International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 6s, 2025
https://www.theaspd.com/ijes.php

Sustainable Optimization of the CI/DC Cycle through
Atrtificial Intelligence: An Efficient and Green Approach to
DevOps Practices

William Emmanuel Castillo Ortega
Universidad en Linea de México (UTEL)
Email: weastilloortega@gmail.com

ORCID: 0009-0002-7012-9208

Summary

This article discusses the impact of artificial intelligence (Al) on optimizing the continuous
integration and delivery (CI/CD) cycle, with an emphasis on sustainable and green practices in
DevOps environments. As demands for software increase, so does the energy consumption of
technology infrastructures. This study proposes an Al-based approach to improve operational
efficiency and reduce the carbon footprint in DevOps environments, integrating predictive models,
intelligent automation, and sustainability metrics. A quantitative methodology was applied through
experimentation in continuous integration environments, evaluating energy consumption,
performance and deployment time. The results show that the implementation of Al can reduce the
energy consumption of the CI/DC cycle by up to 25%. This research contributes to the development
of greener and more resilient software engineering.

Keywords: DevOps, artificial intelligence, sustainability, CI/CD, energy efficiency, automation.

INTRODUCTION

The acceleration of software development and delivery processes has been significantly driven by the
adoption of DevOps methodologies, which seek to collaboratively integrate development and
operations areas. In this context, the Continuous Integration and Continuous Delivery (CI/CD)
cycle has become an essential pillar, allowing frequent, automated deployments with less margin for
human error (Bass et al., 2022). However, this intensive automation entails extensive use of
computational resources, including the constant consumption of CPU, memory, and cloud storage,
which generates a significant environmental impact by increasing energy consumption and carbon
footprint (Li et al., 2022).Faced with this problem, technological sustainability has become a central
concern in contemporary software engineering. The need to adopt greener approaches has motivated
the exploration of innovative tools, including artificial intelligence (Al), to mitigate the collateral
effects of high dynamism in DevOps (Kumar et al., 2023). Al offers advanced automation, prediction,
and decision-making capabilities that allow processes such as automated testing, code error detection,
and efficient resource allocation to be optimized (Zhao et al., 2021). Thanks to machine learning
algorithms and predictive models, failures can be anticipated before they occur and unnecessary
executions that consume resources without providing real value can be reduced.In addition, the
growing adoption of cloud environments and orchestrated containers—such as Kubernetes—has
created new opportunities to apply Al in dynamic workload management and task scheduling based
on energy and operational efficiency criteria (Wang et al., 2020). This convergence between Al and
DevOps has given rise to approaches known as AIOps or cognitive DevOps, aimed at integrating
intelligence into development and deployment flows to make them more resilient, adaptable, and

sustainable (Nadeem et al., 2023).

716

https://www.theaspd.com/ijes.php
ORCID:%200009-0002-7012-9208
ORCID:%200009-0002-7012-9208

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 6s, 2025
https://www.theaspd.com/ijes.php

Therefore, the present article aims to analyze how artificial intelligence can contribute to the
sustainable optimization of the CI/CD cycle, not only from a technical efficiency perspective, but also
from an ecological and responsible approach. This analysis is particularly relevant in the current
context of corporate commitment to the Sustainable Development Goals (SDGs), where technology
must be aligned with responsible practices in the use of digital resources.

THEORETICAL FRAMEWORK
2.1 DevOps and the CI/CD cycle
The DevOps philosophy promotes integration between software development and operations teams
to improve the continuous delivery of value to the end user. This approach is focused on automation,
collaboration, and constant monitoring of all phases of software development (Bass et al., 2022). The
CI/CD cycle is one of the most representative DevOps practices, and is made up of two key elements:
e Continuous Integration (CI): Automates the compilation and testing of every code change.
e Continuous Delivery (CD): Automates the deployment of production-ready versions.
While this automation has improved the speed and quality of the software, it has also increased the
consumption of computing resources, as many pipelines run multiple times a day, even for minor

changes (Khan et al., 2021).

Table 1. Characteristics of the traditional CI/CD cycle in DevOps environments

Element Description Energy Involvement
Compilation Repetitive and automated High CPU usage
Unit Tests Constantly executed with every Intensive memory usage

change
Deployment It can occur multiple times per day ~ Power consumption in servers
Continuous Active monitoring of logs and Network traffic and continuous disk
monitoring metrics usage

Source: Authors' elaboration based on Khan et al. (2021).

