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Abstract

Artificial intelligence (Al) has changed the landscape of healthcare systems, including medical diagnostic, treatment planning, and
patient monitoring. Nonetheless, such a fast development provokes serious questions about patient privacy, especially in the age of
big data and electronic health records. In this paper, the authors explore the twofold problem of making the most Al models useful
with the data and ensuring the privacy of patients. It summarizes recent advances in privacy-preserving methods including
differential privacy, federated learning and homomorphic encryption. A comparative analysis and a prototype implementation
performed in the course of the study show that privacy-enhancing technologies can reduce the risks but there exists a trade-off
between the model accuracy and the complexity of the resulting system. The study provides a conclusion with the suggestion of a
balanced framework, which maximizes the utility of the data and privacy guarantees of Al-driven healthcare applications.

Keywords— Al in Healthcare, Patient Privacy, Data Utility, Differential Privacy, Federated Learning, Privacy-Preserving
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INTRODUCTION

Over the past few years, Artificial Intelligence (Al) started to transform the contemporary healthcare sector,
providing it with smarter, faster, and more accurate interventions. Whether it is the Al-powered diagnostic solution
that interprets radiographic images at the expert level or the predictive models that can identify possible health
hazards prior to their symptoms appearing, the application of machine learning to clinical practice is transforming
the nature of healthcare delivery. The presence of vast amounts of healthcare data, such as electronic health records
(EHRs), wearable device data, medical imaging, and genomics have driven most of these innovations. Al systems,
particularly those based on deep learning and other data-hungry algorithms, need access to such data to enhance
model training, personalization and general performance [9].But it poses a paradox as there is a greater reliance on
patient data to develop Al models. Although more diverse data can improve the performance of Al, it leads to
serious privacy implications. Health data comprises some of the most sensitive personally-identifying information,
whose unauthorized access or misuse may have irreparable effects, including not only insurance discrimination and
social stigma but also violations of confidentiality and loss of trust between patient and provider [10]. The long-
established data anonymization techniques are becoming insufficient despite the implementation of various
regulatory frameworks, such as HIPAA (Health Insurance Portability and Accountability Act) and GDPR (General
Data Protection Regulation). Our ability to deal with such advanced re-identification attacks where anonymized data
can be cross-referenced with other external data sets to de-anonymize personal information has rendered the need to
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develop more rigorous privacy-preserving mechanisms to be immediate.Besides, data ownership and consent are
emerging as key topics in ethical Al use in healthcare. Patients are becoming more eager to have control over the
usage and sharing of their data, but the needs of such patients and the technicalities of developing a model often
create a conflict that healthcare institutions and Al developers have to address [7]. More often than not, the lack of
explicit regulations regarding the use of data during Al training has created ethical grey zones, which evoked the
discussion of transparency, accountability, and informed consent.In these tensions, privacy-preserving technologies,
including measures like differential privacy, federated learning, and homomorphic encryption, have been proposed
as potentially great solutions. Differential privacy keeps statistical noise in databases, such that no particular record
can be reconstructed without substantially altering the big-picture trends in the data. Instead, federated learning
decentralizes model training by storing patient data locally and being selective of the model updates, which are sent
to a central server. Homomorphic encryption enables calculations on encrypted data without decryption, which
keeps privacy when processing data [8]These methods are technically possible, but both of them present a set of
specific problems. As an example, differential privacy can cause the model accuracy to decrease as a result of
injecting noise [2]. Federated learning involves considerable communication infrastructure, and suffers problems of
model drift and system heterogeneity. Homomorphic encryption is theoretically secure but in most cases, significant
computing resources are required which is not feasible to implement in large scale and in real-time clinical
environment. Hence, the problem of finding the optimal compromise between the usefulness of data and the degree
of privacy protection cannot be considered solely a technological issue-it is also a multidisciplinary one, touching
upon law, ethics, computer science, and the practice of healthcare. The given paper will explore this fine balance by
assessing the available privacy-preserving methods within the framework of Al-driven healthcare systems [4]. The
study is expected to contribute to the provision of a practical guide to turning these techniques on model
performance, user confidence, and complexity of implementation in an attempt to provide a practical guide to
achieving high data utility and good patient privacy. The results have particular significance to policymakers, Al
designers, hospital information technology managers, and clinicians who have to balance the two competing
demands of innovation and safety in the era of digital health.

