Control*, 29(6), 438–451. <https://doi.org/10.1080/09537287.2017.1343502>
9. Dev, N. K., Shankar, R., & Qaiser, F. H. (2020). Industry 4.0 and circular economy: Operational excellence for sustainable reverse supply chain performance. *Resources, Conservation and Recycling*, 153, Article 104583.
10. <https://doi.org/10.1016/j.resconrec.2019.104583>
11. Jabbour, C. J. C., Fiorini, P. D. C., Ndubisi, N. O., Queiroz, M. M., & Pianto, É. L. (2020). Digitally-enabled sustainable supply chains in the 21st century: A review and a research agenda. *Science of The Total Environment*, 725, Article 138177.
12. <https://doi.org/10.1016/j.scitotenv.2020.138177>
13. Bag, S., Pretorius, J. H. C., Gupta, S., & Dwivedi, Y. K. (2021). Role of institutional pressures and resources in the adoption of big data analytics powered artificial intelligence, sustainable manufacturing practices and circular economy capabilities. *Technological Forecasting and Social Change*, 163, Article 120420. <https://doi.org/10.1016/j.techfore.2020.120420>
14. Kouhizadeh, M., Saberi, S., & Sarkis, J. (2021). Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers. *International Journal of Production Economics*, 231, Article 107831. <https://doi.org/10.1016/j.ijpe.2020.107831>
15. Ingemarsdotter, E., Jamsin, E., Kortuem, G., & Balkenende, R. (2019). Circular strategies enabled by the Internet of Things: A framework and analysis of current practice. *Sustainability*, 11(20), 5689. <https://doi.org/10.3390/su11205689>
16. Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos, T., Luo, Z., Wamba, S. F., & Roubaud, D. (2019). Can big data and predictive analytics improve social and environmental sustainability? *Technological Forecasting and Social Change*, 144, 534–545. <https://doi.org/10.1016/j.techfore.2017.06.020>
17. Ranta, V., Aarikka-Stenroos, L., Ritala, P., & Mäkinen, S. J. (2018). Exploring institutional drivers and barriers of the circular economy: A cross-regional comparison of China, the US, and Europe. *Resources, Conservation and Recycling*, 135, 70–82.
18. <https://doi.org/10.1016/j.resconrec.2017.08.017>
19. Kazancoglu, Y., Kazancoglu, I., & Sagnak, M. (2018). A new holistic conceptual framework for green supply chain management performance assessment based on circular economy. *Journal of Cleaner Production*, 195, 1282–1299.
20. <https://doi.org/10.1016/j.jclepro.2018.06.015>
21. Govindan, K., & Hasanagic, M. (2018). A systematic review on drivers, barriers, and practices towards circular economy: A supply chain perspective. *International Journal of Production Research*, 56(1–2), 278–311. <https://doi.org/10.1080/00207543.2017.1402141>
22. Rosa, P., Sasanelli, C., & Terzi, S. (2019). Towards circular business models: A systematic literature review on classification frameworks and archetypes. *Journal of Cleaner Production*, 236, Article 117696. <https://doi.org/10.1016/j.jclepro.2019.117696>
23. Bressanelli, G., Adrodegari, F., Perona, M., & Saccani, N. (2018). Exploring how usage-focused business models enable circular economy through digital technologies. *Sustainability*, 10(3), 639. <https://doi.org/10.3390/su10030639>
24. Urbinati, A., Chiaroni, D., & Chiesa, V. (2017). Towards a new taxonomy of circular economy business models. *Journal of Cleaner Production*, 168, 487–498. <https://doi.org/10.1016/j.jclepro.2017.09.047>
25. Tseng, M. L., Tan, R. R., Chiu, A. S., Chien, C. F., & Kuo, T. C. (2018). Circular economy meets industry 4.0: Can big data drive industrial symbiosis? *Resources, Conservation and Recycling*, 131, 146–147. <https://doi.org/10.1016/j.resconrec.2017.12.028>
26. Masi, D., Day, S., & Godsell, J. (2017). Supply chain configurations in the circular economy: A systematic literature review. *Sustainability*, 9(9), 1602. <https://doi.org/10.3390/su9091602>
27. Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. *Resources, Conservation and Recycling*, 127, 221–232. <https://doi.org/10.1016/j.resconrec.2017.09.005>
28. Linder, M., & Williander, M. (2017). Circular business model innovation: Inherent uncertainties. *Business Strategy and the Environment*, 26(2), 182–196. <https://doi.org/10.1002/bse.1906>
29. Merli, R., Preziosi, M., & Acampora, A. (2018). How do scholars approach the circular economy? A systematic literature review. *Journal of Cleaner Production*, 178, 703–722. <https://doi.org/10.1016/j.jclepro.2017.12.112>
30. Manninen, K., Koskela, S., Antikainen, R., Bocken, N., Dahlbo, H., & Aminoff, A. (2018). Do circular economy business models capture intended environmental value propositions? *Journal of Cleaner Production*, 171, 413–422.

