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Summary 
This article discusses the impact of artificial intelligence (AI) on optimizing the continuous 
integration and delivery (CI/CD) cycle, with an emphasis on sustainable and green practices in 
DevOps environments. As demands for software increase, so does the energy consumption of 
technology infrastructures. This study proposes an AI-based approach to improve operational 
efficiency and reduce the carbon footprint in DevOps environments, integrating predictive models, 
intelligent automation, and sustainability metrics. A quantitative methodology was applied through 
experimentation in continuous integration environments, evaluating energy consumption, 
performance and deployment time. The results show that the implementation of AI can reduce the 
energy consumption of the CI/DC cycle by up to 25%. This research contributes to the development 
of greener and more resilient software engineering. 
Keywords: DevOps, artificial intelligence, sustainability, CI/CD, energy efficiency, automation. 

INTRODUCTION  

The acceleration of software development and delivery processes has been significantly driven by the 
adoption of DevOps methodologies, which seek to collaboratively integrate development and 
operations areas. In this context, the Continuous Integration and Continuous Delivery (CI/CD) 
cycle has become an essential pillar, allowing frequent, automated deployments with less margin for 
human error (Bass et al., 2022). However, this intensive automation entails extensive use of 
computational resources, including the constant consumption of CPU, memory, and cloud storage, 
which generates a significant environmental impact by increasing energy consumption and carbon 
footprint (Li et al., 2022).Faced with this problem, technological sustainability has become a central 
concern in contemporary software engineering. The need to adopt greener approaches has motivated 
the exploration of innovative tools, including artificial intelligence (AI), to mitigate the collateral 
effects of high dynamism in DevOps (Kumar et al., 2023). AI offers advanced automation, prediction, 
and decision-making capabilities that allow processes such as automated testing, code error detection, 
and efficient resource allocation to be optimized (Zhao et al., 2021). Thanks to machine learning 
algorithms and predictive models, failures can be anticipated before they occur and unnecessary 
executions that consume resources without providing real value can be reduced.In addition, the 
growing adoption of cloud environments and orchestrated containers—such as Kubernetes—has 
created new opportunities to apply AI in dynamic workload management and task scheduling based 
on energy and operational efficiency criteria (Wang et al., 2020). This convergence between AI and 
DevOps has given rise to approaches known as AIOps or cognitive DevOps, aimed at integrating 
intelligence into development and deployment flows to make them more resilient, adaptable, and 
sustainable (Nadeem et al., 2023). 
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Therefore, the present article aims to analyze how artificial intelligence can contribute to the 
sustainable optimization of the CI/CD cycle, not only from a technical efficiency perspective, but also 
from an ecological and responsible approach. This analysis is particularly relevant in the current 
context of corporate commitment to the Sustainable Development Goals (SDGs), where technology 
must be aligned with responsible practices in the use of digital resources. 

THEORETICAL FRAMEWORK  
2.1 DevOps and the CI/CD cycle 
The DevOps philosophy promotes integration between software development and operations teams 
to improve the continuous delivery of value to the end user. This approach is focused on automation, 
collaboration, and constant monitoring of all phases of software development (Bass et al., 2022). The 
CI/CD cycle is one of the most representative DevOps practices, and is made up of two key elements: 

• Continuous Integration (CI): Automates the compilation and testing of every code change. 
• Continuous Delivery (CD): Automates the deployment of production-ready versions. 

While this automation has improved the speed and quality of the software, it has also increased the 
consumption of computing resources, as many pipelines run multiple times a day, even for minor 
changes (Khan et al., 2021). 
 

Table 1. Characteristics of the traditional CI/CD cycle in DevOps environments 
Element Description Energy Involvement 
Compilation Repetitive and automated High CPU usage 
Unit Tests Constantly executed with every 

change 
Intensive memory usage 

Deployment It can occur multiple times per day Power consumption in servers 
Continuous 
monitoring 

Active monitoring of logs and 
metrics 

Network traffic and continuous disk 
usage 

Source: Authors' elaboration based on Khan et al. (2021). 
 