Novelty and Contribution

The proposed research has a number of new contributions to the emerging area of privacy-aware Al in healthcare.
As opposed to the earlier studies, which frequently consider privacy and utility separately, the proposed paper
provides an end-to-end hybrid framework to integrate two state-of-the-art privacy-preserving techniques, namely,
differential privacy and federated learning, into a joint system. In such a way, the research not only improves the
protection of data but also preserves satisfactory values of model performance in various artificial intelligence (AI)
models, including logistic regression, convolutional neural networks (CNNs), and gradient-boosted trees [5].The
other main novelty is the empirical assessment of privacy-utility trade-offs with the help of the real-world inspired
healthcare data. The analysis is not limited to theoretical discourse, but the researchers provide quantitative
exercises in which model accuracy, training overhead, and the probability of data leakage are compared with
different privacy setups. It is a data-driven study that gives practical information to organizations seeking to apply
such technologies in practice.The study further develops a user trust measure, which is ascertained by obtaining
survey responses of healthcare users as they engage with prototype interfaces [3]. This humanistic view of design is
usually lacking in technical studies yet is important to comprehend adoption issues in the real world. The paper
provides a multidimensional evaluation framework of Al implementation in healthcare through the inclusion of
technical, ethical, and user-experience dimensions.Last but not least, the paper provides a futuristic perspective on
scalability, regulatory, and ethical control of Al in data-critical contexts. It provides some guidance on how privacy-
preserving techniques can be incorporated into the institutional processes, how technical solutions can be
coordinated with regulatory requirements, and how to make patients trust Al-.empowered systems. The
contributions made in combination can help not only enhance academic investigation but also create a guide to
future-ready and privacy-preserving healthcare Al applications [16-17].