2.2 Artificial intelligence applied to software engineering
Artificial intelligence has shown a significant ability to transform software development processes,
especially when combined with automation and adaptive learning. Some relevant applications in the
context of DevOps include:

e Log analysis and error diagnosis (Zhao et al., 2021)

e Prediction of failures in integration tests (Wang et al., 2020)

e Resource orchestration based on energy demand (Kumar et al., 2023)
Al models can analyze large volumes of data generated during pipelines, recognize patterns, and make
optimization decisions in real time. This capability allows you to reduce unnecessary executions,
prioritize tasks, and automatically adjust the use of computational resources.

Table 2. Al Applications in DevOps Environments
Application of Al Associated technology Key benefit
Anomaly detection Neural networks Reduction of failures in production
Deployment optimization Reinforcement learning Lower energy consumption
Predictive Failure Analytics Decision Trees, SVM Increased quality in IQ tests
Decision automation Heuristic algorithms Dynamic Resource Orchestration
Source: Adapted from Zhao et al. (2021); Kumar et al. (2023).

717

https://www.theaspd.com/ijes.php

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 6s, 2025
https://www.theaspd.com/ijes.php

2.3 Green DevOps: Sustainability and Efficiency

Digital sustainability has become a priority for organizations seeking to align their technological
infrastructure with global environmental commitments, such as the SDGs. The discipline known as
Green DevOps promotes the rational use of digital resources, minimizing the ecological footprint
without compromising the agility of development (Nadeem et al., 2023).

Recent studies point out that a single pipeline executed unnecessarily can consume up to 0.5 kWh of
energy, especially when it involves complex integration tests or multiple active containers (Li et al.,
2022). Thus, the combination of DevOps practices with Al allows a balance to be achieved between
speed, quality and sustainability.

Table 3. Comparison between traditional DevOps and sustainable DevOps with Al

FEATURE TRADITIONAL SUSTAINABLE DEVOPS
DEVOPS WITH Al

NUMBER OF DAILY RUNS 10-20 6-10 (with smart prediction)

AVERAGE EXECUTION TIME | 20-30 minutes 12-18 minutes

ESTIMATED ENERGY Alto (>5 kWh/dia por Bajo (<4 kWh/dia por

CONSUMPTION pipeline) pipeline)

LEVEL OF AUTOMATION Middle High (data-driven decisions)

CARBON FOOTPRINT High Reduced

Source: Authors' elaboration with data from Li et al. (2022); Kumar et al. (2023).

METHODOLOGY

This study is part of a quantitative-experimental applied research, focused on evaluating the impact
of the implementation of artificial intelligence on the energy and operational efficiency of the CI/DC
cycle in DevOps environments. To this end, two parallel test environments were designed: one with a
standard configuration and the other with Al integration at critical stages of the pipeline.

3.1 Experiment design
Two experimental groups were established:

e Control group: conventional CI/DC environment without Al intervention.

e Experimental group: CI/CD environment with Al applied to log analysis, failure prediction

and dynamic resource management.

Both pipelines were built using tools widely adopted in the DevOps ecosystem: Jenkins for
orchestration, Docker for containerization, and Kubernetes for cluster management. The
infrastructure was deployed in a hybrid cloud based on Amazon Web Services (AWS) EC2 instances,
with energy consumption monitoring using the Cloud Carbon Footprint APL.

Table 4. Technical configuration of test environments

COMPONENT CONTROL GROUP EXPERIMENTAL GROUP (WITH Al)
ORCHESTRATOR ‘ Jenkins Jenkins + plugins de IA (DeepChecks)
CONTAINERS ' Docker Docker

CLUSTER MANAGEMENT | Kubernetes Kubernetes with load prediction
MONITORING | Prometheus Prometheus + detection algorithm
INFRASTRUCTURE | AWS EC2 t3.medium AWS EC2 t3.medium

Source: Authors, adapted from Wang et al. (2020).

718

https://www.theaspd.com/ijes.php

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 6s, 2025
https://www.theaspd.com/ijes.php

3.2 Implementing Al in CI/CD
In the experimental environment, three types of artificial intelligence solutions were applied:
1. Log analysis with supervised Al: classification models were trained to detect failure patterns
in previous stages of the pipeline, avoiding unnecessary executions (Zhao et al., 2021).
2. Intelligent resource allocation: Through reinforcement learning, the system dynamically
adjusted the CPU/RAM allocation according to the complexity of each build (Kumar et al.,
2023).
3. Test automation based on historical relevance: The algorithm prioritized test cases with a
higher probability of failure, thus reducing total execution.

Table 5. Al algorithms used in the experimental environment

DevOps task Implemented algorithm Main objective

Failure prediction ‘ Random Forest Avoid repetitive executions

Resource orchestration ‘ Deep reinforcement learning Minimize CPU/RAM consumption
Test prioritization ‘ k-NN (Nearest Neighbors) Reduce the duration of the testing stage

Source: Adapted from Zhao et al. (2021); Kumar et al. (2023).