2.2 Artificial intelligence applied to software engineering 
Artificial intelligence has shown a significant ability to transform software development processes, 
especially when combined with automation and adaptive learning. Some relevant applications in the 
context of DevOps include: 

• Log analysis and error diagnosis (Zhao et al., 2021) 
• Prediction of failures in integration tests (Wang et al., 2020) 
• Resource orchestration based on energy demand (Kumar et al., 2023) 

AI models can analyze large volumes of data generated during pipelines, recognize patterns, and make 
optimization decisions in real time. This capability allows you to reduce unnecessary executions, 
prioritize tasks, and automatically adjust the use of computational resources. 
 

Table 2. AI Applications in DevOps Environments 
Application of AI Associated technology Key benefit 
Anomaly detection Neural networks Reduction of failures in production 
Deployment optimization Reinforcement learning Lower energy consumption 
Predictive Failure Analytics Decision Trees, SVM Increased quality in IQ tests 
Decision automation Heuristic algorithms Dynamic Resource Orchestration 

Source: Adapted from Zhao et al. (2021); Kumar et al. (2023). 
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2.3 Green DevOps: Sustainability and Efficiency 
Digital sustainability has become a priority for organizations seeking to align their technological 
infrastructure with global environmental commitments, such as the SDGs. The discipline known as 
Green DevOps promotes the rational use of digital resources, minimizing the ecological footprint 
without compromising the agility of development (Nadeem et al., 2023). 
Recent studies point out that a single pipeline executed unnecessarily can consume up to 0.5 kWh of 
energy, especially when it involves complex integration tests or multiple active containers (Li et al., 
2022). Thus, the combination of DevOps practices with AI allows a balance to be achieved between 
speed, quality and sustainability. 
 

Table 3. Comparison between traditional DevOps and sustainable DevOps with AI 
FEATURE TRADITIONAL 

DEVOPS 
SUSTAINABLE DEVOPS 
WITH AI 

NUMBER OF DAILY RUNS 10–20 6–10 (with smart prediction) 
AVERAGE EXECUTION TIME 20–30 minutes 12–18 minutes 
ESTIMATED ENERGY 
CONSUMPTION 

Alto (>5 kWh/día por 
pipeline) 

Bajo (<4 kWh/día por 
pipeline) 

LEVEL OF AUTOMATION Middle High (data-driven decisions) 
CARBON FOOTPRINT High Reduced 

Source: Authors' elaboration with data from Li et al. (2022); Kumar et al. (2023). 

METHODOLOGY  
This study is part of a quantitative-experimental applied research, focused on evaluating the impact 
of the implementation of artificial intelligence on the energy and operational efficiency of the CI/DC 
cycle in DevOps environments. To this end, two parallel test environments were designed: one with a 
standard configuration and the other with AI integration at critical stages of the pipeline. 
 
3.1 Experiment design 
Two experimental groups were established: 

• Control group: conventional CI/DC environment without AI intervention. 
• Experimental group: CI/CD environment with AI applied to log analysis, failure prediction 

and dynamic resource management. 
Both pipelines were built using tools widely adopted in the DevOps ecosystem: Jenkins for 
orchestration, Docker for containerization, and Kubernetes for cluster management. The 
infrastructure was deployed in a hybrid cloud based on Amazon Web Services (AWS) EC2 instances, 
with energy consumption monitoring using the Cloud Carbon Footprint API. 
 

Table 4. Technical configuration of test environments 
COMPONENT CONTROL GROUP EXPERIMENTAL GROUP (WITH AI) 
ORCHESTRATOR Jenkins Jenkins + plugins de IA (DeepChecks) 
CONTAINERS Docker Docker 
CLUSTER MANAGEMENT Kubernetes Kubernetes with load prediction 
MONITORING Prometheus Prometheus + detection algorithm 
INFRASTRUCTURE AWS EC2 t3.medium AWS EC2 t3.medium 

Source: Authors, adapted from Wang et al. (2020). 
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3.2 Implementing AI in CI/CD 
In the experimental environment, three types of artificial intelligence solutions were applied: 

1. Log analysis with supervised AI: classification models were trained to detect failure patterns 
in previous stages of the pipeline, avoiding unnecessary executions (Zhao et al., 2021). 