31. <https://doi.org/10.1016/j.jclepro.2017.10.003>
32. Agyemang, M., Ansong, E., Afum, E., & Simpson, S. N. Y. (2019). *Drivers and barriers to circular economy implementation: An explorative study in Pakistan's automobile industry*. Management Decision.
33. Ansari, Z. N., Kant, R., & Shankar, R. (2017). *A state-of-art literature review reflecting 15 years of focus on sustainable supply chain management*. Journal of Cleaner Production.
34. De Oliveira, U. R., Espindola, L. S., da Silva, I. R., da Silva, I. N., & Rocha, H. M. (2018). *A systematic literature review on green supply chain management: Research implications and future perspectives*. Journal of Cleaner Production.
35. Despeisse, M., Ford, S., & Viljakainen, A. (2017). *Unlocking value for a circular economy through 3D printing: A research agenda*. Technological Forecasting and Social Change.
36. Farooque, M., Jain, V., Zhang, A., & Li, Z. (2019). *Circular supply chain management: A definition and structured literature review*. Journal of Cleaner Production.
37. Franco, M. A. (2017). *Circular economy at the micro level: A dynamic view of incumbents' struggles and challenges in the textile industry*. Journal of Cleaner Production.
38. Genovese, A., Acquaye, A. A., Figueroa, A., & Koh, S. C. L. (2017). *Sustainable supply chain management and the transition towards a circular economy: Evidence and some applications*. Omega.
39. Herczeg, G., Akkerman, R., & Hauschild, M. Z. (2018). *Supply chain collaboration in industrial symbiosis networks*. Journal of Cleaner Production.
40. Homrich, A. S., Galvão, G., Abadia, L. G., & Carvalho, M. M. (2018). *The circular economy umbrella: Trends and gaps on integrating pathways*. Journal of Cleaner Production.
41. Islam, M. T., Huda, N., Chhetri, P., & Al Mahmud, M. (2018). *Reverse logistics and closed-loop supply chain of Waste Electrical and Electronic Equipment (WEEE)/E-waste: A comprehensive literature review*. Resources, Conservation and Recycling.
42. Belaud, J.-P., Adoue, C., Vialle, C., Chorro, A., & Sablayrolles, C. (2019). *A circular economy and industrial ecology toolbox for developing an eco-industrial park: Perspectives from French policy*. Clean Technologies and Environmental Policy, 21, 967–985.
43. Plank, B., Eisenmenger, N., Schaffartzik, A., & Wiedenhofer, D. (2018). *International trade drives global resource use: A structural decomposition analysis of raw material consumption from 1990–2010*. Environmental Science & Technology, 52, 4190–4198.
44. Saberi, S., Kouhizadeh, M., Sarkis, J., & Shen, L. (2019). *Blockchain technology and its relationships to sustainable supply chain management*. International Journal of Production Research, 57, 2117–2135.
45. Villena, V. H., & Gioia, D. A. (2020). *A more sustainable supply chain*. Harvard Business Review, 84–92.