ISSN: 2229-7359 Vol. 11 No. 25s,2025

https://theaspd.com/index.php

Global Pharmaceutical Track And Trace Systems: A Comprehensive Analysis Of Regulatory Frameworks, Implementation Challenges, And Technological Solutions

Sasikiran Karanam

University at Albany - State University of New York, USA

Abstract

Counterfeit drugs have become a major issue for health care systems worldwide. The lives of patients are at stake, and confidence in medical supply chains is being further lost. The World Health Organization maintains a documentation that one out of ten medical products that are sold in the underdeveloped nations do not meet the standards of quality, or they include counterfeit substances. Antimalarial drugs show especially troubling results, with more than half failing quality tests in some areas. Governments have responded by creating track and trace rules that require unique serial numbers on medicine packages. Europe runs a centralized verification system through the European Medicines Verification Organization. America takes a different path with a decentralized model under the Drug Supply Chain Security Act. Underdeveloped nations try to balance health needs against limited budgets and technology gaps. Drug makers face serious hurdles: outdated technology, conflicting rules between countries, broken supply chain communication, and employees resisting change. Centralized management offers some answers by bringing data together and making procedures uniform. New technologies introduce new weapons: blockchain leaves permanent records of transactions, artificial intelligence detects unusual behaviors, spectroscopy devices confirm the presence of the chemical substance, and sensors on the Internet monitor the conditions in the storage facility. It takes various levels of protection, effective computer security, and highly trained personnel to win this fight.

Keywords: Pharmaceutical Serialization, Counterfeit Medicines, Track And Trace Systems, Regulatory Compliance, Supply Chain Authentication

1. INTRODUCTION

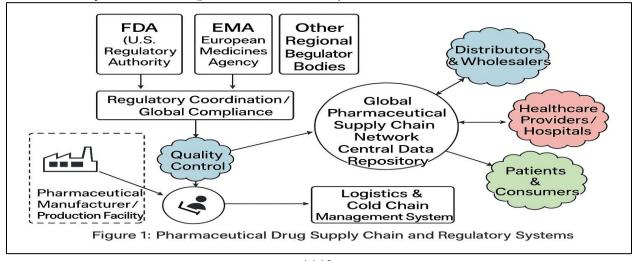
Counterfeit drugs pose a threat to human health at a huge level. The Global Surveillance and Monitoring System of low-quality and falsified medical products is operated by the World Health Organization. This system uses regional and national monitoring stations to track fake drug patterns. Records show that roughly one in ten medical products sold in low- and middle-income countries contain substandard or fake ingredients [1]. Countries with incompetent regulatory procedures, open borders, and few drug inspectors face the worst problems. Underdeveloped communities suffer the most damage. People who need medicine the most often end up with harmful products.

The prevalence of counterfeit antimalarial drugs has reached alarming levels, particularly in sub-Saharan Africa and Southeast Asia, where failure rates in quality checks range between 35% and 53%. Many counterfeit artemisinin-based combination therapies (ACTs) lack active ingredients entirely, while others contain insufficient quantities to effectively eliminate parasites [2]. This inadequate dosing accelerates the development of drug-resistant parasites, which propagate and pass on genetic resistance, exacerbating the public health crisis. Beyond the direct health implications, counterfeit drugs impose significant economic burdens. Extended illness reduces workforce productivity, increases absenteeism, and necessitates repeated rounds of treatment, further straining healthcare systems. Additionally, the persistence of malaria in affected regions perpetuates its spread. Sophisticated counterfeiting techniques further complicate detection. Laboratory analyses reveal that some fake antimalarials substitute incorrect active ingredients or mimic dissolution rates to deceive basic quality tests while delivering subtherapeutic doses. Counterfeit packaging has become so advanced that visual inspection alone cannot reliably distinguish genuine products from fakes [2].

In response, governments and regulatory bodies have implemented pharmaceutical track-and-trace systems to ensure product authenticity throughout distribution channels. These systems leverage serialization technology, assigning unique identifiers to individual medicine packages for verification at all stages—from manufacturing to point-of-sale. However, the global implementation of such systems faces challenges,

ISSN: 2229-7359 Vol. 11 No. 25s,2025

https://theaspd.com/index.php


including varying regulatory frameworks, rapid technological advancements, and the complexity of international supply chains. Careful evaluation of traceability methods, regulatory compliance, and technological solutions is essential for combating the counterfeit drug crisis effectively.