2. Intelligent resource allocation: Through reinforcement learning, the system dynamically 
adjusted the CPU/RAM allocation according to the complexity of each build (Kumar et al., 
2023). 

3. Test automation based on historical relevance: The algorithm prioritized test cases with a 
higher probability of failure, thus reducing total execution. 

 
Table 5. AI algorithms used in the experimental environment 

DevOps task Implemented algorithm Main objective 
Failure prediction Random Forest Avoid repetitive executions 
Resource orchestration Deep reinforcement learning Minimize CPU/RAM consumption 
Test prioritization k-NN (Nearest Neighbors) Reduce the duration of the testing stage 

Source: Adapted from Zhao et al. (2021); Kumar et al. (2023). 
 

3.3 Observed variables 
The following dependent variables and evaluation metrics were defined for each CI/CD cycle 
executed: 

• Total execution time (min). 
• Energy consumption (kWh). 
• Execution failures. 
• Average CPU and RAM usage (%). 
• Number of skipped steps thanks to prediction. 

These metrics were collected over a period of 21 consecutive days, executing equivalent integration 
and deployment tasks in both environments. 
 

Table 6. Study-dependent variables 
Variable Guy Harvesting tool 
Runtime Continuous quantitative Jenkins Logs 
Energy consumption Continuous quantitative Cloud Carbon Footprint API 
CPU/RAM Usage Percentage Continuous quantitative Prometheus Metrics 
Number of faults detected Discrete quantitative Reportes de testing y builds 

 
3.4 Experimental procedure 

1. Two equivalent pipelines were configured in terms of codebase, libraries and test 
environment. 

2. Integration and deployment tasks were executed synchronously in both groups (minimum 3 
daily executions). 

3. All variables were measured at the end of each cycle. 
4. A descriptive and comparative statistical analysis was used to interpret the data. 
5. A Student's t-test was used  to verify whether the differences between the two groups were 

statistically significant (p < 0.05). 
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RESULTS  
After an experimental period of 21 days, with more than 120 executions per environment, 
quantitative data was collected and analyzed that allowed the performance of the traditional 
CI/CD pipeline to be compared to its AI-optimized version. The results are grouped into three 
key dimensions: time efficiency, energy efficiency, and operational performance. 
 
4.1 Time efficiency 
The average time per integration and deployment cycle was significantly lower in the 
experimental group. While the traditional pipeline had an average of 22.8 minutes per execution, 
the AI pipeline managed to reduce that time to 16.4 minutes, which represents a 28.1% 
improvement  in time efficiency. 
 

Table 7. Average Execution Time Comparison 
Group Minimum 

(min) 
Maximum 
(min) 

Average 
(min) 

Standard 
deviation 

Traditional 
CI/CD 

18.7 27.4 22.8 2.89 

AI-powered 
CI/CD 

13.2 19.3 16.4 1.88 

Source: Authors' elaboration based on Jenkins logs and Prometheus chronometers. 
This improvement is mainly attributed to the intelligent prioritization of tests and the automatic 
omission of redundant stages through historical analysis (Zhao et al., 2021). 
 
4.2 Energy efficiency 
Energy consumption was recorded using the Cloud Carbon Footprint API, which translates 
CPU, memory, and storage usage into kilowatt-hours (kWh). The data shows that the AI pipeline 
consumed on average 3.9 kWh per d 
compared to 5.6 kWh in the traditional pipeline, showing a 30.3% reduction in daily energy 
consumption. 
 

Table 8. Cumulative energy consumption in 21 days 
Group Total consumption (kWh) Average daily consumption (kWh) 
Traditional CI/CD 117.6 5.6 
AI-powered CI/CD 81.9 3.9 

Source: Authors' elaboration based on Cloud Carbon Footprint metrics. 
 

These results coincide with previous research showing how artificial intelligence can be an 
effective tool to reduce the ecological footprint in technological environments (Kumar et al., 
2023; Li et al., 2022). 
 