3.3 Observed variables
The following dependent variables and evaluation metrics were defined for each CI/CD cycle
executed:

e Total execution time (min).

e Energy consumption (kWh).

e Execution failures.

e Average CPU and RAM usage (%).

e Number of skipped steps thanks to prediction.
These metrics were collected over a period of 21 consecutive days, executing equivalent integration
and deployment tasks in both environments.

Table 6. Study-dependent variables

Variable Guy Harvesting tool
Runtime Continuous quantitative = Jenkins Logs
Energy consumption Continuous quantitative = Cloud Carbon Footprint API

CPU/RAM Usage Percentage Continuous quantitative = Prometheus Metrics
Number of faults detected Discrete quantitative Reportes de testing y builds

3.4 Experimental procedure
1. Two equivalent pipelines were configured in terms of codebase, libraries and test
environment.
2. Integration and deployment tasks were executed synchronously in both groups (minimum 3
daily executions).
3. All variables were measured at the end of each cycle.
A descriptive and comparative statistical analysis was used to interpret the data.
A Student's t-test was used to verify whether the differences between the two groups were
statistically significant (p < 0.05).

A

719

https://www.theaspd.com/ijes.php

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 6s, 2025
https://www.theaspd.com/ijes.php

RESULTS
After an experimental period of 21 days, with more than 120 executions per environment,
quantitative data was collected and analyzed that allowed the performance of the traditional
CI/CD pipeline to be compared to its Al-optimized version. The results are grouped into three
key dimensions: time efficiency, energy efficiency, and operational performance.

4.1 Time efficiency

The average time per integration and deployment cycle was significantly lower in the
experimental group. While the traditional pipeline had an average of 22.8 minutes per execution,
the Al pipeline managed to reduce that time to 16.4 minutes, which represents a 28.1%
improvement in time efficiency.

Table 7. Average Execution Time Comparison

Group Minimum Maximum Average Standard
(min) (min) (min) deviation

Traditional 18.7 27.4 22.8 2.89

CI/CD

Al-powered 13.2 19.3 16.4 1.88

CI/CD

Source: Authors' elaboration based on Jenkins logs and Prometheus chronometers.
This improvement is mainly attributed to the intelligent prioritization of tests and the automatic
omission of redundant stages through historical analysis (Zhao et al., 2021).

4.2 Energy efficiency

Energy consumption was recorded using the Cloud Carbon Footprint API, which translates
CPU, memory, and storage usage into kilowatt-hours (kWh). The data shows that the Al pipeline
consumed on average 3.9 kWh per d

compared to 5.6 kWh in the traditional pipeline, showing a 30.3% reduction in daily energy
consumption.

Table 8. Cumulative energy consumption in 21 days

Group Total consumption (kWh) Average daily consumption (kWh)
Traditional CI/CD | 117.6 5.6
AlLpowered CI/CD | 81.9 3.9

Source: Authors' elaboration based on Cloud Carbon Footprint metrics.

These results coincide with previous research showing how artificial intelligence can be an
effective tool to reduce the ecological footprint in technological environments (Kumar et al.,

2023; Li et al., 2022).

4.3 Reducing errors and compilation failures

A significant decrease in the number of failed executions was also observed. The traditional group
had an average of 6.4 weekly failures, compared to only 2.3 weekly failures in the optimized
pipeline. The implementation of predictive models made it possible to anticipate frequent
integration errors and avoid failed builds (Wang et al., 2020).

720

https://www.theaspd.com/ijes.php

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 6s, 2025
https://www.theaspd.com/ijes.php

Table 9. Average number of errors detected per week

Error Type Traditional CI/CD Alpowered CL/CD
Unit Test Failures 3.1 1.2
Integration failures 2.0 0.6
Deployment failures 1.3 0.5
Weekly total 6.4 2.3

Source: Jenkins Bug Log and GitHub Actions.

4.4 Use of computational resources
Average CPU and RAM usage levels during executions were also measured. The pipeline with Al
demonstrated a more efficient use of resources, due to dynamic orchestration based on demand and

priority.

Table 10. Comparing Average Resource Usage
Resource Traditional CL/CD Alpowered CI/CD
CPU (%) | 74.2 58.7

RAM (%) | 81.9 65.4
Source: Metrics collected from Prometheus and Grafana dashboards.