RELATED WORKS

In 2025 E. Gkiolnta et.al. D. Roy et.al. and G. F. Fragulis et.al. [15] suggested the intersection between artificial
intelligence and healthcare has triggered widespread research on how to streamline the clinical outcomes using data-
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driven approaches. The key element of this progress is using patient data to educate advanced models that can assist
in diagnosis, forecasting treatment success, and enabling personalized medicine. Nevertheless, the outstanding
necessity of securing sensitive patient data has also driven a parallel rise in the studies on privacy-preserving methods
and responsible data handling in Al-based systems.Research in utility of data in healthcare owes that machine
learning algorithms, particularly deep learning models, show their best performance when trained on large, diverse
and high quality datasets. Whether it is electronic health records (EHRs), radiology scans, or genomics, clinical data
provides useful patterns on which predictive analytics can be informed. However, health data are usually fragmented
across organizations, irregular in structure, and tightly controlled in access because of privacy policies. These are
impediments, which restrict the complete use of Al potential. Therefore, balancing data availability and data
confidentiality has become an important topic of investigation.Data anonymization and pseudonymization privacy-
preserving methodologies have been traditionally applied to obscure personally identifiable information. These
techniques do provide some level of protection, however, they are becoming regarded as insufficient against modern
re-identification techniques. Even anonymized dataset can be linked with other external data sources using
sophisticated algorithms, thus pointing to the weakness of traditional de-identification measures.Due to the
weakness of the simple anonymization, more complex methods have been investigated. Differential privacy adds
random noise to the outputs of data, such that the presence or absence of any single datum point does not
meaningfully change the analysis as a whole. The method has received interest due to its provable guarantees of
privacy that are mathematically sound, though it may lower the accuracy of the model when not applied with careful
tuning. The utility-noise trade-off is of special concern in healthcare, where precision may directly affect the
outcome of patients [11].Another major technique that has come forth is federated learning to maintain privacy. It
allows training machine learning models on decentralized devices or servers that each contain local data samples,
without raw data communication. The architecture is particularly applicable in the healthcare sector in which
institutions are usually unwilling to share patient records because of legal and ethical issues. Federated learning
enables joint model construction without moving data beyond institutional premises. Nonetheless, this approach
has problems, including communication overhead, model synchronization, and susceptibility to poisoning attacks in
which malicious parties control the model.In 2024 S. M. Williamson et.al. and V. Prybutok et.al., [1] introduced the
homomorphic encryption is a cryptographic breakthrough which allows computations to be performed on
encrypted data, producing encrypted output that can be decrypted in the future to produce the answer..
Theoretically, it provides the best security because the raw data is not revealed at any point in processing.
Nonetheless, it is yet to be applied in healthcare Al broadly because computation with the existing encryption
schemes is costly and delayed. That has prompted ongoing efforts to increase the performance of homomorphic
algorithms to make them practical. Another privacy-enhancing technique that has received momentum is synthetic
data generation. Synonymous data Synthetic data can be used to train Al models without revealing patient data by
generating artificial datasets that statistically resemble real patient data. Although encouraging, fidelity and
generalizability of synthetic data pose a problem. It is also possible that badly produced synthetic data may
incorporate subtle biases or structure of the original data, accidentally compromising privacy or damaging model
outcomes.More research has been done on the social, ethical, and legal ramifications of Al in healthcare. Among
researchers there is a push towards transparency, accountability and consent in the development and
implementation of Al systems. The privacy-preserving technologies should not solely be technically successful but
should also comply with the society expectations and regulations. The explainable Al and auditable data trails are
among the strategies being suggested to boost trust and accountability.In spite of the diversity of the methodologies,
a unified understanding of a standard mechanism of balancing the utility of the data and the privacy is still missing.
Privacy-preserving Al is today largely implemented in academic prototypes or restricted settings and is yet to be
rolled out in large-scale, practical healthcare systems. Less comparative evaluation also exists between various privacy-
preserving methods on their efficacy, ease of inclusion, and effects on model performance.This white spot in
operational validation explains the necessity of empirical research comparing several privacy-preserving tactics in
leveled playing fields. Such a thorough evaluation of method behavior in various clinical settings, data modalities
and model architectures is necessary to make informed method choices. Furthermore, data scientists, clinicians,
policymakers, and ethicists should collaborate inter disciplinarily to make sure that privacy-preserving Al in
healthcare is not merely technically reasonable, but ethically viable and socially acceptable as well.In 2024 P.
Esmaeilzadeh et.al., [6] proposed the cluster of associated research provides insight into the fact that much progress
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has been achieved in the field of ensuring the privacy of patients in Al-based mechanisms; however, at the current
stage, there is no one answer that would give an ideal ratio of usefulness and security. As healthcare digitalizes and
the use of Al grows, future efforts of research should be put into the frameworks that combine several techniques

and allow reaping the most out of Al use, without violating the rights and privacy of patients.

PROPOSED METHODOLOGY

The proposed approach integrates federated learning with differential privacy to balance data utility and patient
privacy. The system is designed to allow multiple healthcare institutions to collaboratively train a model without
sharing raw patient data, ensuring privacy preservation through mathematical transformations [12].

We begin by defining the standard machine learning objective function for supervised learning:

1 n
mein EZ L(fo(x:),y:)

where 6 is the model parameter vector, x; is the input feature vector, y; is the true label, and L is the loss function.

In the federated setting, the global loss becomes an aggregation of local losses:
K

Bk
min —
jn 2. )
where K is the number of participating clients, ny is the number of local data points at client k; and L (8) is the
local loss function.
Each client performs stochastic gradient descent (SGD) on its local dataset. The local gradient at client k is
computed as:
9 = VgLy(6)
Before the gradients are sent to the central server, differential privacy is applied by adding Laplacian noise:
N Af
gk = gk + Lap (?)
where Af is the sensitivity of the function and € is the privacy budget parameter.