4.3 Reducing errors and compilation failures 
A significant decrease in the number of failed executions was also observed. The traditional group 
had an average of 6.4 weekly failures, compared to only 2.3 weekly failures in the optimized 
pipeline. The implementation of predictive models made it possible to anticipate frequent 
integration errors and avoid failed builds (Wang et al., 2020). 
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Table 9. Average number of errors detected per week 
Error Type Traditional CI/CD AI-powered CI/CD 
Unit Test Failures 3.1 1.2 
Integration failures 2.0 0.6 
Deployment failures 1.3 0.5 
Weekly total 6.4 2.3 

Source: Jenkins Bug Log and GitHub Actions. 
 

4.4 Use of computational resources 
Average CPU and RAM usage levels during executions were also measured. The pipeline with AI 
demonstrated a more efficient use of resources, due to dynamic orchestration based on demand and 
priority. 
 

Table 10. Comparing Average Resource Usage 
Resource Traditional CI/CD AI-powered CI/CD 
CPU (%) 74.2 58.7 
RAM (%) 81.9 65.4 

Source: Metrics collected from Prometheus and Grafana dashboards. 
 

4.5 Statistical analysis 
To validate the significance of the results, a Student's t-test was applied for independent samples. The 
results showed statistically significant differences (p < 0.01) in the three main variables: 
• Runtime 
• Energy consumption 
• Number of errors 
These findings support the hypothesis that integrating AI into DevOps pipelines not only improves 
operational efficiency, but also has a measurable impact on process sustainability (Nadeem et al., 
2023). 
 
CONCLUSIONS  
The results obtained in this research clearly and quantifiably show that the integration of artificial 
intelligence techniques in CI/CD cycles within DevOps environments represents an effective strategy 
not only to optimize technical processes, but also to move towards a more sustainable software 
development model. This multi-dimensional optimization simultaneously addresses aspects of 
performance, energy efficiency, and failure reduction, which is critical in modern organizations 
oriented towards continuous value delivery. 
First, it was found that the use of AI algorithms, such as reinforcement learning, random forests, and 
k-NN, significantly reduces the average execution time of pipelines, by up to 28.1%. This directly 
translates into higher productivity and more agile delivery cycles, which is consistent with the findings 
of Wang et al. (2020), who state that artificial intelligence improves the adaptive and reactive capacity 
of CI/CD architectures. 
Second, reducing energy consumption by more than 30% demonstrates that it is possible to 
implement environmentally responsible DevOps practices. This result supports the idea of a "green 
DevOps", where automation not only seeks speed, but also sustainability. Studies such as those by Li 
et al. (2022) and Kumar et al. (2023) have pointed out that the efficient use of digital infrastructure 
must be part of an organizational strategy oriented towards the Sustainable Development Goals 
(SDGs), especially with regard to responsible energy consumption and climate action.Another notable 
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finding was the decrease in errors in the test, integration and deployment stages. AI's ability to 
anticipate and prevent errors by analyzing historical logs and predicting failure patterns is invaluable 
in reducing rework, latency, and wear and tear on computational resources (Zhao et al., 2021). This 
automated prevention improves the quality of the software delivered, while reducing operational 
costs.Additionally, the intelligent orchestration of computational resources (CPU, RAM) contributes 
to minimizing excessive or poorly distributed use of infrastructure, promoting the elasticity and 
scalability of the DevOps environment, without increasing the ecological impact (Nadeem et al., 
2023). In contexts where companies use cloud platforms with consumption-based billing, this 
optimization also translates into tangible economic benefits. 
From an organizational perspective, the findings of this study suggest that the adoption of AI in 
CI/CD pipelines should be accompanied by a technology governance strategy that considers not only 
performance indicators, but also sustainability metrics. This implies that technology leaders must 
begin to measure, report and manage the environmental impact of their continuous development 
processes.In short, artificial intelligence not only transforms DevOps flows from an operational 
perspective, but also allows building a greener, more efficient, and more resilient software 
development ecosystem. Its implementation represents a strategic opportunity for organizations 
seeking competitiveness and environmental responsibility in the digital age. 
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