4.5 Statistical analysis

To validate the significance of the results, a Student's t-test was applied for independent samples. The
results showed statistically significant differences (p < 0.01) in the three main variables:

. Runtime

. Energy consumption

. Number of errors

These findings support the hypothesis that integrating Al into DevOps pipelines not only improves
operational efficiency, but also has a measurable impact on process sustainability (Nadeem et al.,

2023).

CONCLUSIONS

The results obtained in this research clearly and quantifiably show that the integration of artificial
intelligence techniques in CI/CD cycles within DevOps environments represents an effective strategy
not only to optimize technical processes, but also to move towards a more sustainable software
development model. This multi-dimensional optimization simultaneously addresses aspects of
performance, energy efficiency, and failure reduction, which is critical in modern organizations
oriented towards continuous value delivery.

First, it was found that the use of Al algorithms, such as reinforcement learning, random forests, and
k-NN, significantly reduces the average execution time of pipelines, by up to 28.1%. This directly
translates into higher productivity and more agile delivery cycles, which is consistent with the findings
of Wang et al. (2020), who state that artificial intelligence improves the adaptive and reactive capacity
of CI/CD architectures.

Second, reducing energy consumption by more than 30% demonstrates that it is possible to
implement environmentally responsible DevOps practices. This result supports the idea of a "green
DevOps", where automation not only seeks speed, but also sustainability. Studies such as those by Li
et al. (2022) and Kumar et al. (2023) have pointed out that the efficient use of digital infrastructure
must be part of an organizational strategy oriented towards the Sustainable Development Goals
(SDGs), especially with regard to responsible energy consumption and climate action.Another notable

721

https://www.theaspd.com/ijes.php

International Journal of Environmental Sciences
ISSN: 2229-7359

Vol. 11 No. 6s, 2025
https://www.theaspd.com/ijes.php

finding was the decrease in errors in the test, integration and deployment stages. Al's ability to
anticipate and prevent errors by analyzing historical logs and predicting failure patterns is invaluable
in reducing rework, latency, and wear and tear on computational resources (Zhao et al., 2021). This
automated prevention improves the quality of the software delivered, while reducing operational
costs.Additionally, the intelligent orchestration of computational resources (CPU, RAM) contributes
to minimizing excessive or poorly distributed use of infrastructure, promoting the elasticity and
scalability of the DevOps environment, without increasing the ecological impact (Nadeem et al.,
2023). In contexts where companies use cloud platforms with consumption-based billing, this
optimization also translates into tangible economic benefits.

From an organizational perspective, the findings of this study suggest that the adoption of Al in
CI/CD pipelines should be accompanied by a technology governance strategy that considers not only
performance indicators, but also sustainability metrics. This implies that technology leaders must
begin to measure, report and manage the environmental impact of their continuous development
processes.In short, artificial intelligence not only transforms DevOps flows from an operational
perspective, but also allows building a greener, more efficient, and more resilient software
development ecosystem. Its implementation represents a strategic opportunity for organizations
seeking competitiveness and environmental responsibility in the digital age.

References

° Bass, L., Weber, 1., & Zhu, L. (2022). DevOps: A Software Architect's Perspective (2nd ed.). Addison-Wesley.

. Khan, M. A., Aslam, S., & Qamar, U. (2021). An energy-aware DevOps framework using software-defined
infrastructure. Journal of Systems and Software, 178, 110974. https://doi.org/10.1016/j.jss.2021.110974

° Kumar, A., Singh, V., & Sharma, M. (2023). Energy-Aware DevOps Pipelines: Al-Driven Optimization Strategies.
Journal of Sustainable Computing, 17, 102045. https://doi.org/10.1016/j.suscom.2023.102045

° Li, Y., Chen, Z., & Huang, J. (2022). Green IT and Sustainable Software Engineering Practices. IEEE Access, 10,
46789-46801. https://doi.org/10.1109/ACCESS.2022.3165221

° Nadeem, A., Malik, B., & Asif, M. (2023). Sustainable Software Development Using Artificial Intelligence
Techniques. Journal of Cleaner Production, 414, 137651. https://doi.org/10.1016/j.jclepro.2023.137651

° Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and Policy Considerations for Deep Learning in NLP.
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 3645-3650.
https://doi.org/10.18653/v1/P19-1355

. Wang, Y., Wang, Y., & Song, Y. (2020). Smart Orchestration for CI/CD using Reinforcement Learning. ACM
Transactions on Software Engineering and Methodology, 29(4), 1-23. https://doi.org/10.1145/3385734
° Zhao, Q., Yu, H., & Tang, X. (2021). Al-Driven DevOps: An Intelligent Framework for Agile Software Delivery.

Future Generation Computer Systems, 115, 385-398. https://doi.org/10.1016/j.future.2020.09.001

722

https://www.theaspd.com/ijes.php