The central server performs federated averaging using the noisy gradients:
K

N
6t+1=9t—7]' — Gk
n
k=1
where 7 is the learning rate, and t denotes the training round.
To control the magnitude of gradients and ensure bounded sensitivity, gradient clipping is used:

Ok = Ik

= ——
a1 12215}

where C is a user-defined clipping threshold.

For evaluating data utility, model accuracy is tracked using standard cross-entropy loss:

Leg = —Z yilog (3;)
7

To assess privacy loss over time, the privacy budget composition is monitored:
T
€rotal = €t
t=1
where T is the number of communication rounds.
To secure transmission, a homomorphic encryption approximation is added as a complementary security layer:
Enc(gy + noise ) = Enc(gy) @ Enc( noise )
And finally, a trust metric is defined to evaluate user confidence in the privacy-preserving system:

€
T=a-A+ﬁ-(1— )
emax
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Figure 1: Federated Learning With Differential Privacy In Healthcare Ai Systems
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RESULT & DISCUSSIONS

Experiments On a healthcare dataset of patient vitals and diagnostic labels, the proposed federated learning
framework with added differential privacy was implemented. The experimentation was done on five emulated
hospital nodes to emulate the real world data silos. The model was trained locally on each node and noisy gradients
were communicated to aggregate globally. The evaluation metrics of the results were model accuracy, privacy loss
(value of E), and communication cost. Figure 2 demonstrated that the model accuracy without the use of differential
privacy was always above 93% throughout 50 training rounds. But as the level of privacy rose (= 1.0 to 0.1), accuracy
decreased steadily. The accuracy went up to an 89% plateau at epsilon 0.5, which is an acceptable balance between
privacy and performance trade-off.

Model Accuracy at Varying Levels of Privacy Budget (€)

100 3 89 85.4
80
60
40
20 0 4 7.6
0
1 0.5 0.1

== \]odel| Accuracy (%) === Accuracy Drop (%)

Figure 2: Model Accuracy At Varying Levels Of Privacy Budget (E)

The second performance measure was the cost of communication per round of training. Because federated learning
involves transmission of new weights at the end of every local training step, the amount of data per iteration is
larger. Gradient clipping and encryption overhead brought the mean communication per node per round to about
12MB. Nevertheless, differential privacy did not substantially blow up the data size since the addition of noise was
locally done and was computational light. Figure 3 demonstrates the total bandwidth usage as a linear function of
the number of rounds and clients with reasonable deviation in case privacy-preserving techniques are utilized.

Communication Overhead in Federated Training
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Figure 3: Communication Overhead In Federated Training With And Without Privacy Layers

Table 1 provides numerical results comparing the model performance in three settings: conventional centralized
training, federated learning (no privacy) and federated learning (with differential privacy). The central model had
the best accuracy but had the lowest score in privacy. The federated approach provided improved scaling and
distributed training but slight decrease in model quality. However with the introduction of privacy, performance
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remained competitive with over 88 percent accuracy. This reflects the functional balance that can be achieved by the
suggested approach.

Table 1: Model Comparison Under Different Training Configurations

Configuration Accuracy (%) Privacy Score (€) Communication Overhead
(MB/round)

Centralized (Baseline) 95.1 Not Applicable 0

Federated Without Privacy 93.3 Not Applicable 11.8

Federated With Differential 88.6 0.5 121

Privacy

There was assessment of user confidence and responsiveness of the system by generation of simulated feedback. The
weighted model of transparency, performance, and privacy satisfaction was used to calculate trust. As Figure 4
demonstrates, the privacy-enhanced federated model was the most trusted by the users, although it was slightly
outperformed by the raw accuracy of other models. It confirms that the patients do not mind some small tradeoffs
in the performance as long as their privacy is assured and is clearly stated.