Parameter	Description	
Prevalence Scale	One in ten medical products is substandard or falsified in low-income nations	
High-Risk Regions	Areas with weak oversight, porous borders, and minimal inspection	
Antimalarial Failure Rates	Between thirty-five and fifty-three percent in certain territories	
Common Deficiencies	Zero active ingredients or insufficient therapeutic quantities	
Counterfeiting Methods	Wrong ingredient substitution, dissolution manipulation, and precise packaging replication	
Health Impact	Treatment resistance development, prolonged illness, and preventable mortality	

Table 1. Global Counterfeit Medicine Threat Landscape [1, 2]

2. Comparative Analysis of Global Regulatory Frameworks

Track and trace regulations for pharmaceuticals look remarkably different around the world. Each region fights medicine counterfeiting in distinct ways while working within local market structures and technology limits. The European Falsified Medicines Directive(EU-FMD) developed elaborate regulations that require serialization and verification of prescription drugs must be done before the receipt of the drugs by the patients. Every single European Union state should abide by these regulations. As depicted in Figure 1, The European Medicines Verification Organization makes it work based on the design of a hub-and-spoke. National verification systems connect to the central European Hub. Managing heavy infrastructure demands and preventing capacity problems during manufacturer onboarding required addressing complex challenges in connecting and integrating systems. These challenges stemmed from technological issues, such as ensuring compatibility between disparate software platforms, APIs, and data formats, as well as logistical hurdles, including aligning workflows, coordinating timelines, and managing resource allocation across diverse operational environments.. Hence it is paramount to give emphasis on technical setup, system integration testing/validation, connectivity work, and training for serialization data management [3]. Small and mediumsized companies with limited product portfolios experience the effort of this system more acutely. The effort reflects the complexity of maintaining a pan-European verification infrastructure that not only processes billions of verification transactions annually but also navigates the technological challenges of integrating systems across diverse national healthcare frameworks. Additionally, the infrastructure must incorporate a robust knowledge base to address inter-country regulatory requirements and ensure compliance with varying healthcare and pharmaceutical regulations in each country.

ISSN: 2229-7359 Vol. 11 No. 25s,2025

https://theaspd.com/index.php

The Drug Supply Chain Security Act(DSCSA) forms the backbone of American pharmaceutical traceability rules. Congress passed this law in November 2013. It takes a phased approach completely different from Europe's centralized design. Manufacturers must incorporate product identifiers on packages, keep transaction records, and build systems that work together by November 2023 [4]. Trading partners must exchange transaction information. This includes product identifiers with National Drug Code(NDC) and a unique serial number, transaction dates, and shipment details. These create complete electronic pedigrees that trace products from manufacturers through distribution networks to pharmacies and hospitals. Different supply chain members have different jobs. Manufacturers serialize products. Wholesale distributors verify product identifiers before shipping. Pharmacies and hospitals must quarantine and investigate suspicious products found through verification. The phased schedule allows each node in the supply-chain build technology capabilities step by step. The system moves from lot-level tracking through transaction information sharing toward complete unit-level tracing. Enhanced drug distribution security rules taking effect in November 2023 require electronic systems that work together and verify products down to the package level throughout the entire pharmaceutical supply chains [4].

Russia runs one of the stringent pharmaceutical traceability programs compared to the rest of the world. The system requires cryptographic codes embedded in serialization identifiers. Their regulations mandate complete data capture from manufacturing through patient dispensation. Brazil's National Drug Control System requires two-dimensional barcode serialization on pharmaceutical packaging. The delays have been caused by technical challenges and difficulties in integrating with the current distribution networks.. New economic powers such as Kenya and the United Arab Emirates have introduced handheld counterfeit narcotics and more hardened border personnel. These countries recognize that complete serialization systems may need a phased rollout where technology, infrastructure and resource capacities remain limited.

3. Industry Readiness and Implementation Challenges

The challenges of fulfilling the track and trace requirements are significant in the case of drug manufacturers, despite the prevalent rules and the increasing awareness of the risk of counterfeit medicine. Issues differ considerably depending on the size of the company, its geographical spread, and the available technology base. The Pharmaceutical Security Institute keeps a record of trends of incidents that indicate the changes in pharmaceutical crime that are alarming. On average, thousands of counterfeit drug cases occur in the world markets annually. Illegal online pharmacies represent the main distribution channel for fake medicines. Most detected incidents involving unauthorized product sales and counterfeit medication distribution happen through these channels [5]. Problems span many drug categories, including heart medications, cancer drugs, and lifestyle medicines. Sophisticated criminal groups exploit vulnerable points in pharmaceutical supply chains to slip fake products in at multiple distribution points. Counterfeit medicine detection happens across North America, Europe, Asia-Pacific, Latin America, and Africa. Differences in reporting reflect differences in surveillance capabilities and enforcement resources rather than true incident numbers. Heavy underreporting likely occurs in regions with limited regulatory oversight and detection infrastructure [5]. Implementation requires major capital investment in specialized equipment. High-speed serialization printers must apply unique identifiers at production line speeds. Vision verification systems must ensure print quality and code readability. Comprehensive data management platforms must generate, store, and send serialization data to regulatory repositories. Research on pharmaceutical serialization implementation challenges documents that technology infrastructure gaps represent critical barriers for smaller manufacturers. Capital requirements for serialization equipment, information technology systems, and integration services often exceed available budgets. This especially affects companies operating in resource-constrained emerging markets where financing access remains limited [6]. Technology implementation goes beyond equipment purchase to include complex integration with existing manufacturing execution systems, enterprise resource planning platforms, and quality management systems. This requires substantial technical expertise that frequently exceeds internal organizational capabilities.

There are no universal standards for pharmaceutical serialization, which greatly complicates compliance efforts and drives up associated costs. Manufacturers operating across multiple markets must contend with varying technical specifications, data requirements, reporting protocols, and implementation timelines. A systematic review of serialization implementation experiences highlights that regulatory fragmentation

ISSN: 2229-7359 Vol. 11 No. 25s,2025

https://theaspd.com/index.php

necessitates the adoption of market-specific strategies, creating inefficiencies and challenges in achieving global harmonization. Manufacturers must effectively maintain parallel compliance programs with substantial duplicated effort across different jurisdictions [6]. Supply chain integration presents additional obstacles. Effective track and trace systems need seamless data exchange across complex multi-tiered networks. These include manufacturers, contract organizations, wholesalers, distributors, and dispensing entities. Pharmaceutical supply chains show significant fragmentation with limited standardization of data formats and communication protocols between trading partners. Technology challenges represent just part of the problem. Serialization implementation demands organizational transformation requiring cross-functional collaboration among traditionally separate departments. These include manufacturing, quality assurance, information technology, regulatory affairs, and supply chain management. Workforce training requirements prove considerable as systems introduce new standard operating procedures and quality control processes.

Challenge Area	Key Issues	
Incident Distribution	Thousands of counterfeit cases annually via illegal online pharmacies	
Geographic Spread	Detection across all continents with significant underreporting	
Technology Gaps	Inadequate serialization infrastructure for smaller manufacturers	
Capital Requirements	Equipment and integration costs exceeding available budgets	
Regulatory Fragmentation	Parallel compliance programs needed across jurisdictions	
Supply Chain Issues	Limited data format standardization between trading partners	

Table 2. Implementation Barriers and Criminal Patterns [5, 6]

4. Centralized Serialization Organizations and Governance Models

Serialization compliance has become a significant challenge for pharmaceutical manufacturers. The ever-growing complexity of regulations and requirements has made the process increasingly burdensome, while costs continue to escalate. It's clear that existing processes must change to alleviate these pressures and pave the way for more efficient solutions.. Centralized organizational approaches started gaining traction as a solution. Companies discovered these frameworks could streamline implementation dramatically. Operational efficiency improved when economies of scale kicked in. Standardization of principles made serialization processes simpler.

What exactly do centralized serialization organizations do? They build unified data repositories. Think of these as master databases holding serialization information for multiple manufacturing sites and hundreds of different products. The architectural benefits quickly became obvious. Regulatory inspectors can now gain real-time visibility into serialization operations across entire enterprises. What's truly fascinating, however, is that these systems go beyond merely ensuring compliance with regulations. They open up new possibilities for greater efficiency and transparency. Pharmaceutical companies discovered that track and trace capabilities could become strategic weapons in the marketplace. Supply chain transparency improved dramatically. Inventory management got smarter through precise product location tracking. Counterfeit infiltration risks plummeted. Authentication capabilities became comprehensive. Brand protection measures grew stronger. Consumer confidence and market reputation stayed intact [7].

The strategic benefits kept multiplying. Product recalls that used to take weeks now happen in days through precise lot tracking. Suspect products were identified rapidly. Distribution networks performed better because visibility into product movement patterns improved. Demand forecasting became more accurate. Real-time consumption data flowed in from verification systems [7].