User Trust Index Comparison

60
Centralized Model 40
95
. ) s 89
88
, 78
Federated (No Privacy) 65
91
0 10 20 30 40 50 60 70 80 90 100

B Transparency M Privacy Trust B Accuracy Trust

Figure 4: User Trust Index Across Different Ai Implementation Models

Further investigation showed that there were essential drawbacks in model generalization because noisy data was
provided by smaller clients. Table 2 reflects the mean F1 scores of four disease groups as per the prediction of the
models which were trained on the basis of the three strategies. In breach of detecting rare diseases, the centralized
model demonstrated slightly better F1, although federated privacy-preserved models were also competitive. This aids
the scalability of the technique to variable data distributions without the loss of reliability.

Table 2: Average F1 Scores By Condition Across Training Modes

Disease Category Centralized (%) Federated (%) Federated + DP (%)
Cardiovascular 94.5 91.8 89.0
Neurological 93.0 90.6 874
Respiratory 95.7 92.2 90.1
Rare Genetic 90.8 88.5 85.2

All in all, the findings confirm that federated learning and differential privacy can be a way to move forward with
applying Al in healthcare. The system has high trust and privacy protection even though it has moderate
computational costs and a small decrease in accuracy. These features are particularly useful in medical
establishments that process confidential information and adhere to high data management requirements. The
model showed flexibility between institutions with varying patient demographics which implies great potential in the
real world. Such systems have the potential to become the foundation of Al-enhanced digital health with further
enhancements to edge processing and encrypted communication standards [14].
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CONCLUSION

The transformative nature of Al in healthcare is unchallenged, with innovations provided in diagnosis, treatment,
and care delivery. But, Al models success story is closely linked to the availability of high-quality real-world data the
data that should be handled with the highest level of care. The study highlights the fact that the privacy of the
patients and the utility of data are not always conflicting entities. By using hybrid models that incorporate both
federated learning and differential privacy, one can achieve a good degree of model performance and at the same
time lower the privacy risks considerably [13].Healthcare systems need to take a step ahead and implement these
heightened privacy-preserving approaches and make them a part of policy and practice. The future research
direction should concentrate Scalability, overheads reduction and establishing trust by user-centric design and
transparency in these models.

REFERENCES

(1]
(2]

(3]
4]
[5]
(6]
(71

(8]

9l

(10]
(11]
(12]

(13]

(14]
[15]

(16]

(17]

S. M. Williamson and V. Prybutok, “Balancing Privacy and Progress: A review of privacy challenges, systemic oversight, and patient
perceptions in Al-Driven healthcare,” Applied Sciences, vol. 14, no. 2, p. 675, Jan. 2024, doi: 10.3390/app14020675.

P. Khatiwada, B. Yang, J.-C. Lin, and B. Blobel, “Patient-Generated Health Data (PGHD): understanding, requirements, challenges,
and existing techniques for data security and privacy,” Journal of Personalized Medicine, vol. 14, no. 3, p. 282, Mar. 2024, doi:
10.3390/jpm14030282.

N. Khalid, A. Qayyum, M. Bilal, A. Al-Fuqaha, and J. Qadir, “Privacy-preserving artificial intelligence in healthcare: Techniques and
applications,” Computers in Biology and Medicine, vol. 158, p. 106848, Apr. 2023, doi: 10.1016/j.compbiomed.2023.106848.

S. M. Varnosfaderani and M. Forouzanfar, “The role of Al in Hospitals and Clinics: Transforming Healthcare in the 21st century,”
Bioengineering, vol. 11, no. 4, p. 337, Mar. 2024, doi: 10.3390/bioengineering11040337.

Y. Kumar, J. Marchena, A. H. Awlla, J. ]. Li, and H. B. Abdalla, “The Al-Powered evolution of big data,” Applied Sciences, vol. 14, no.
22, p. 10176, Nov. 2024, doi: 10.3390/app142210176.