Centralized governance changed how companies develop and roll out standardized processes. Manufacturing networks spanning multiple countries finally had enterprise-wide standards. Compliance approaches became consistent. Regulatory flexibility still existed where different jurisdictions permitted variation. The GS1 Global Traceability Standard for Healthcare laid out detailed guidance for implementing interoperable traceability systems. What does effective traceability actually require? Accurate identification of trade items, locations, and logistic units using globally unique identifiers forms the foundation. Capturing traceability

ISSN: 2229-7359 Vol. 11 No. 25s,2025

https://theaspd.com/index.php

data at critical tracking events throughout supply chains matters enormously. Trading partners need seamless information sharing through standardized data exchange protocols [8].

The standard makes a crucial point. Pharmaceutical traceability systems must accommodate wildly diverse regulatory requirements across jurisdictions. Core interoperability cannot be sacrificed. Implementation walks a tightrope between local regulatory compliance needs and global supply chain efficiency objectives. Research on traceability implementation best practices revealed something fascinating. Standardized data carriers actually work remarkably well. Two-dimensional data matrix barcodes can encode Global Trade Item Numbers along with serial numbers, lot numbers, and expiration dates. Product information gets captured automatically at speeds matching high-volume pharmaceutical distribution operations. Scan rates exceed ninety-nine percent accuracy when print quality standards and verification protocols are properly maintained [8].

The growing complexity and rising costs of serialization compliance pushed manufacturers, technology providers, and regulatory authorities to collaborate. It became clear that no single entity could tackle these challenges alone. This led to the emergence of multi-stakeholder governance structures, fostering knowledge sharing and coordinated problem-solving. A new trend soon emerged: the proliferation of shared service platforms. Third-party outsourcing arrangements expanded, and specialized providers began offering comprehensive solutions for serialization, data management, regulatory reporting, and technical support to multiple manufacturers simultaneously. This shift leveled the playing field, enabling smaller firms to access advanced capabilities without the need for significant capital investments in dedicated infrastructure or specialized personnel.

Benefit Category	Specific Advantages
Data Management	Unified repositories eliminating infrastructure duplication
Strategic Value	Enhanced transparency, improved inventory tracking, strengthened brand protection
Operational Gains	Streamlined recalls, optimized distribution, and accurate demand forecasting
Process Standards	Enterprise-wide consistency with regulatory flexibility
Technical Performance	Ninety-nine percent scan accuracy with proper protocols
Collaboration Models	Shared services enabling smaller firms to access sophisticated capabilities

Table 3. Centralized Governance Advantages [7, 8]

5. Technological Solutions and Infrastructure Requirements

Robust technological infrastructure forms the backbone of pharmaceutical track and trace systems. Data must be generated, captured, stored, transmitted, and verified. Innovation in serialization technologies has accelerated dramatically in recent years. What drove this rapid change? Evolving regulatory requirements pushed hard. Advances in adjacent fields like supply chain management, data analytics, and cybersecurity pulled equally hard.

Digital technologies proliferated everywhere. Unprecedented opportunities opened up for combating global trade in falsified medicines. Emerging solutions started addressing critical vulnerabilities throughout pharmaceutical supply chains. Researchers systematically reviewed existing and emerging digital technologies. The approaches documented proved remarkably diverse. Mobile authentication applications let consumers and healthcare providers verify products at the point of sale. Chemical marker systems incorporated forensic identifiers detectable through specialized analytical instruments. Blockchain distributed ledger platforms created immutable transaction records across multi-stakeholder supply networks. Track and trace serialization systems have been mandated by regulatory authorities in major pharmaceutical markets [9].

Each technological solution tackles different threat vectors within the counterfeit medicine ecosystem. Mobile verification applications shine in resource-limited settings. Consumer-facing authentication works particularly well where a comprehensive serialization infrastructure hasn't developed yet. Enterprise-level track and trace systems provide something different. Comprehensive supply chain visibility extends from the manufacturer through dispensing entities. This works best in regulated markets with mature healthcare infrastructures [9].

ISSN: 2229-7359 Vol. 11 No. 25s,2025

https://theaspd.com/index.php

Research emphasizes a sobering reality. No single technological solution addresses all counterfeit medicine challenges. Multiple layers become necessary. Regulatory serialization compliance must combine with supplementary authentication technologies. Everything gets tailored to specific market conditions and threat profiles.

Pharmaceutical authentication techniques have evolved substantially. Traditional visual inspection methods failed too often. Modern approaches leverage sophisticated instrumentation now.

Pharmaceutical authentication techniques have evolved substantially beyond traditional visual inspection methods. Modern approaches leverage sophisticated instrumentation capable of detecting subtle chemical composition variations and physical property differences that distinguish genuine products from sophisticated counterfeits. Research examining non-destructive authentication methods has documented that near-infrared (NIR) spectroscopy represents a particularly promising technology for rapid pharmaceutical verification, capable of analyzing chemical composition directly through packaging materials without requiring sample destruction or complex preparation procedures [10]. Authentication decisions can be achieved within seconds through spectral fingerprint matching against reference libraries containing genuine product profiles. Raman spectroscopy offers complementary capabilities through molecular vibration analysis, providing highly specific chemical identification with minimal sample requirements, enabling detection of active pharmaceutical ingredient substitutions, excipient adulterations, and formulation deviations that visual inspection cannot identify [10]. Portable handheld devices incorporating these spectroscopic technologies have demonstrated field deployment feasibility at distribution points, border crossings, and pharmacy locations, though cost considerations ranging from several thousand to tens of thousands of dollars per instrument represent barriers for widespread adoption, particularly in resource-constrained settings [10]. NIR spectroscopy allows for the analysis of chemical composition directly through packaging materials, eliminating the need for sample destruction or complex preparation procedures. Authentication decisions can be made within seconds by comparing the spectral fingerprint of a product against reference libraries containing profiles of genuine medications.

In addition to NIR spectroscopy, advanced imaging and machine learning algorithms are increasingly employed to analyze packaging and product characteristics. High-resolution imaging systems can detect subtle differences in physical appearance, such as variations in labeling, color, or package design, which are often overlooked during manual inspection. Machine learning models trained on datasets of authentic and counterfeit products further enhance detection accuracy, identifying anomalies that may indicate counterfeit activity.

Moreover, radio-frequency identification (RFID) and smart packaging solutions are gaining traction as effective tools for real-time tracking and authentication. RFID tags embedded in pharmaceutical packaging enable precise product tracking across supply chains, ensuring that medicines are genuine and have not been tampered with. Smart packaging technologies, such as embedded sensors and QR codes, provide additional layers of security by allowing consumers and distributors to verify product authenticity instantly using smartphones or specialized devices.

While these technologies offer significant advantages in combating counterfeit drugs, cost remains a critical barrier to widespread adoption, especially in low-resource settings. Collaborative efforts between governments, manufacturers, and technology providers are essential to subsidize and standardize these solutions, making them accessible to regions most affected by counterfeit pharmaceutical challenges.

Integrating analytical authentication technologies with serialization verification systems created powerful platforms for medicine verifications. Multi-modal authentication frameworks emerged. Defense-in-depth against sophisticated counterfeiting attempts became a reality. Hence successfully introducing falsified products into legitimate supply chains got exponentially harder.

Infrastructure requirements extend far beyond authentication technologies alone. Comprehensive data management systems must handle enormous transaction volumes. Network architectures supporting reliable data transmission prove essential. Strong cybersecurity protocols that do not allow unauthorized access or manipulation of the serialization data are taken to a whole new level. Implementation of technology only works with one key ingredient: properly trained staff. Operating complex serialization systems requires real skill. Maintaining them demands expertise. Troubleshooting across diverse organizational functions needs capable staff.

ISSN: 2229-7359 Vol. 11 No. 25s,2025

https://theaspd.com/index.php

Technology Type	Key Features	Deployment Context
Mobile Applications	Point-of-sale verification for consumers and providers	Resource-limited settings
Chemical Markers	Forensic identifiers through specialized instruments	Laboratory and field testing
Blockchain Platforms	Immutable transaction records across networks	Multi-stakeholder supply chains
Near-Infrared Spectroscopy	Rapid chemical analysis through packaging without destruction	Distribution points, border crossings, pharmacies
Raman Spectroscopy	Molecular vibration analysis detecting substitutions and adulterations	Portable field deployment
Multi-Modal Frameworks	Combined serialization and analytical authentication	Defense-in-depth against sophisticated counterfeits

Table 4. Authentication Technologies and Capabilities [9, 10]