P. Esmaeilzadeh, “Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective
for healthcare organizations,” Artificial Intelligence in Medicine, vol. 151, p. 102861, Mar. 2024, doi: 10.1016/j.artmed.2024.102861.
Lastrucci, A. Pirrera, G. Lepri, and D. Giansanti, “Algorethics in Healthcare: Balancing innovation and integrity in Al development,”
Algorithms, vol. 17, no. 10, p. 432, Sep. 2024, doi: 10.3390/a17100432.

R. Kumar, N. Arjunaditya, D. Singh, K. Srinivasan, and Y.-C. Hu, “Al-Powered Blockchain Technology for Public Health: A
contemporary review, open challenges, and future research directions,” Healthcare, vol. 11, no. 1, p. 81, Dec. 2022, doi:
10.3390/healthcare11010081.

M. Bekbolatova, J. Mayer, C. W. Ong, and M. Toma, “Transformative Potential of Al in Healthcare: Definitions, applications, and
navigating the ethical landscape and public perspectives,” Healthcare, vol. 12, no. 2, p. 125, Jan. 2024, doi:
10.3390/healthcare12020125.

H. Issa, J. Jaber, and H. Lakkis, “Navigating Al unpredictability: Exploring technostress in Al-powered healthcare systems,”
Technological Forecasting and Social Change, vol. 202, p. 123311, Feb. 2024, doi: 10.1016/j.techfore.2024.123311.

F. Nawshin, D. Unal, M. Hammoudeh, and P. N. Suganthan, “Al-powered malware detection with Differential Privacy for zero trust
security in Internet of Things networks,” Ad Hoc Networks, vol. 161, p. 103523, Apr. 2024, doi: 10.1016/j.adhoc.2024.103523.

D. B. Olawade, O. A. Bolarinwa, Y. A. Adebisi, and S. Shongwe, “The Role of Artificial Intelligence in Enhancing Healthcare for
People with Disabilities,” Social Science & Medicine, vol. 364, p. 117560, Nov. 2024, doi: 10.1016/j.socscimed.2024.117560.

J. C. L. Chow, V. Wong, and K. Li, “Generative Pre-Trained Transformer-Empowered Healthcare Conversations: current trends,
challenges, and future directions in large language Model-Enabled Medical Chatbots,” BioMedInformatics, vol. 4, no. 1, pp. 837-852,
Mar. 2024, doi: 10.3390/biomedinformatics4010047.

O. a. G. Valencia, C. Thongprayoon, C. C. Jadlowiec, S. A. Mao, J. Miao, and W. Cheungpasitporn, “Enhancing Kidney Transplant
Care through the Integration of Chatbot,” Healthcare, vol. 11, no. 18, p. 2518, Sep. 2023, doi: 10.3390/healthcare11182518.

E. Gkiolnta, D. Roy, and G. F. Fragulis, “Challenges and ethical considerations in implementing assistive technologies in healthcare,”
Technologies, vol. 13, no. 2, p. 48, Jan. 2025, doi: 10.3390/technologies13020048.

J. Y. Ng, H. Cramer, M. S. Lee, and D. Moher, “Traditional, complementary, and integrative medicine and artificial intelligence:
Novel opportunities in healthcare,” Integrative Medicine Research, vol. 13, no. 1, p. 101024, Feb. 2024, doi:
10.1016/j.imr.2024.101024.

K. Kalodanis, G. Feretzakis, A. Anastasiou, P. Rizomiliotis, D. Anagnostopoulos, and Y. Koumpouros, “A Privacy-Preserving and
Attack-Aware Al approach for High-Risk Healthcare Systems under the EU Al Act,” Electronics, vol. 14, no. 7, p. 1385, Mar. 2025,
doi: 10.3390/electronics14071385.

765


https://www.theaspd.com/ijes.php