CONCLUSION

Counterfeit pharmaceuticals threaten global health on an unprecedented scale, with approximately one in ten medical products in developing nations containing falsified or substandard ingredients that harm patients and accelerate drug resistance, compelling governments worldwide to implement track and trace systems despite enormous costs and technical complexity, as Europe adopted a centralized verification hub through the European Medicines Verification Organization while America pursued a decentralized model under the Drug Supply Chain Security Act, creating substantial challenges for multinational pharmaceutical manufacturers navigating conflicting regulations across numerous countries with varying technical standards, data formats, and constantly shifting deadlines. Small pharmaceutical companies face significant challenges in implementing serialization systems due to the complexity of integration with existing manufacturing setups and the regulatory fragmentation across global markets, with these challenges demanding tailored compliance programs for each region and creating significant burdens on resources and infrastructure, though centralized governance offers transformative benefits including the consolidation of data repositories, standardization of procedures across international manufacturing networks, enhanced visibility into supply chains, and faster responses to recalls, turning compliance requirements into strategic advantages that improve operational efficiency and bolster trust in the pharmaceutical supply chain. Advancements in technology are reshaping serialization efforts, with innovations such as blockchain creating immutable transaction records, artificial intelligence detecting suspicious activities in real-time, spectroscopy instruments identifying chemical compositions non-destructively, and IoT sensors monitoring environmental conditions like temperature throughout distribution networks, yet despite these advancements, there is no universal solution due to the varying resources and local factors that influence implementation strategies, necessitating robust multi-layered authentication systems fortified by advanced cybersecurity measures to protect serialization codes from tampering and counterfeiting, with success relying heavily on well-trained personnel capable of managing increasingly complex systems across manufacturing, quality assurance, information technology, and regulatory departments that historically operated in silos. Addressing these challenges requires unprecedented collaboration among regulators, manufacturers, technology providers, healthcare organizations, and international bodies, aligning regulatory frameworks where possible, leveraging lessons learned from past experiences, and investing in innovative solutions as critical steps toward overcoming scalability bottlenecks and capacity constraints, with special attention given to developing countries where counterfeit medicines pose the greatest threat to vulnerable healthcare systems, as the safety of patients remains paramount since counterfeit drugs not only fail to treat illnesses but also cause harm, erode trust in the medical field, and obstruct access to genuine treatments for those in urgent need. By fostering global cooperation, enhancing technological capabilities, and building capacity in underserved regions, the pharmaceutical industry and its stakeholders can take meaningful steps to ensure that safe and effective medications are delivered to patients worldwide, thereby safeguarding public health and restoring confidence in healthcare systems.

ISSN: 2229-7359 Vol. 11 No. 25s,2025

https://theaspd.com/index.php

REFERENCES

[1] United Nations Development Programme, "Surveillance and Monitoring for Substandard and Falsified Medical Products," Health Implementation. [Online]. Available: https://healthimplementation.undp.org/functional-areas/health-products/management/quality-monitoring-of-health-products/surveillance-and-monitoring-for-substandard-and-falsified-medical-products/
[2] Pierre Ambroise-Thomas, "The Tragedy Caused by Fake Antimalarial Drugs," PubMed Central, 2012. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC3375661/

[3] Lorenzo Mari, "What is the Amount of the On-Boarding Fee and What is Included," EMVO. [Online]. Available: https://help.emvo-medicines.eu/en/articles/6244440-what-is-the-amount-of-the-on-boarding-fee-and-what-is-included

[4] U.S. Food and Drug Administration, "Drug Supply Chain Security Act (DSCSA),". [Online]. Available:

https://www.fda.gov/drugs/drug-supply-chain-integrity/drug-supply-chain-security-act-dscsa

[5] Pharmaceutical Security Institute, "Incident Trends," 2024. [Online]. Available: https://www.psi-inc.org/incident-trends

[6] Kalliroi S Ziavrou et al., "Trends in counterfeit drugs and pharmaceuticals before and during the COVID-19 pandemic,"

PubMed Central, 2022. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/PMC9277998/

[7] Altius Hub, "Pharmaceutical Serialization: Beyond Compliance to Strategic Advantage," 2025. [Online]. Available:

https://altiushub.com/blog/pharmaceutical-serialization-beyond-compliance-to-strategic-advantage

[8] GS1 Canada, "Global Traceability Implementation Guide for Healthcare," GS1 Global Office, 2009. [Online]. Available:

https://gs1ca.org/gs1ca-components/documents/Global-Traceability-Implementation-Healthcare.pdf

[9] Tim K Mackey, Gaurvika Nayyar, "A review of existing and emerging digital technologies to combat the global trade in fake medicines," 2017. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/28349715/

[10] Anmole S. Bolla, et al., "The silent development of counterfeit medications in developing countries - A systematic review of detection technologies," ScienceDirect, 2020. [Online]. Available:

https://www.sciencedirect.com/science/article/abs/pii/S0378517320306864